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DIFFERENCE SCHEMES FOR GENERALIZED SOLUTIONS
OF SOME ELLIPTIC DIFFERENTIAL EQUATIONS, |

HOANG DINH DUNG

Abstract. It ls known that many applied probloms are reduced to boundary value problems for
differential equations with non-regular data. There are some works devoted to the construction of
difference schemes and the estimation of approximate solutions for these problems [1-3]. In this work
the difference schemes for generalized solutions of some elliptic differential equations are constructed,
Here we first consider the partial differential equatlons with the right-hand side defined by a linear
functional, for example, by the Dirac distribution é.

1. INTRODUCTION

In the environment problems the initial condition and the right-hand side of differential equa-
tions are often the point and surface distributions of masses, charges, forces,... [4,5]. Thus, these data
cannot be described within the framework of classical concept of a function, to describe it requires
using a more general mathematical nature, linear functionals, To investigate these problems, for an
illustration, we first consider the difference schemes for the Dirichlet problem of Poisson equation in
the unit square:

Au=-f(z), z€G,

u(z) =0 on 3G,
where G ={z=(z;,23) : 0<2; <1, i=1,2}.
The case of spatial variables is considered similarly.

(1)

2. DIFFERENCE SCHEME FOR GENERALIZED SOLUTION

The generalized solutions, satisfying an integral identity, of the problem (1) are considered in
the spaces WJ*(G), m is an integer number > 0, where WJ*(G) is a Hilbert space of L3(G) functions
whose generalized derivatives up to and including m — th order are square integrable in G.

2.1. Construction of difference schemes
For deriving finite-difference methods, let us introduce in the region G a grid @:

Ni‘.ii=1;2}|

@ = {(21,22) + 0 = 2, = Gihii Gi =0, 1y Nij by =
where N; are positive integer numbers., For the steplengths h;, suppose that there exists positive
constants C;, t = 1, 2, such that C; < !-’:i < Cj uniformly as hy — 0, hg — 0.

2
Denote the set of interior and boundary netpoints of the region G by w and « respectively.

We shall consider the generalized solution of the problem (1) u(z) € Wﬁ"(G‘]nlE’é(G), satisfying
the integral equation (see (3, chap. I, §2|):

Pu= 4 f Aulw)ola)ds =— '{; f 1(z) v(s) dz, Yu(z) € La(G), (2)
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and boundary condition

u(z) =0, z € aG, (3)
To obtain a net problem we may take the test function v(z) in the form
1 |=|?
v(z) = { dr DAY exp( T 4hp h",")' S (4)
0, z€C\e,

where
|2? = o] + 23, e = e(2) = {¢ = (51, ¢a) : |2 = ¢i| < 0.5y, i = 1,2},

m is a natural number,
Then, the generalized solution u(z) (denoted by the NSR u(z)) satisfies the following integral equality

i 21+0.6h; z3+0.8h,

Pum o a(s) Au(g) d¢y dga = =Rf, z € w, (5)
zﬂx-o.éhl 23=0.5hy
where
1
Rf = [ alo) 105)de (0
1 zf + 23
e BB Nt |
a(z) = a(zy, 23) = { drhP~I AP exp{ 4hP B }' SIS (7)
0, z€G \e.

We may rewrite the equation (5) as follows

8a du ‘
e m f./ [Zaff 3s'i Eaﬁ aﬁ] SRl Ee Y,

It is clear that

i 23+0.5h; 33+0.5hy g du Bu \ (+0.5:) Su \ (=087
hihg f f 5‘&"( ag)ds‘xds‘a E-S's-i[(agz—i) -(aa—m) ]. 1=1,2,

21=0.6h; @3=0.6hy
where §; is the one-dimensional mean operator:

zi+0.5h;

1
S u(z) = h_; U(21) c00y $iy ooy Zn) dy
zi=0.5h i

ul£08) (5) = ulE08) (5, . Zn) = u(Z1, .00, 3¢ £ 0.5k, ..y zp).

Hence,

Pum Lk nd(o2) ™ - (052) V] sn(S 2 foke -

(=]
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Thus, for every mtpoint @ = (21, 23), we have the following net problem for the NSR u(z):

PCHEZ[SS-‘( )(oes:)hi s;sa(Z:Z:' g;)- -Rf, z€w,

ulg) =0, z€7, . ®

where W
Ua; = g, (7) = o~ [ (+1) — “] uz, = ug, () = hy [u' - ul” 1d]

u(21) = u(tm(,) = u(2y, oy 20 £ hiy o |-17n)1 121

' Now, to obtain a difference scheme of the operator P°u (8) one may approximnte the mean
integral operator S; by the quadrature formula of average rectangles and the partial derivatives by
difference quotients as :

®9+40.6hy !
el Au \ (+0.84) 171 ) :
h—x'Sg (CI 8_:-:1) B h_l{h_a / a(z; +05h1,§2) (z; +05h1,$‘9]d§9}
29=0.6hy
1 é
RS m—{a;(z; +0.5h1,$g)a—u(w| +0.5h1,mg)}
rl-{a(xl +0.5h, 32)“&1 (21 + h1,23).

i [ - B -~ M I CRC O P

Therefore, we get the following difference approximation of the problem (8):

2 e: .
‘Plum Ky =~(al"08yg,), - (a0 s,),, + 818 ) om(a) i (a) = o s €W,
i=1
i(z) =0, z€7, (9)
where o(z) = R f(z).

Further, consider an other approximation of the problem (8). First, it can be verified that
h;.l#;n-.o /f Au(g)P(¢) d¢ = Au(z), (10)
R2

where 1 23

oe) = ehp by oxp{ - 4T h;n} '
Note that ¥(z) is an infinitely differentiable function in G.
On the other hand, one has

pim f f Au(g) w(¢) d¢ = Au(z), (11)
where .
_ [ (hihg)™}, zee,
w(z)—{o" 2 zeG\e.
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By (5), 8) 11) one may approximate the problem (8) by the following difference scheme
(cf. IS, chap. II
QP}.U"LD="‘QE|¢; 0520, =) TEwW, (12)
(z) =0, z€7.

2:2. Estimation of the convergence rate

( Fc;r our purpose we will estimate the method error and approximation error of the schemes (9)
and (12

2.2.1, Consider the difference acheme (12). We see that the left-hand side of the difference equation
(12) coincides with a standard fivepoints approximation for the one of the differential equa.t.lon (1).
Denote the method error by z = () — u, where { is the solution of the problem (12) a.nd u is the NSR
of the problem (1). It follows from (12) that

Lz=V¥(z), z€w; 2(z) =0, z€ 7, | i (18)

where W(z) is the approximation error of the scheme (12): W(z) = () — Lu. Then, using the
expression (9) of ¢ we get '

2
V= ‘Z;[ul' S i(a._( 051)] + 8y S’(Z::‘ :;) Eg(n‘),'.q.no’ (14)

where
(=0.8;)
m = uz, — - S i(ﬂ ) ‘1 1=1,2,

no = 51 z(zg:g:) w, (18)

a(z) is defined by (7).
To obtain a priori estimate for the problem (18) - (15) we use the method of energy inequalities.
For this purpose let us take the scalar product of z(z) and the equation (13):

= Z ('Iiﬂrl") . Z ('H.,l ’) + (no, #),

=1 fe=1

where (u,v) is the scalar product on the set of net functions,
Since 2(z) = 0 for z € v, one has

('EMH') = ('iﬂ'if]‘ = ”'i':]h’:

('H.‘i') - "‘(ﬂh'i;].-s 1=1,2,

where
Ny Na=1

(wzli= D D wlshy, Jnhz)s(hhn:zha)hxha.

Ni=1 fh=1
Ni=1 N3

(w,zla= Y D wlsihy, saha)s(irhy, jaha)hiha.

Ni=1 ja=1

Hence

2 2
D Nz i = 12080 < 3 llmilislizs, )+ linoll 1=l *(18)

i=1 i=1
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where
N;i N;

|l#]? = 2 Z 2%(J1h1, Jaha)hyh .

Ni=1 =l
Let H be the space of the functions defined on the net @. ;I be its subset of the functions
satisfying the condition: u(z) =0, z € 4.
-]
By the embedding theorems of net functions (see (3, chap.I, §3]), for a function u € H one has

2
shulllo < IVule < llullfa (17)

where g " " "
lullf,w = lullo,w + I'Vulld, u = lull )
lullo,w = lufl.
Combining (16) and (17) yields

l#lls, < M(llna]ls + lInalla + [Inoll) - (18)

where M is a constant, independent of h(|h|? = A} + h3) and 2(z).
Now, to estimate the rate of convergence for {j, we first consider the functional n,(z) defined
by (16):
Y( ) 1 ®y+40.6hy P
i (2) = um, (o) = 3~ a(z; — 0.5k, g)%(ml —~ 0.5hy, ¢2)dea. (19)
29=0.8h,

Let us denote by ¢ the following mesh of the net w:
e =¢'(z) = (¢ = (¢1,¢3) ¢ @ —hy < & < 2y, |2a— — ¢3—¢| < 0.5h3—;}.
We introduce a transformation of the variable ; as follows: ¢ = &; + h¢s;, ¢ = 1, 2. Then, the

region ¢(z) will be transformed into the rectangle E* = {(s;,83) : ~1 < 8; < 0, |83 < 0.5}. Setting
{i(e1,83) = u(®y + hysy, 23 + hgsz), one has from (19)

; 0.6 :
n(2) = ﬁ[ﬁ(o,o) — §(~1,0)] - % a(-o.s;.,);;:(mo.s;a,)dag sL+h, (20
-0.8
where 1 0.5 ”
I = = [5(0.0) - i(-1,0) —-0‘5 —;(—0.5;33) dag] j
1 7 1 |19
I = "-‘—:' f [l = &( - 5,82)] a—::(-'o.ﬁ;ag)dsg.

It is clear that if u € W"(e') then & € W/*(E").I; is a bounded linear functional of @ €
Wit (E*), m 2 2 and is equal to zero at the polynomials of second order (i = 1,8y, 83,8183, 83, 83).
Then, by Lemma Bramble- Hilbert (see |3, chap.], §1]) one has

M
II;l S Klﬁlm.gl, ms= 2, 3.
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Further,
wlm.ﬂ' - ( Z ,/‘IDaﬁPd") s < M'm(hlhz)—lﬂlulm.u':
|al=mg,
where = h{'h3?, a = (a;, a3).
e 11 S MU b )™l (1)

where M is a constant, independent of A and u(z), m = 2,3,
We rewrite I in the form:

0 08
1 ” od ;
I = ™ / 1 (1 - &(—0.5;83)] b_a;'(ﬂn_fa) dsy dag.
-1 =08

Since & (—0.5;43) tends to zero as hy, hy — 0, there exists a value 83 = d3, =0.5 < §3 < 0.5, such
that & (—0.5; 83) = 11if h; and hq are suﬁ‘ic:ently small. Then one has

i
1—&(—0.5;83) = /Mdr.

or
I
Hence, 1 3
|Ia|<— - aa(a)l f/‘ aaNa  \3/
hy .ellsal dsy
< M a0, |h] (h1 ha)~ m |w]s,et (22)
where lalpoo,a = ) [P allocea= Y [D*allLe(a)-
|AT=p |\l=p

By (20), (21) (m = 2) and (22) we get

() < M 1A] (b )2 ()
h 1/2
where llmar = llwpiay = ( 3 [ 100 ds) "
|¢'|Sm¢l

The functional na(2) is estimated similarly.
Consider now the summand ng(z):

0.6 0.8

2
no(z) = Z

-0.6 -0.6 ‘-1

dr; dra = K, + K3. (24)

Q:IQ,

go g
ary

...,] -

One has 0.8

1 1
IKIIS";I‘ z-
=0.6

dé&
5 il

Since hig—- —+ 0 as hy, ha = 0, by the same way as we did for I3, we obtain
197

Ino(e)l < M |B(R)] b (hy ha) =/ uly 1, (25)
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where ﬂ(h} —+ 0 when hy, hg = 0.
It follows from (28) and (25) that

1/2
Il = (3 oit*ha hz) ™ < M 1A (3 ol )72 < M 1A] sl i
@ ]
Imoll < M |h|[8(A)|llullsc-
Finally, combining (18) and (26) we derive
l#llsw =119 = vllsw < M Al |ullwz(a) -

The case m = 3 is considered in the same manner.
Thus, we obtain the following result.

Theorem 1. Let the NSR u(z) of the problem (8) belong to the space Wi*(G), m = 2,3. Then the
solution of the difference scheme (18) converges to the NSR (8) in the net norm Wj(w), with the rate
O( |h|™=*) such that one has the following error estimation

19 = ulliw < MIA™ [lullma, (27)

where the constant M 1s independent of h and u(z).
2.2.2, We now consider the following difference scheme

Ty=-§-(K+L)y=p, ZEwW,

y(z) =0, z€7,

where y = -;- (U +9), ¥ and 9 are defined by (9) and (12) respectively.
Hence,

13 1~ (- 1 :
Ty=—§‘-21y;‘.'—§ g(a{ °'°"v5f)¢‘+531.$’g“21a;iys,=¢. ZEW

y(z) =0, z€. (28)

The difference operator (28) satisfies the maximum principle (see 6, chap. 4, §2, 4]), then there
exists uniquely a solution of the difference problem (28). Now, consider the method error z = y — u.

One has
Tes=V(z), z€w,

#(z) =0, z€w, (29)
where  W(s) =~ 3 (K +1L)u,
2 2
2V = E('Ti)m + ‘_Z;('n).. +%, | (30)
N = ug, — Sy (a _:Tll‘)(-o-h)'
N = ol=0:8) ug, - Ss_‘(a g_;_){—o.sd' -

2. r 9a du
Yo = 81 83 Z [2'8'—;; -a-s:"' - az,[z) u;,(a:)] ;
i=1
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From (20) - (31) one has

3 2
TO F =] Z"il( + 2 (a(-O-ai) ’l().' b —WO(SL zEW,
fm]l =1 -

#(z) =0, z€%,

where 2 3
Wo(-'ﬂ) 3 (06 + %) + Foo

o = 815, Z [2 g: g: oz (2) &h(z)]

Since yz, () ~ %‘ﬂ & Uz, Yo may be written as

Yo = 51 83 2 [2 g:' g—: - ag, (=) ua,(z)] -

From (382), (88), arguing as in the proof of (18) we get

lellsw < M (3 (il + Iwll) + 501

f=1

By (15) and (31) one has the estimation (23) for n;. Consider now the (=) in (31):

M= h—lla(zl N O.Bhl; ﬁg)[ufﬂhmg) - u(s; -— h;, :\73)]

2340.6hy P :
—-— a(zy = 0.5hy,¢3) ——‘"(31 ~ 0.5hy, ¢a).d¢a,
ha 9
®3=0.6hy
* or,
: ‘ % aﬁ
m = 4o &(-050) ['u*(o 0 -0-10~ [ 2 (0tier)de]
h -0.6 ’1

+— /[a( 0.5;0) - &(~ osa,na—(-—ossa)daa
-05
=H1+H2.

The estimates of H; and Hj are analogous to I; and J; in (20) respectively, then,

B < M max a(o)] A" (b ha) /2 [ulmet, m = 2,8,

|H2, S M |alm-—1,oo,G lhlmnl (hl hﬂ)-u’ |u|1.a‘| m= 2! 3.

It follows from (37) and (38) that

vl < M [By(h)] [A[™=* (hy ha) ™2/ |ullym.er, ™ = 2,3,

(82)

(83)

(84)

(35)

(36)

(87)

(38)
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The function 43 () is estimated similarly, Thus,

el < M R™=2 Bi(B)] llullm,cy m = 2,3, :

where f;(h), 1 = 1,2, tend to zero as hy, hg — 0.
Consider the last summand %, in (35):

214+0.6h; 2940.6h,

Py 1 2.1 0a Bu(g]
2 hy hg f Z 28;‘; - ag,(2) ug, (z)] dg

#1—0.5h; ©7-0.6hy ‘=1

h1ha ./fz [ag ~ ug,( )) (_‘“=1(¢))ua¢(3)+ g: g; d

Aj.

™

.,

1

.
n

By the Cauchy - Buniakopski inequality one has

|4i| = ke hg lf/ 3e; u,,(z)] d;[
ag ff[ (f)""i'(z)]gd;)m. i=1,2,

< (hy hg)~*/% sup
§€e

Therefore,
|A|'| < Mlh”)‘l(h)l (hl h")-ln (l""’-l + Iulﬂ.e')l ' =12,

where Ai(h) — 0 as hy, hg — 0,

Since .

1 [’
uz, = h_‘ f a_;i (CIPRY T -""'n) di,
®y=hy
@
Ay = “—hl T /:[Z [55' a,,(s)] ( f’ — dr‘) d¢ .
2i=hy
Thus,

4] < M |A[ds(h)|(hy ha)™*/2 |u]s,e,
where A3(h) — 0 as hy, hg — 0,

The estimation of A4 is analogous to ng in (15), then, by (25) we have
|As| < M A||Aa(h)| (hy ha)=*/2 |uly.e,

Combining (40) - (43) yields
[Foll < M A |A(R)[l|ulla.c:

where A(h) — 0 when hy, hg — 0. The case m = 3 is considered analogously.
Finally, we get from (35), (23), (39) and (44)

17+ 9 - 2ulliw < MIA™! ullma, m=2,3.

87

(39)

(40)

(41)

(42)

(43)

(44)

. (48)
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Hence, there holds the following theorem:

Theorem 2. Suppose that a(z) f(z) € La(G). Then the solution § of the difference scheme (9)
converges to the NSR (8) u(z) of the problem (1) in the net norm W (w) with the rate O(|h|™"?),
m = 2,3, such that one had the following error estimation

15 = wlliw < M A" ullma (46)

where the constant M 1s independent of h and u(z).

Indeed, by assumption a(z) f(z) € La(G) and from the formulas (2), 8), (5) and (6) it follows
that u(z) € WJ* (@), m = 2,83. Then, by the forms (27) and (45) one has

19 = ulliw S 18+ 9 = 2ullyw + 19 = ullsw < M A" ullm,e)

that proves Theorem 2,

Remark. For the sake of simplicity, the homogeneous Dirichlet condition (1) was considered. In the
case where u(z) = g(z), # € 3G, the assertions of the theorems 1 and 2 are also true.

2.8. Some generalizations

2.3.1, In a manner analogous to the proof of the theorem 1 and 2, one may verify that these theorems
are also valid, if in the formulas (2) and (4) of the generalized solution v(z) is any test function in
the space of Schwartz basic functions D(G) [5].

2.3.2, Let in the differential equation (1) f(z) € Wé")(G’), | is a nonnegative integer (see [3, §1]).
We consider the generalized solution for (1) of following form:

(Au,v) = (=f,v), u=0o0n 8G, (47)

where (', ') is a continuous linear functional on the space W}(G).
Then, one may represent f(z) in the form [7]:

f=35 Dfiap

||

where fjo| € L3(@), a is a multi-index of nonnegative integers:

a= (e, ay), |a|= i“-"’

i=1
D = ﬁ, z € R",
Then, let v € ‘POV',(G') one has
(Au,v) = |zt£l(_l)a+1 (fials D% v). (48)
alg

Furthermore, let v € D(G). Because D(Q) is dense in V?/',(G) and flq| € L3(G), by (48) we
may consider the following generalized solution u, of the problem (1):

ff Aup(z)v(z)dz = ) (-1)lal+! ff f|a|(§) D%vdsz. (49)

(] lal<t a
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Since the function v(z) is infinitely differentiable, by (49) one has u,(z) € W§*(G), m = 2,3, and we
see that the equality (49) is analogous to the formula (2). Then, we can use the difference scheme

(9) for the problem (1) in the case where f(z) € WS~ (@), and thus, the convergence Theorem 2 is
also valid in this case,

For example, let in (1) the right-hand side f(z) = §(z — 2°), 2z° € @, & is the Dirac delta
function. It is known that 6(z — z°) = Df(z — 2°), 0(z) being the Heaviside function. Then, the form
(49) may be written in the mesh e(z°) (with the netpoint 2°) as

[[ Bure) o) ds = ~u(a9). (50)

e(af)

Remark. For simplicity of presentation, let us suppose that G € R}, 2 = 0 € G and f(z) = §(z).
Let in (4) m = 1, then in (50)

1
v(2°) = v(0) = . (61)

By (50), (51) we showed that, in the finite-difference problems, one may approximate the Dirac'delta
function (being a distribution) §(z) by a rational fraction of h (see the first formula in [5, Chap. 1, 1J;
the formula (87), (8, chap. 11, §3); and the other formulas in classical bibliographies).

8. ELLIPTIC DIFFERENTIAL EQUATION OF THE SECOND ORDER
WITH VARIABLE COEFFICIENTS

Consider the following elliptic problem

Pu= i i(k‘-(m) %) =~f(2), z€ G,

i=1 3.’#.‘ (52)
u(z) =0, z€Q,
where G is the unit square as in n. 1, k;(z) € C(G),
0< 0 £k(z) €Cy 260, (53)

C;, + = 1,2, are the constants.

8.1, Construction of difference schemes
Consider the NSR of the problem (52) u € Wj*(G)n V?’E(G'), satisfying the integral equality

é f g; a%(m(x) %) o) 4 f £(2) v(a) ds,

where the test function v(z) has the form (4).
In every mesh e(z) of a net point z € w, the last equation may be written as

o _ 1 2 8 oy Ou
P [f‘ggﬁ[“(s‘)ki(s‘) 5;] dg

2

1 8a du
— — E k — —d¢=~-Rf, z€w
hy hy .{./".:1 i(¢) a¢ O¢ d ! '
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where Rf has the form (5). ,
Then, one has the following net problem similar to the one (8)

2 2
i Buy(-os)] _ 8 du\ _
P u-‘g[ss-i(ak‘ az;) X s;sz(‘%h(c) & aﬂ)-— Rf, z€w,
u(z) =0, z€¥. (64)

Arguing as in the proof of the form (9) and (12), n.2.1., we obtain the following difference schemes
for the net problem (54):

2 2
By=3 (aids)s - 518 ) k() oz, (2) s, (2) = ~(2), = €w,

f=1 f=1

Y(z) =0, z €, (58)
2
Lo=) (bifa)e = ~pla), z€w, §(z)=0, z&n, (56)
fm] .
Where ag(z) = al=08) k{=08) () bi(z) = k(0% p(a) = Rf(a).

8.2. Estimate of convergence rate

We first consider the difference scheme (56). Denote the method error by 2 = §) — u, where u
is the NSR of the problem (54), one has

Lz - V(z), z€w

57
2(z) =0, z€9, (67)
where i ' : ”
du \ (=05 Ao Ou
W(m) = E [bi Uz, — Sgy (ak; 5';"-) ]5i + 5 S’(Ek‘a_g 5_;;.)
2
S Z('n)ﬂf + Yo (58)
=1
_ Ou\ (~0.8¢) 3, da du
'fu‘-bdua‘—ﬁ'a—;(k;aaz‘) T =S;Sa(§k¢-a?a—g‘), zEw, (59)
By (57), (69) one has the following inequality analogous to (18)
ll#llsw < M (lva]ls + [Ivala + [|7ol]). (60)

The estimation of 4; and « are analogous to that of 4; and 7o in (31) and (15) respectively.
Hence, as in the previous section we have

Theorem 8. Let ki(z) € W=1(G), m = 2,3, satisfying the condition (58) a(z)f(z) € La(G). , Then
the solution of difference scheme (56) converges to the NSR (54) of the problem (58) with the rate
O(|h|™~1) such that

19 = ulliw < MIA™ [lullma, (61)
where the constant M s independent of h and u(z).

'For the diTevence scheme (55), in the same way as we did for the scheme (9) in the section 2.2,
one has the following
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Theorem 4. Let k; € W,’;"“}IG) N C™=3(G), satisfying the condition 558), m= 2,8; a(z) f(z) €
Ly(G). Then the solution of the scheme (55) converges to the NSR (54) of the problem (58) in the
net norm W3 (w) with the rate O(|h|™"?) such that

19— ulliw < MIB™ ullm,a, (61)

where the constant M 1s independent of h and u(z).
Finally, note that some generalization in sec. 2.3. are also valid for the problem (52).

In the part II of this work we will consider the difference schemes of the problems (1) and (52)
in the case where G is a region of arbitrary form,

REFERENCES

[1) Makarov V.L., Samarski A.A., On the problem of convergence rate of cutshort scheme for
generalized solutions, Different. Equations 16 (7) (1980) 1276-1282.

(2] Lagarov R.D., Makarov V.L., Samarski A, A., Application of exact difference schemes to the
construction and investigation of difference schemes for generalized solutions, Math. Sb. 117 (4)
(1982) 469-480,

[8] Samarski A. A., Lazarov R.D., Makarov V. L., Difference Schemes for Generalized Solutions of
Differential Equation (Russian), Vuschi Univ., Moscow, 1987,

(4] Marchuk G.1., Mathematical Modeling in the Environment Problems (Russian), Science, Moscow,
1982,

[8] Vladimirov V.8., Generalized Functions in Mathematical Physics, Mir, Moscow, 1979,

[6] Samarski A.A., Andreev V.B., Difference Methods for Elliptic Equation (Russian), Nauka,
Moscow, 1976,

(7] Lion J.L., Magenes E., Problems auz Limites Non-homogenes et Applications, Vol. 1, Dunod,
Paris, 1968,

Recesved February 12, 1998

Institute of Mathematics, Hanos, Vietnam.



