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AN O(n?.logn) ALGORITHM FOR A NONPREEMPTIVE SCHEDULE
ON ONE MACHINE

TRINH NHAT TIEN

Abstract. An O(n?) algorithm for problem 1| r; |3 Uy In the case that release dates and due dates
are similarly ordered (l.e., r; < rg = d; < di) is provided by authors H. Klse, T Ibaraki and H. Mine
in [4], In this paper, we would describe an O(n?.logn) algorithm to determine a schedule of the same
problem but furthermore in minimal processing time.

1. SOME BASIC CONCEPTS

It is known that the concepts “machine” and “job” are in the many materials, now we would
remind some related concepts and notations.
The following data can be specified for each job u:
- ry i8 a release date, on which u becomes available for processing;
- dy i8 due date, by which u should ideally be completed;
- ty 18 a processing time (or length) of u.
We assume that the above data are nonnegative integers and are regarded as parameters of job u.
For convenience we will also use a concept “pre-job” u; it is a pair (I, t,), where I, = [ry, dy]
is 1ls active area. A pre-job u such that ¢, < d, — ry is said to be a job.
Ry = [by, cy] with: by is a starting time, c, is a completion time, is said to be a realization of
job u on machine,
A job u is said to be completed on time (or a on-time job) if ¢, < d,; otherwise job u is said
to be late.

Definition 1. Let [; = [r;,di] and I; = [ry, d;] be active areas of corresponding jobs ¢ and 7. Then
the area I; is said to be ahead of area I; (or area Iy is behind area I;) and denoted by I; < I if and
only if r; < ry and d; < d;. ‘

Similarly I; < Iy if and only if [; < I; and [; # I;.

Similarly as in [3] we denote problem [T] by following:

[T]: 1] r; | 35 Uy, where Uy = 0 if ¢; < dj, U; = 1 otherwise.

This problem means that the system has n jobs with different release dates r;, they are available
processing on one-machine, we have to construct a nonpreemptive schedule with a minimal number
of late jobs (i.e., a maximal number of jobs ideally completed on time). We know that the problem
is strongly NP-hard, authors H. Kise, T Ibaraki and H. Mine in |4] provided an O(n?) algorithm for
‘problem [T] in the case that release dates and due dates are similarly ordered (i.e., r; < ry => d; < di).
We like to express this case by following:

[TK|: 1|1, < I X... < I,|Max Y U, where U; = 1 if ¢; < dj, U; = 0 otherwise.

The problem is to construct a nonpreemptive schedule with a maximal number of jobs completed on
time. Now we would pay attention to following special case:

[T1): 1| < I; ... < I,|Max 3 U; and Min 3, U, ;.

The problem is to construct a nonpreemptive schedule with a maximal number of jobs completed on
time and furthermore with a minimal processing time.

We would present an O(n?logn) algorithm to solve this problem.

Definition 2. B, C| := |minr;, maxd;| is said to be an active area of the system [T], where B is a
release date and C is a due date of it.
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{Ru,, Ruyy .oy Ru,, } i8 a set of realizations of corresponding jobs uy, ug, ..., U, such that RyNRy; = 9,
m

Vi#3,4,7=12,...,m Then S or |J Ry, is said to be a schedule on the set P of the system [T},

=1

Let P = {uy,ug,...,u;m} be a subset of jobs on system [T| (m < n). Suppose that § =

% m
by abbreviation a schedule of the system. .U Ry, is also said to be a processing area of schedule S,

f=1]
A realization R, of job u in schedule § is written by R, (S) or u(S) and sometime only by {u}.
In the paper we assume that Ry(S) c I,.

We note some following parameters of the schedule S:

= I8 1= m is a number of realizations or a number of jobs;
m

- tg 1= iz: tu, i8 a processing time (or a length);
=1

- bg 1= min{b,,} is a starting time;

- cg 1= max{cy, } is a completion time;

- [bg,cs] is an active area of schedule S.

The set of jobs P = {uy, ug, ..., 4}, which can create any schedule, is said to be a scheduled
set. Sometime for schedule S having scheduled set {u,, ug, ..., u; }, we also write

S = {01, Uz 1y u,,.}.

Let u = (I, t,) be a job, [X, Y] be a time area. We define a pre-job v = (I,t,) on [X, Y] such
as I, = I, N[X,Y], t, = t, and we write v =u 1 [X,Y].

For a set of jobs P = {uy,ug,...,u;s}, we denote a set of pre-jobs on [X,Y]| by P 1 [X,Y] =
{ul T [Xl Y]:u? T [xl Y]: v U T [X)Y]}'

We say that a schedule S is in the area | X, Y] if its active area [bg,cs]| C (X, Y].

Note that we define schedule only on the set of jobs, not on a set of pre-jobs.

2. R-OPTIMAL SCHEDULE AND L-OPTIMAL SCHEDULE

First we define some concepts related to problems |[TK| and [T1].

Definition 8. Let R; = [b;, ¢;] and Ry = [b;, ¢;] be realizations of corresponding jobs ¢ and 5. We
say that R; is ahead of R, (or Ry is behind R;) and write R; < R; if and only if they satisfy one of
two the following conditions:

1.1=7 and b; < by;

2.1#7and L; X I,

Similarly we write R; < R;.

Let P = {uy, uz,...,%4n} and Q = {v;,vg,...,v;, } be schedules with the same number of jobs.
We say that P is ahead of Q (or @ is behind P) and write P < Q if and only if R,, < Ry,
Vi=1,2,..,m. Similar we write P < Q.
Definition 4. A schedule § = {uy, ug, ..., uy,} is said to be R-schedule in [X, Y] if it is in the area
and realizations [b,,,¢c,,| have following forms:

Cum = min{dy,,Y}; by, = Cup, = tup}

ey, = min{dy;, by, }i buy =y = tu, i=m=1,m=2,..,2,1,

Let P = {uy,u3, .., up} and Q = {v;,v3,...,v,} be R-schedules in [X,Y]. We say that P is
R - better than Q and denote by P >, @ if and only if one of the following conditions satisfied:
(r1) p> ¢ (i.e., P has the number of jobs more than Q);
(ra) p=qand tp <ty (i.e.,, P has the processing time less than Q);
(ra) p=gqand tp =ty and bp > bg (i.e., P has the starting time later than Q);
(r4) p=gqand tp =ty and bp = by and Q < P (i.e., P is behind Q);

With+ =1, 2, 8, 4, if P >, Q in the sense (r;), we write P >, Q.
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Definition 5. We say that schedule § is R-best if and only if it is R-schedule having:
(re1) a maximal number of jobs completed on time;
(roa) a minimal processing time tg from schedules satisfying above condition;
(roa) a latest starting time bs from schedules satisfying above condition;
and it is
(ro4) behind all schedules satisfying above condition.
In the case that the R-best schedule has only 1 job (i.e., 1 realization), we call it R-best
realization,
Definition 6. Let P = {uj, u3,...,up} be R-schedule in (Xp,Yp| and Q = {vy,v3,..,, 04} be R-
schedule in [Xgq, Ygl|, where Yp < Xg, Iy, < I,,.
We define an operation, which is called R-connection and denoted by P @, Q, to connect P to
Q. The result of the operation is schedule S, having following realizations:

lbw (s)lcUi(s)] - lbUi(Q)lcUi(Q)'l Vi= g9-=1,..,1
(bu, (), cu, (S)] where cy, (8) = min{du,, bq};bu,(8) = cu, (S) = tu,;
[bu; (S), cu;(S)], where ey, (S) = min{du; buiys (8)}; bu((S) = cu () =tu;s Vi = p=1,p=2,.., 1.

Proposition 1.

1, Let P = {uy,ua,...,up} be R-schedule in [Xp,Yp), @ = {v1,v3,..,v} and Q' = {v}, v}, vy Vgr}
be R-schedules in (Xq,Yq], where Yp < Xq. Let S := P®, Q and §' := P®, Q', then have following
conclusion: Withi=1,2, 3,4, 1fQ >, Q' then § >, 5.

2. Let P = {uy,ug,.,up}, P' = {u},uj, .., Uy} be R-schedules in [Xp, Yy, Q = {vy, vz, ..y vg}
be R:schedule in (Xq,Yq|, where Yp < Xq. Let § 1= P @, Q and §' := P' @, Q, then we have
followsing conclusion: Withi=1,2,8, if P>, P' then § >, §'.

Definition 7. A schedule S = {u;, u3,...,up} is said to be L-schedule in (X, Y] if it is in the area
and realization [by,, cy,;] have following forme:

bu, = max{xa ru}i cuy = by, + buyj bu, = max{cu.-”"ui}i Cu; = by, +tu, Vi =2,38,.,m

Let P = {uj,u3,..,,up} and Q = {vy,v3,...,vs} be L-schedules in [X,Y]. We say that P is
L - better than Q and denote by P >; Q if and only if one of the following conditions satisfied:

(1) P> g (i.e., P has the number of jobs more than Q);

(la) p=gand cp < cq (i.e,, P has the completion time earlier than Q);

(ls) p=qgandcp =cq and ¢y, (P) S ¢y, (Q), Vi =1,2,..,p = 1;

() p=gqand ey (P) =cy,(Q), Vi=1,2,..,p and P < Q (i.e., P is ahead of Q);

Withi =1, 2, 3, 4 if P »; Q in the sense (I;), we write P >, Q.

Definition 8. We say that schedule S is L-best if and only if it is L-schedule having:
(lo1) a maximal number of jobs completed on time;

(lo2) a earlest completion time cg from schedules satisfying above condition;

(l0s) a earlest completion time of realizations from schedules satisfying above condition;
and it is (los) ahead of all schedules satisfying above condition.

Definitlon 9. Let P = {uy,us,..,up} be L-schedule in [Xp,Yp) and Q = {v1,v3,...,v,} be L-
schedule in [Xq, Yg|, where Yp < Xq, Iy, < I,,.

We define an operation, which is called L-connectson and denoted by P @; Q, to connect Q to
P. The result of the operation is schedule S, having following realizations:

[bu,(S), cus (8)] = [bu, (P), cw((P)], Vi =1, 2,..., p;

[bur (), 0, (8)], where by, (8) = max{cp, ru,}i cu, (S) = buy (8) + ton;

[bo, (S), cu, ()], where by, (S) = max{cy,_,(5), *u, }; v, (S) = by, (S) + tu,, Vi =2,8,....q.
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Proposition 2.

1. Let P = {uy, ug,...,up} be L-schedule in [Xp,Yp),Q = (v}, va, g} and Q' = {v}, vh, .., v}
be L-schedules in [Xg, Yq|, where Yp < Xq. Let S = P@ Q and §' := P @, Q', then we have
Jfollowing conclusion: if Q >, Q' then § =i, 9.

With ¢ = 2, 3, 4, ifQ >, Q and (.XQ < rv; or Xq =cp) then § =, 8

8. Let P = {uy, ug,...,up}, P' = {u},ujy .,y uy,} be L-schedule in (Xp,Yp),Q = {vy,va, ..., vy}
be L-schedule in [Xgq,Yy|, where Yp < Xg. Let S := P®; Q and S' := P' ®, Q, then we have
following conclusion: Withi=1,2,8,4 if P>, P then § >, 8
Deflnition 10, We say that schedule § is p-optimal if and only if it is R-schedule having:

(01) just p jobs completed on time; . :

(02) a minimal processing time tg from schedules satisfying above condition;

(03) a latest starting time by from schedules satisfying above condition;

and it is'(o4) behind all schedules satisfying above condition.

Conclusion. According to definitions 5, 10, the p-optimal schedule is just R-best schedule having p
jobs completed on time, :

We call the schedule constructed by authors Kise, Ibaraki and Mine [2] K-schedule. We call
their algorithm K -algorithm. We assume that this schedule has juet m jobs, it is the maximal number
of jobs completed on time. We would problem solve [T1], by above reasons we will determine the
m-optimal schedule. '

8. POSITION OF m-OPTIMAL SCHEDULE WITH K-SCHEDULE

Proposition 8. K-schedule is just L-best schedule.

Conclusion. Let U be a set of n jobs on system [TK] or [T1], [B, C) be an active area of the system,
let K = {21,23,...,2m} be K-schedule, [b;(K),c;(K)] := [ba; (K), ¢a, (K)] be the realization z;(K).
We write following notations:
Up = {jobsu || I, < I, },

Ui = {jobsu || In, X Iy < In,,,) fori=1,2,...,m—1, (1)

Un = {jobsu | I5,, < I,},
i.e., we can put in order n jobs from U to m + 1 following subsets:

o Fo}. o0 .
UO - {ucl UO' e ,ug"},
Ur = {z1,u},...,ul}, where z;=ul;
Ui = {=zi,u,...,ul"}, where zi=u};
Un = {@m, ud, ... ,ultr}, where z,,=ul,

Where U=UQUU1U|..U'U"“ nﬁﬂ0+ﬂ1+"'+nm.

We write U = U; UUi4y V... UU,,, n =gt iy 4o+ g,

Lemma 1. Let K = {zy,23,..., %} be K-schedule, W = (w1, wa,...,wn} be m-optimal schedule.
Let sets of jobs Uy, and the notations be such as (1). We have following result:

For k=1,2,..,m— 1, f Uy contains wy € W such that

ce(K) € cu, (W) @
and k<jg+1 (3)
then Uy does not contain a nest job w4y € W; ‘ (4)

Uo does not contain any job w € W. (5)
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Proof. By contradiction, we suppose that there is U;. satisfying (2), (3), but it contains a subset S of
jobs from W, where

S = {Wip1) W43, Wike} BB, 8:1=7+e, e2 1. (6)
Let p(k+ 1< p < m) be smallest such that z, # every job of W, (7)

(Such p always exist since by (3) we see that behind job wy.1, a number of jobs from schedule K is
more than from schedule W), That result is contradictory with the property of K-schedule K.

Lemma 2. Let K = {z;,%3,...,2.,} be K-schedule, W = {wy, w3,...,wm} be m-optimal schedule.
Let sets of jobs U; and the notations be such as (1). We have following result:
For k =1,2,..,m =1, sf Uy U{zk41} contains w; € W such that

bu; (W) < ¢q, (K) (8)

and j—=2<k (9)
then Uy = {24} does not contain a preceding job wy_; € W; (10)
Uy does not contain a job w € W such that ¢y (W) < ¢4, (K). (11)

Lemma &, Let K = {#y,%3,.., 28} be K-schedule, W = {wy, wa,..,wn} be m-optimal schedule.
Let sets of jobs U; and the notations be such as (1), We have following result:

w € Uy U {z441}, e =1,2,...,m=1 and wy, € Up,. (12)

4. m* - OPTIMAL SCHEDULE

From results of Lemma 3 we define concept “m*-optimal schedule” related to the m-optimal
schedule.

Definition 11. Let K = {z;,23,..., 2, } be K-schedule, [X Y| be a time area, let sets of jobs U; and
the notations be such as (1).

For d = mym=1,..,2, 1, we say that S is (m—d+1)* -ophmal achedule on set of;oba Ui tX,Y)
if and only if it is (m — d + 1)-optimal and has following form:

8 1= {Wd) Wdt1y+ .1y Wm }y
Where wdEUl‘U(ml'+1}1 Vi=dd+1,...,m=1 and wy € Up. (18)

We see that m*-optimal schedule on set of jobs U} 1 |B, C] is just m-optimal and so that we
will determine the such schedule.

Lemma 4, Let K = {x,, 23, ..., %m} be K-schedule, let sets of jobs U; and the notations be such as
(1). We have following result:

1) Ford=m, m—1,..,2,1, if S is (m — d + 1)*-optimal schedule on set of jobs Uj 1 |B,C|
then by, (K) < bs.

2) If W 1s m* -optimal schedule then by < by .

We can prove result 1) by contradiction and by using definitions of (m—d- 1)*-optimal schedule
and K-schedule, Result 2) is the corollary of result 1).

Definition 12. Let K = {2, 23,...,2,n } be K-schedule, let sets of jobs U; and the notations be uuch
as (1), For 8 =1,2,...,,m we define following concepts:

W 1= {Wd,Wd, W71} is said to be a full set of (m — d+ 1)*-optimal schedules on the set U3
if and it it satisfies following conditions:

W, is (m — d + 1)*-optimal schedule on U} 1 B, C| (14)
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and W4 is (m — d + 1)*-optimal schedule on UJ t lbw‘i-l +1,0), (18)

where by, (-1 is a starting time of schedule Wi, Vi =2,3,..,p.

Va i= {V},V§,...,V]} is said to be a infull set of (m — d -+ 1)*-optimal schedules on the set Uj
if and only if it satisfies following conditions:

V} is (m — d + 1)*-optimal schedule on (U} — {z4}) 1 [B,C| (16)
and V{ is (m — d + 1)*-optimal schedule on (U} — {z4}) 1 [bys-s +1, cl, (17)

where bv‘:-; is is a starting time of schedule Vd‘", Vi=238,.,q

74 1= {Wa, Va) is said to be a pair of 2 sets of (m — d + 1)*~optimal schedules on the set Uj.

Let R = {§%,8%,..,, S} be a set of R-schedules with the same number of jobs, We say that
the set has R-order if tgi < tgis1; bgi < bgiwr} ' X 8} Wi=12..,p-1.

We note that by Lemma 4 there is bs,(K) < bw:, tharefore to determine Wy, we consider only
set Uj 1 [baq(K), C).

Proposition 4. The defined sets Wy and Vy have R-order.

Lemma 6. Ford=m—1,m—2,...,2,1, let Fyr1 = (Wa+1, Vas1) be a pasr of £ sets of (m —d)* -
optimal schedule on the set U, ,

Suppose that %3 = (Wa, Va) be a pasr of £ sets of (m — d+ 1)*-optimal schedules on the set Uy,
then there ss following conclusion:

Every schedule W5 € Wy (or V§ € Va) has to contain esther schedule WY, € Was1 or schedule
Vi1 € Va1 as sts “ending part” with (m — d) jobs.

Corollary. The m*-optimal schedule has to contasn esther schedule W3’ € Wa or V7 € ‘Vg as sts
“ending part” with (m — 1) jobs.

5. ALGORITHM DETERMINING s*-OPTIMAL SCHEDULE
6.1, Main idea of algorithm

By the above results, our algorithm will be constructed by following steps:

- First determine K-schedule K = {z;,%3,...,2n} by K-algorithm with time O(n?) or by
Lawler's algorithm with the time O(n.logn) (see [5]).

- Lemma 38 and Lemma 4 determine the position of the m-optimal schedule W in comparise
with K-schedule. Here if W = {w;, w3,..,w;, } then

w; €Uz U {zi+l}: Vi=1,2,.,m=1 w, €U, and by < by . (18)

To create W, we construct the set W, of all schedules, which could become W, these such
schedules equally have property (12). By Lemma 5, the set W; will be created recursively by 3
following algorithms:

A. Algorithm BASE will create the basic pair of sets %, = (W, Vin), i.e., the pair of 2 sets
1*-optimal schedules on the set U}, = U,,; one from these schedules will become “an ending part”
{wm} of optimal schedule W,

B. Procedure STEPD will form the well-known pair of 2 sets ..y of (m — d)*-optimal schedule
on the set Uj, , determine a pair of 2 sets 7 of (m — d + 1)*-optimal schedules on the set Uj; one
from these schedules will become “an ending part” {wg, Wa41, ..y W} of the optimal schedule W.

C. Algorithm USE-STEPD will form the basic pair of sets 7,, apply (m—1) times the procedure
STEPD, we will obtain successively pair of 2 sets Fn—1, Fmn=2, ..., 72, 71, where 7, = (W1, V). Suppose
W, = (W', W3,..,, WP} then W! is just the desirable m*-optimal schedule.
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5.2, Some auxiliary procedures

5.2.1. Procedure finds R-best realisation on the set of jobs
Let a set of jobs U = {z*,2,..,,2%}, by Definition 5 we can create a procedure to find R-best
schedule with 1 job (i.e., R-best realisation) {2} on U and write:

{2} := RB-JOB({z*, 2%, .., z*}).
In the case the set is restricted by the time area [X,Y), we write:
{2} := RB-JOB({2*,2% ...,2"} 1 X, Y]).

The processing time of this procedure is O(k).
According to Definition 2, may be {z',2%,...,2*} t [X,Y] is not a set jobs, therefore there is
not such {z}.

5.2.2. Procedure connects a set of jobs to a schedule: JOB-SCHED(U,b,8; Z,K,p)
Input:

« U = {a!,22 ..,2"%} is the set of jobs such as I;s < I,2 <... < s,

- b is a starting time of the area time; .

- § is R-schedule on the set of jobs {y*,y?,...,y"} such as Jou < Iy X Lys < ... X Ia.
Output:

- Z ={2,,2;,...,2,} is a set of R-schedules, every schedule Z; is created by R-connection of
R-best realizsation on U to §;

= K = {k1, k3, ..., kp} is a set index corresponding to Z, p = |IZ.

Method: The algorithm applies the procedure RB-JOB to determine a R-best realization on U , if
there is the such realization then connects it to 3.

Algorithm:
Begin
=1
if there is {2*1} 1= RB-JOB({*,23,...,3%} 1 [b, bg))
then {Z; := {a*1 @, S and p := 1} else { put Z := @ and p := 0}
Repeat
ti=141; ‘
if there is (%'} := RB-JOB({aht-1+1 ghe-143 2k} 1 bz, | +1,bg))
then {Z := (s} @, § and p =1} |
Until p <4 (i.e., there is not {x*'});
End.
Proposition 5. Let ry,, dy,, ty, be parameters of job z,{ = 1,2,...,p. The procedure JOB-SCHED
gives following conclusions:
1, by, <tgy < bhy i by < tasy Vai € U 1 (5 bs]; th < tasy Vz! e Ut [bz,., + 1,bs],
Vi=2,38,..p.
8. {a*} s R-best realisation job z* 1 [b,dy,], Vi = 1,2,...,p — 1.
8. {a,23,..,,a%} t [bg, + 1,bs] is not a set of jobs, Vi = 1,2,...,p — 1.
4. 2={2,,2,,...,2,} has R-order.
5. The processing time of the procedure is O(k?), where k = jU.
For simple we presented the procedure JOB-SCHED by the such method. Practically we

use the fast algorithm (for instance Quicksort or Heapsort) to sort realizations on U according to
R-order, then connect the realization to §. This method needs only the time O(k.logk). '
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Proposition 8. Fori = 1,2,...,p, let § in procedure JOB-SCHED be d-optimal schedule, then Z;
18 (d + 1)-optimal schedule on corresponding set of jobs and contasns S as its “ending part®,
5.2.3. Procedure connects a set of jobs to a set of schedules: JOB-SCHEDU LES(U,b, R; Z,p)
Input:

- U = {a!, 2% ..., 2%} is the set of jobs such as L1 < Lo <+ < Lu;

= b is a starting time of the area time;

= R = {§,82,..,87} is the set of R-schedules having the same number of jobs on a set of jobs
{y') 42 . y"} such as Iy < Iy < Is <... < Is; where r = jiR.
Output:

2 = {Z,,2,,..,2p)} is a set of R-schedules, every schedule Z; is created by R-connection of
R-best realization on U to S € R, where p = |2,

Method: The algorithm applies procedure JOB-SCHED r times.

Algorithm:
Begin
JOB—SOHED({SI'EI’ u'|$k}'b’ Sii {211, ZBI’ lu.z;‘}| {ki|k%' “.'k;] )|pl);
if py = 0 then {put bgy +1:=band kp, =1}
For ¢ := 2 to r do
begin .
JOB-—SG’HE.D({:“H-L , ...,x"},bsgr_ll +1,8% {Zi, Z5, ., 25}, (K, k{,...,k:,‘},pg);
if pi = 0 then {put by := bgy- and kb, = kL )
end;
Put -
2= {zfl Zﬂll ey z;;i z.l?l zgl "y Z,?,i "y Z{, z£| vy Z;;,} = {zll z?l vy Zp}i
pi=pr+pat -+ py
End. -
Proposition 7. The procedure JOB-SCHEDULES gives following conclusions:
1. tgy <tgg <. < bgj o Vi=1,2.,r.
2. by < bz; <o < bz;‘ < 65{4-1, Vim]1,2.,r
8. Zf <Z§<...<Z < Bt Yi=1,2,.,1;
Proposition 8. Let R in procedure JOB-SOHEDULES be the set of d-optimal schedules, then 2 is

the set of (d + 1)-optimal schedules on corresponding sets of jobs and every such schedule contasns
corresponding S° € R as sts “ending part”,

Proposition 9,
1. The number of schedules in the set Z {ap < k+r, where k = jU, r = jR.
£. The processing time of procedure JOB-SCHEDULES is r.0(k.logk).

6.2.4. Procedure unifies 2 set of schedules, having R-order: UNION (P, 0, X, Y, T)

Input:
= P = {Py, P, ..., P} is a set of R-schedules, where P, >, P >, +++ >, Py
- Q={Q1,Q3,...,Qq} is a set of R-schedules, where Q; >, Q3 >, ++ >, Qqi
- [X, Y] is the time area.

Output: .
T = {1\, T3, ..., Tt} is a set of R-schedules, where Ty >, T3 >y -+ > T}, t < p+ 4.

Method: The procedure is similar as unifying 2 ordered sets of integers.
The processing time of this procedure is O(p + q).
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5.8, Main algorithms

Let K = {21,23,...,%n} be K-schedule, let sets of jobs U; and other notions be such as (1).
There are 3 following main algorithms: '

A, Algorithm BASE:
Input: U = {u},,ud, ud .., ulpn} = (2° 2 22, ..., 2"}
Output: 7 := (W, V) is the pair of 2 sets of 1*-optimal schedules on U2, = Uy,
W= {W#,,W,?,. "y lwo?;}l V= {ann Vh?u"u an:}'
Method: The algorithm applies procedure RB-JOB to determine 1*-optimal schedule on U,.

Algorithm:
Begin
§ =]
if there is {a*1} 1= RB-JOB({2° a*,22,..., 2%} 1 [bm (K), C))
then {Wy, 1= {2*1} and p := 1) else { put Wy, := 0 and p := 0};
Repeat
gi=14 1
if there is {a*} 1= RB-JOB({aki-1t1 ghi-1+3 gk} ¢ (b1 +1,0])
then {W}, := {z*} and p 1=1};
Until p < j (i.e., there is not {z*(});
=1
if there is {y™} 1= RB-JOB({*, 2%, 28, ..,,2*} 1 [B, C))
then {V,3 1= {y"} and g := 1} else { put Vp, =0 and g := 0};
Repeat
=141 ’
if thure is {z"} 1= RB-JOB({ah-1%3, ghi-2+2, 2k} 1 (b, i1 +1,C))
then {V;), i= {z"} and ¢ =1}
Until ¢ < 4; (i.e., there is not {z"});
End.

Proposition 10.

1. i is just the pasr of £ sets of 1* - optimal schedules on U,

L W and ¥V, < np.

8. Processing time of the algorithm is O(n3,).

By the method mentioned in the Proposition 5, the algorithm BASE needs only the time
O(nm.lognp).
B, Procedure STEPD: STEPD(74.1, F1)
" Input:

Fas1 1= (Was1, Va+1) 18 a pair of 2 sets of (m — d)*-optimal schedules on the set Udisr
Output: . ‘
Fa 1= (W4, Va) is & pair of 2 sets of (m — d + 1)*-optimal schedules on the set U3.

Method: The algorithm applies procedure JOB-SCHEDULES to connect jobs of Uy U {:cd.,.'l} to
schedules of F;..1, after that by procedure UNION to unify the created sets of schedules.
. Algorithm:
Begin
JOB-SCHEDULES (U4, ba(K), Was1; €, ¢);
JOB-SCHEDULES(Uy — {24}, B, Was1, 9, 9);
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JOB-SCHEDULES ({z4+1}; B, Vas1, ¥, h);
UNION(&, X, ba(K),C; Wa);UNION(9, X, B, C, Va);
End.

Proposition 11,
1. Fy vs just pair of 8 sets of (m — d — 1)*-optimal schedules on the set UJ.
2. {Wa and |Va < njj, where nl = ng+ ngs1+ -+ np.
8. The processing time of the algorithm 1s O(nq.logna).ny,,.

C. Algorithm USE-STEPD:
Input: %y is the pair 2 sets of 1*-optimal schedules on U}, = Up,.
Output: 74 is the pair of 2 sets (m — d + 1)*-optimal schedules on U}, ford=m—1,m-2,..,2,1

Method: The algorithm applies procedure STEPD(m — 1) times with input 7.
Algorithm: For d := m — 1 downto 1 do STEPD( %441, %),

Theorem 1. 7 = (Wi, V1) - the result of algorithm USE-STEPD is just the pasr of 2 sets of m*-
optimal schedule on Ul Suppose Wy = (W', W?2 .. WP}, then W' is just the desirable m*-optimal
schedule. -

Proof. By Proposition 10, %, is just the pair of 2 sets of 1*-optimal schedules on U, Un.
By Proposition 11, 7; is the pair of 2 sets of (m — d + 1)*-optimal schedules on the set Ud, for
d=m-1m-2,..,2,1,

Algonthm USEHSTEPS applies procedure STEPD(m — 1) times with input 7,, by induction
on d we successively obtain the following pairs of 2 sets of schedules: Fn-1, Fn-2, vy 2, 1, where
Fi = (W1, V1). Suppose Wy = {W!, W3, .., WP}, then by definitions 11, 12, W! is just the desirable
m*-optimal schedule,

Theorem 2. Processing time of the algorithm USE-STEPD is O(n?.logn).

Proof. According to the Proposition 11, the processing time of the procedure STEPD is O(ng4.logng).
ngep ford=m-—-1,m-2,..,2,1,
Algorithm USE-STEPD applies procedure STEPD(m — 1) times, therefore time for this algo-

rithm is
m=1

Z O(ng.logng) ng.., . (19)
d=1

According to Proposition 10, processing time of the algorithm BASE is O(n,,.logn,,). Without
loss of generality suppose that there is n},..; = 0, we have following calculations:

znd (logna).ngyy < (logn). (Z"’d'"d+1)l

d=1 d=1
where
Z Ra Ny = Z(“; = Ng41) Nagy = z: N Mgy = E("fin)g
d=1 d=1 d=1
< Z ng.ng — z{“du) - dz:((ﬂd)’ ("’d+1)2)
d=1 =1
= (nl) ("’2)2 + (""'2)g = (ns)g s (nm)2 (n:ﬂ+1)n = ("I)’-

The above calculations implies the proof.
Corollary. Main algorithm determines the optimal schedule of problem [T'1] after the time O(n?.logn).
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