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Abstract. MDS (Maximum Distance Separable) matrices have an important role in the design

of block ciphers and hash functions. The methods for transforming an MDS matrix into other

ones have been proposed by many authors in the literature. In this paper, some new results from

direct exponent and scalar multiplication transformations are given including the preservation of good

cryptographic properties (the coefficient of fixed points and involutory property) of MDS matrices

and other important cryptographic properties obtained from studying equivalence relations based

on these transformations. An estimation of the number of m ×m MDS matrices over GF (pr) is

also presented. In addition, these results are shown to be an important theoretical basis for building

efficient dynamic diffusion layer algorithms for block ciphers.

Keywords. MDS matrix, direct exponent transformation, scalar multiplication transformation,

dynamic algorithm...

1. INTRODUCTION

The viability of using MDS matrices in block ciphers was first introduced by Serge Vaudenay in

FSE’95 [1] as a linear case of multipermutations. Multipermutations characterize the notion of

perfect diffusion [2] which requires that the change of any tout of m input bits must affect at least

m− t+ 1 output bits.

The branch number is one of the important criteria for diffusion layer design in SPN structure

[3, 4]. It has an important role for resistance against strong attacks (such as linear and differential

attacks) on block ciphers. It is always to be expected to have the maximum branch number for block

cipher designers. As MDS matrices give maximum branch numbers for the linear transformations

corresponding with them, they have been used for diffusion in many block ciphers such as: AES [5,6],

SHARK [7], Square, Twofish [8], Anubis, Khazad, Manta, Hierocrypt and Camellia. They are also

used in stream ciphers like MUGI and cryptographic hash functions like WHIRLPOOL.

“Dynamic” block ciphers (block ciphers which are made dynamic in one of their components) have

been under study in order to further enhance the security of the block ciphers, for example [9–11].

In [9,10] the authors constructed a key-dependent diffusion layer by creating MDS matrices depending

on a secret key for each round. In [11], the authors constructed a dynamic block cipher in both

substitution and permutation layers by building a bank of S-boxes and MDS matrices depending on

a secret key.
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Accordingly, some MDS matrix transformations have been studied to generate dynamic MDS

matrices from an existing one such as: scalar multiplication [12], permutations of rows and columns

[13, 14], direct exponent [12]. The direct exponent and scalar multiplication transformations were

first introduced by Ghulam Murtaza and Nassar Ikram in [12]. However, no studies have ever shown

the conservation of good cryptographic properties of MDS matrices under these transformations.

Moreover, no studies have also indicated how effective to apply these transformations to build dynamic

diffusion layer algorithms for block ciphers. In this paper, some new results from direct exponent and

scalar multiplication transformations are presented including the preservation of good cryptographic

properties of MDS matrices such as the preservation of the coefficient of fixed points and involutory

property. Moreover, the properties of equivalence relations based on these transformations are also

given. In addition, these results are shown to be an important theoretical basis for building efficient

dynamic diffusion layer algorithms for block ciphers.

The paper is organized as follows. Section 2 presents some related works. In Section 3, some

new results about the direct exponent and scalar multiplication transformations are given. In Section

4, some examples are given. Section 5 provides important applications of these results for building

efficient dynamic diffusion layer algorithms for block ciphers. And conclusion of the paper is in Section

6.

2. PRELIMINARY AND RELATED WORKS

2.1. MDS matrices

MDS matrices provide perfect diffusion so they are useful for block ciphers and hash functions. The

idea comes from coding theory, in particular from maximum distance separable code (MDS). In this

context, two important theorems from coding theory are stated.

Theorem 1. [15] If C is a [n, k, d] code then n− k ≥ d− 1..

Codes with n− k = d− 1(or d = n− k + 1), are called maximum distance separable code, or

MDS code for short.

Theorem 2. [15] A [n, k, d] code C with generator matrix G = [I|A] where A is a k×(n− k)
matrix, is MDS if and only if every square submatrix (formed from any i rows and any i
columns, for any i = 1, 2, . . . , min {k, n− k}) of A is nonsingular.

The following fact is another way to characterize an MDS matrix.

2.2. Fixed points in Linear transformations [16]

Consider a linear transformation L : Fm
2r → Fm

2r . Define A = [ai,j ]m×m as a nonsingular matrix

with elements in the field F2r that represents the linear transformation L. The transformation L
maps an element X = [X0, X1, . . . , Xm−1]

T ∈ Fm
2r to an element Y = [Y0, Y1, . . . , Ym−1]

T ∈ Fm
2r

by Y = AX as follows:
Y0
Y1
...

Ym−1

 =


a0,0a0,1 . . . a0,m−1
a1,0a1,1 . . . a1,m−1

...
...

...

am−1,0am−1,1 . . . am−1,m−1

 =


X0

X1
...

Xm−1

 (1)
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Let I denote the m×m identity matrix. The set of all fixed points for the linear transformation

L can be obtained by solving the following equation:

[A− I]X = 0, (2)

where 0 is the all-zero vector of length m. The number of fixed points for this transformation is given

by:

FA = 2r(m−rank[A−I]). (3)

This is the number of input blocks that are unchanged by the linear transformation L, so the

output blocks are equal to the corresponding input blocks.

To extend the definition of fixed points, Muhammad Reza Z’aba [16] considered simple linear

relationships between the input and output blocks. Let I(l) =
[
α
(l)
i,j

]
denote the m×m matrix based

on the identity matrix I = [αi,j ] where I(0) = I . The elements of matrix I(l) are determined by the

rotation parameter l ∈ {0, 1, . . . ,m− 1} where α
(l)
i,j = αi,(j−l)modm. The following are examples

of the matrices I(1) and I(2) for m = 4.

I(1) =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 , I(2) =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .
Consider input blocks that have the following simple relationship by L which is an extension of

(2): [
A− I(l)

]
X = 0. (4)

For l = 0, the above equation is the same as (2).

For l > 0, the solution to the above linear relationship gives the set of all input blocks that

are only rotated lr bits to the left by the linear transformation L to produce output blocks. This

relationship is given as follows where X̂ represents particular input blocks to L:

L
(
X̂
)

= X̂ <<< lr. (5)

The number of input blocks satisfying the relationship in (4) is calculated as:

FA(l)
= 2r(m−rank[A−I(l)]) (6)

where l ∈ {0, 1, . . . ,m− 1}.
Then, the diffusion based on the fixed points and the simple linear relationships is denoted by

the number D (A) defined as follows:

D (A) =
1

m2mr

m−1∑
l=0

FA(l)
=

1

m2mr

m−1∑
l=0

2r(m−rank[A−I(l)]). (7)

The number D (A) is called the coefficient of fixed points of L and denote the average fraction

of input blocks to L that have the linear relationship in (4).
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For more generally, we consider a linear transformation L : Fm
pr → Fm

pr which is represented

by a matrix A = [ai,j ]m×m as a nonsingular matrix with elements in the field Fpr . Then it is based

on the theory of linear algebra, it is to have:

The number of fixed points satisfying (2) for this transformation is given by:

FA = pr(m−rank[A−I]). (8)

Similarly, the number of input blocks satisfying the relationship in (4) for this transformation is

calculated as:

FA(l)
= pr(m−rank[A−I(l)]). (9)

where l ∈ {0, 1, . . . ,m− 1}.
And the coefficient of fixed points D (A) of L is:

D (A) =
1

mpmr

m−1∑
l=0

FA(l)
=

1

mpmr

m−1∑
l=0

pr(m−rank[A−I(l)]). (10)

2.3. The results of previous works

The direct exponent and scalar multiplication transformations were introduced by Ghulam Murtaza

and Nassar Ikram in [12]. In this section, results in [12] are summarized.

The definition of direct exponent of an MDS matrix was defined as follow:

Definition 1. [12] Let F be a Galois field. Let matrix A = [ai,j ]m×m , ai,j ∈ F , then Ade =[
aei,j

]
m×m

, (e = 1, 2, 3 . . .) is called direct e exponent matrix of A. And Ad2 is called direct

square matrix of A.

The following theorem about direct square of an MDS matrix was stated:

Theorem 3. [12] If A = [ai,j ]m×m , ai,j ∈ F is an MDS matrix, then direct square matrix
Ad2 of A is an MDS matrix.

However this theorem was shown to be incorrect in both it’s statement and proof by the authors

in [17].

The class of MDS matrices was also defined in [12] as follow:

Definition 2. [12] Define direct exponent class of MDS matrix A as

Clde (A) =

{
‘
A :

‘
A = Adi , i = 2, 3, 4, . . . , Ord (F )

}
.

The number of MDS matrices in a class was shown in the following theorem.

Theorem 4. [12] If an element a′ of MDS matrix A such that |a′| = max |ai,j | , then
log |a′|
log 2

− 1 ≤#{ MDS matrices in Clde (A)} ≤ Ord (F )− 1.

It can be seen that the number of MDS matrices in a class was only shown as an inequality.

Next, the theorem about scalar multiplication was stated.
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Theorem 5. [12] Let A =

A1
...

Am

 , Ai = [ai,1 · · · ai,n] , ai,j ∈ Fq be an MDS matrix, and

E = [ei], i = 1, 2, . . . , m, then scalar multiplication EA =

 e1A1
...

emAm

 , eiAi = [eiai,1 · · · eiai,n]

is an MDS matrix.

An equivalence class based on this scalar multiplication was defined and the number of MDS

matrices in a class was also given as follows.

Definition 3. [12] Define scalar multiplication class of an MDS matrix
‘
A

m×n
by a scalar value

E =

 e1...
em

 as Clsm (Am×n) =

{
‘
A

m×n
:

‘
A

m×n
= EAm×n,∀ei 6= 0 ∈ F,∀i

}
.

Theorem 6. [12] Number of elements in class Clsm

(
‘
A

m×n

)
is (Ord (F ) −−1)m .

3. SOME NEW RESULTS

In this Section, some new results from the direct exponent and scalar multiplication transformations

are presented.

3.1. RpRpRp equivalence relation and the preservation of coefficient of fixed points
of MDS matrices

It was showed that direct p exponent of an MDS matrix over GF (pr) also results in an MDS matrix

as stated and proven in Theorem 1 [18]. The cycle of the direct p exponent transformation was

also given in Theorem 2 [18]. It was showed that the direct exponent transformation is capable of

preserving many good cryptographic properties of MDS matrices such as MDS, involutory, symmetric,

the number of 1’s and distinct elements in matrix, circulant and circulant-like in [19].

In this section, the equivalence relation based on the direct exponent transformation will be

defined and a necessary condition for two matrices in order to belong to the same equivalence class

on this relation will be shown. Then the conservation of coefficient of fixed points of MDS matrices

under the direct exponent transformation will be stated and proven.

3.1.1. RpRpRp equivalence relation based on the direct exponent transformation

Here, a relation based on the direct exponent transformation is defined.

Definition 4. Let D be a set of m ×m MDS matrices over GF (pr). Then it is said that

matrix B ∈ D has a direct p exponent relation with A ∈ D, denoted by ARpB, if there exists a

non-negative integer k such that B = A
dpk

, or ARpB ↔ B = A
dpk
.

Denote τA is the cycle of the direct p exponent transformation of matrix A (in [18], τA was given

exactly, but in Definition 2 [12], #Clde (A) was only estimated). Then τA ≤ r (by the Theorem

2 [12]). On the other hand, if k = r or k = 0 then A
dpk

= A, so it can be limited 0 ≤ k ≤ r − 1.
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It is to prove easily the following result:

Proposition 1. Rp relation on D is an equivalence relation.

Denote the equivalence Class that contains matrix A ∈ D on the Rp relation is. (It is clear

that Clde (A) in [12] is an equivalence Class containing A [A]p). Next, a necessary condition for

two matrices to be equivalent on the Rp relation is given in Theorem 7.

Theorem 7. If two any MDS matrices belong to the same equivalence class on the Rp

relation over D then:

1. They have the same cycle of the direct p exponent transformation.

2. The positions containing element 1 of the two matrices coincide each other.

3. Two any corresponding elements of the two matrices must have the same orders.

Proof .

Suppose A,B ∈ D are two MDS matrices of the same equivalence class on the Rp relation.

Item 1.

Then ∃k ∈ N, 0 ≤ k ≤ τA− 1 : B = A
dpk

. Implementing direct p exponent for this equation

for τA times will obtain:

Bdp
τA = A

dp
τA+k ↔ Bdp

τA = A
dpk

or Bdp
τA = B.

Thus, τB|τA. Because of the symmetry of R√, it also has τA|τB . Thus, it follows that τA = τB ,

or MDS matrices in the same equivalence class have the same cycle.

Denote their cycle is τ .

Item 2.

To prove that the positions containing element 1 of the two matrices coincide each other, it is

first proved that, ap
k

i 6= 1 is always true for 0 ≤ k ≤ τ − 1 and for ai other than 1 of A (obviously

ai 6= 0 because A is an MDS matrix).

Indeed, consider the case when r = 1. For any element other than 0 and 1, a ∈ GF (p), if

ap = 1 there must be p| (p− 1). This is ridiculous.

Suppose r > 1. For any element other than 0 and 1, a ∈ GF (pr), if ap = 1 it is to infer that

p| (pr − 1). Then there exists a positive integer d such that: pr − 1 = dp (for pr − 1 > d ≥ 1).

This equation is equivalent to:

pr − dp = 1↔ p
(
pr−1 − d

)
= 1.

Obviously, the left side of the obtained equation is an integer divisible by p, but its right side is

not divisible by p. This leads to contradiction.

Consequently, for any element other than 0 and 1, a ∈ GF (pr) , (r ≥ 1), it is always true that

ap
k

i 6= 1. This entails ap
k 6= 1, (0 ≤ k ≤ τ − 1).

Therefore, for ∀ai ∈ A : ai 6= 1, it is always to have ap
k

i 6= 1 (0 ≤ k ≤ τ − 1). Because of the

symmetry of Rp, this is also true for any element other than 1 of matrix B.

In addition, element 1 is unchanged when performing direct pk (0 ≤ k ≤ τ − 1) exponent of an

MDS matrix. Because of the symmetry of Rp, the positions of B containing element 1 must also

coincide with the positions of A containing element 1. Item 2 is proven.

Item 3.
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Assuming that a ∈ A and b ∈ B are two any corresponding elements (i.e both of them are in

row i and column j) of the two matrices; suppose x is the order of a and y is the order of b. It will

be to prove that x = y.

Indeed, by assumption, it is to have:

B = A
dpk

(0 ≤ k ≤ τ − 1) or b = ap
k
. (11)

Since y is the order of b then:

by = 1. (12)

Replace (11) into (12), it becomes: ayp
k

= 1. As x is the order of a, it follows that x|ypk. So,

∃u1 ∈ N+ : ypk = u1x. (13)

On the other hand, because the elements of A,B are in GF (pr), so: x|(pr − 1). Therefore,

∃v1 ∈ N+ : pr − 1 = v1x. (14)

Multiply both sides of (11) by v1, and multiply both sides of (12) by u1, it is to have:

v1yp
k = u1 (pr − 1)↔ pk

(
u1p

r−k − v1y
)

= u1. (15)

The left side of (13) is divisible by pk, so its right side must be also divisible by pk. As a result,

∃d1 ∈ N+ : u1 = d1p
k. (16)

Replace (14) into (11), it becomes: y = d1x, (d1 ∈ N+). For this reason, y ≥ x.

Because of the symmetry of the Rp relation, we also have x ≥ y. Consequently, x = y. �

3.1.2. The preservation of coefficient of fixed points of MDS matrices under
the direct exponent transformation

Now, the direct p exponent transformation is proven to be able to preserve the D (A) coefficient.

Theorem 8. Let A = [ai,j ]m×m , ai,j ∈ GF (pr) be an MDS matrix where p is a prime
number. Let τ is the cycle of the direct p exponent transformation of matrix A. Then direct
pk (1 ≤ k ≤ τ) exponent of matrix A preserves the coefficient of fixed points of A.

Proof.

Consider the direct p exponent of A is: B = Adp .

According to the proof of the Theorem 1 [18], it was showed that the determinant of any submatrix

of size k (1 ≤ k ≤ m) of B is p exponent of the the determinant of the corresponding submatrix

of size k of A. (17)

Now suppose that L is the linear transformation represented by matrix A. Then the num-

ber of input blocks satisfying (4) of L is given by (9), i.e: FA(l)
= pr(m−rank[A−I(l)]), for l ∈

{0, 1, . . . ,m− 1}. And the coefficient of fixed points of L is given by (10), denoted by D (A) .
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SupposeL
′
is the linear transformation represented by matrixB. Then the number of input blocks

satisfying (4) of L
′

is given by (9), i.e: FB(l)
= pr(m−rank[B−I(l)]), for l ∈ {0, 1, . . . ,m− 1}. And

the coefficient of fixed points of L
′

is given by (10), denoted by D (B) .

It will be to prove that FA(l)
= FB(l)

, for l ∈ {0, 1, . . . ,m− 1}, i.e. D (A) = D (B).

Indeed, consider the matrix
[
B − I(l)

]
=
[
Adp − I(l)

]
=
[(
api,j − α

(l)
i,j

)]
, for l ∈ {0, 1, . . . ,m− 1}.

Any element of I(l) =
[
α
(l)
i,j)
]

can only be 0 or 1. So it is to have:[
B − I(l)

]
=
[(
api,j − α

(l)
i,j

)]
=
[(
ai,j − α(l)

i,j

)p]
. (18)

According to (17), the determinant of any submatrix of
[
B − I(l)

]
is equal to p exponent of the

determinant of the corresponding submatrix of
[
A− I(l)

]
, i.e.:

rank
[
A− I(l)

]
= rank

[
B − I(l)

]
= d.

From the formulae of FA(l)
, FB(l)

, it follows that FA(l)
= FB(l)

, for l ∈ {0, 1, . . . ,m− 1}, i.e.

D (A) = D (B). �

3.2. RMRMRM equivalence relation and the preservation of involutory property of
MDS matrices

In this section, the definition of scalar multiplication transformation is given. As a consequence,

many corresponding results are also presented. A definition of an equivalence relation based on

this transformation is provided; a necessary condition for two MDS matrices to be equivalent on

the relation is stated; the cycle of that transformation and the number of different elements in an

equivalence class are specified. As a consequence, the possible number of m×m MDS matrices over

GF (pr) is also given. Then, the preservation of the involutory property of MDS matrices under the

transformation will be stated and proven.

3.2.1. RMRMRM equivalence relation based on the scalar multiplication transforma-
tion

Consider A ∈ D. It is known that A is an MDS matrix if and only if all of its square submatrices

are nonsingular. Applying this, it is easy to see that if multiplying all elements of a row of A with

an element e0 ∈ GF (pr) then the result matrix is also an MDS matrix.

Extend this result, multiplying all elements of row i of A with an element ei0 ∈ GF (pr) , (for

i = 1, . . . ,m) will also result in an MDS matrix. The same is true when multiplying all elements of

column j of A with an element fj 6= 0 ∈ GF (pr) , (for j = 1, . . . ,m).

Denote E = [e1, e2, . . . , em] , F = [f1, f2, . . . , fm] , (for ei, fi 6= 0 ∈ GF (pr)) are vectors

over GF (pr). From now on, the elements ei, fj , (i, j = 1, . . . ,m) of vectors E and F are always

assumed to be other than 0. Multiply row i of A by ei, multiply column j of A by fj , (for i, j =
1, . . . ,m). Then the result matrix is denoted by (E,F ) (A).

Denote the “inverse” vector of E is E−1 =
[
e−11 , e−12 , . . . , e−1m

]
. Obviously, the elements e−1i 6=

0 ∈ GF (pr), because ei 6= 0 ∈ GF (pr)), (for i = 1, . . . ,m).

Multiplying of the two vectors E and F is denoted by: E.F = [e1f1, e2f2, . . . , emfm] . Note

that, products eifi 6= 0 ∈ GF (pr).

First, a relation based on the scalar multiplication transformation is defined as follows:
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Definition 5. It is said that matrix B ∈ D has an M relation with matrix A ∈ D, denoted

by ARMB, if there exists two vectors E,F over GF (pr) such that B = (E,F ) (A).

It is possible to prove the following result:

Proposition 2. RM relation over D is an equivalence relation.

Now, letE = [e1, e2, . . . , em] and F = [f1, f2, . . . , fm] are two fixed vectors overGF (pr). Per-

form consecutive the following procedure: A1 = (E,F ) (A) , A2 = (E,F ) (A1) = (E,F ) (E,F ) (A) =
(E,F )2 (A) , . . . , An = (E,F )n (A) , and so on. It is to have the following result:

Theorem 9. The sequence of matrices A1, A2, . . . has a finite cycle t.

Proof.

Note that for every positive integer n, the element in the row i and column j of matrix An is

(eifj)
n

.ai,j .

Consider the positive integer: d = lcm (ord (eifj) , i, j = 1, 2, . . . ,m). Then (eifj)
d = 1, for

i, j = 1, 2, . . . ,m. As a result: Ad = (E,F )d (A) = A.

Now, suppose ∃d1 ∈ N+ : Ad1 = (E,F )d1 (A) = A. It is to infer (eifj)
d1 = 1, i, j =

1, 2, . . . ,m and therefore ord (eifj) |d1, i, j = 1, 2, . . . ,m. It yields d|d1 or d is the smallest positive

integer satisfying the condition: (E,F )d (A) = A.

Consequently, the sequence of A1, A2, . . . has a finite cycle t = d. �

Note that the cycle t reaches the maximum value if there exists an element eifj is an element

with order pr − 1 (or a primitive element) in GF (pr), and then d = pr − 1.

The following theorem shows the number of different elements in an equivalence class on the

RM relation.

Theorem 10. Let A ∈ D. Then the equivalence class [A]M has exactly P 2m−1 different
elements, where P = pr − 1.

Proof.

Consider A ∈ D. Multiply A by all of possible vectors E,F over GF (pr), it is to obtain an

equivalence class of A on the RM relation, denoted by [A]M . As a result, the class [A]M includes

(pr − 1)2m = P 2m elements generated by this way, where P = pr − 1.

Now, suppose (E,F ) (A) = (E′, F ′) (A). It yields eifj = e
′
if

′
j or

ei

e
′
i

=
f

′
j

fj
for i, j = 1, . . . ,m.

It follows that
ei

e
′
i

=
f

′
j

fj
= c, for c is a constant other than 0 in GF (pr), or e

′
i = c−1ei and f

′
j = cfj

for i, j = 1, . . . ,m. Therefore, for each pair of (E,F ) it will have P = pr − 1 pairs of (E′, F ′)
satisfying (E,F ) (A) = (E′, F ′) (A) corresponding to P values of above c. This yields that each

equivalence class containing A will have P 2m/P = P 2m−1 different elements (not depending on A).

�

TheRM relation will split the setD into separate classes, each class has P 2m−1 different elements.

So it is to have the following corollary.

Corollary 1. If there exists m ×m MDS matrices over GF (pr) then the number of such
MDS matrices is a multiple of P 2m−1, where P = pr − 1.

For example, for m = 1, there are actually P MDS matrices of size m = 1. On the other hand,

P 2m−1 = P 2.1−1 = P .
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Next, a necessary condition for two MDS matrices to belong to the same equivalence class on the

RM relation is showed in the Theorem 11.

Theorem 11. If A = [ai,j ]m×m , B = [bi,j ]m×m ∈ D satisfy ARMB for B = (E,F ) (A)
then any corresponding elements of A and B in rows i, h(1 ≤ i < h ≤ m), and columns
j, k(1 ≤ j < k ≤ m) satisfy the following relation:

(bh,kbi,j) (bh,jbi,k)−1 = (ah,kai,j) (ah,jai,k)−1 .

Proof.
According to the assumption, B = (E,F ) (A), i.e B = [bi,j ]m×m = B = [eifjai,j ]m×m.

Consider two elements in row i and columns j, k of B as follows:{
bi,j = eifjai,j

bi,k = eifkai,k
↔

{
ei = f−1j a−1i,j bi,j

bi,k = f−1j fka
−1
i,j bi,jai,k.

(19)

It is the same for two elements in row h and columns j, k of B:{
bh,j = ehfjah,j

bh,k = ehfkah,k
↔

{
eh = f−1j a−1h,jbh,j

bh,k = f−1j fka
−1
h,jbh,jah,k

(20)

for 1 ≤ i < h ≤ m and 1 ≤ j < k ≤ m.

By (19), it yields f−1j fk = bi,kai,jb
−1
i,j a

−1
i,k and replaces this into (20), so:

bh,k = bi,kai,jb
−1
i,j a

−1
i,k bh,jah,k → (bh,kbi,j) (bh,jbi,k)−1 = (ah,kai,j) (ah,jai,k)−1 .

The corollary is proven. �

3.2.2. The preservation of involutory property of MDS matrices under the
scalar multiplication transformation

In this section, a sufficient condition for the scalar multiplication transformation to be able to preserve

of involutory property of MDS matrices is stated and proven. As a consequence, the number of

different involutory MDS matrices can be obtained from an original involutory matrix through the

scalar multiplication transformation is well defined.

Theorem 12. Let E = [e1, e2, . . . , em] , F = [f1, f2, . . . , fm] , (where ei, fi 6= 0 ∈ GF (pr)).
Let A,B ∈ D, ARMB where B = (E,F ) (A) and A is involutory. If eifi = a ∈ GF (pr) and
a2 = 1, for i = 1, . . . ,m then B is also involutory.

Proof.
As A is an involutory matrix so: A = A−1 or A2 = I . Then,

m∑
j=1

ai,jaj,i = 1, for i = 1, 2, . . . .,m, (21)

m∑
t=1

ai,tat,j = 0 for i, j = 1, 2, . . . .,m and i 6= j. (22)

According to the assumption, B = (E,F ) (A), so it is to have: B = [bi,j ]m×m = [eifjai,j ]m×m.
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The elements of the main diagonal of B2 have the below form:

bi,i =
m∑
j=1

eiejfifjai,jaj,i, fori = 1, 2, . . . .,m

or

bi,i = eifi

 m∑
j=1

ejfjai,jaj,i

 , for i = 1, 2, . . . .,m. (23)

If eifi = a ∈ GF (pr) and a2 = 1 for i = 1, . . . ,m,then from (21) and (23), it is to infer:

bi,i = a2 = 1, for i = 1, . . . ,m. (24)

The elements outside the main diagonal of B2 have the below form:

bi,j =
m∑
t=1

eietftfjai,tat,j , for i, j = 1, 2, . . . .,m, and i 6= j.

or

bi,j = eifj

(
m∑
t=1

etftai,tat,j

)
, for i, j = 1, 2, . . . .,m, and i 6= j. (25)

If eifi = a ∈ GF (pr) , for i = 1, . . . ,m, then from (22) and (25), it follows that:

bi,j = eifja

(
m∑
t=1

ai,tat,j

)
= 0, for i, j = 1, 2, . . . .,m, and i 6= j. (26)

From (24) and (26), it is to infer: B2 = I or B = B−1. Thus, matrix B is involutory. �

Notice.

Suppose the equation a2 = 1 has k solutions. Then there are two circumstances occur:

If p = 2 then k = 1 and a = 1 (i.e the above equation has only one solution a = 1).

If p is an odd prime number then k = 2 (i.e the above equation has two different solutions in

GF (pr)).

For example, let p = 3 and the field GF
(
32
)

has the primitive polynomial x2 + 2x+ 2. Then,

there exists two elements of order 2 as 1 and 2. Let p = 5 and the field GF
(
52
)

has the primitive

polynomial x2 + 2x+ 3. Then, there exists two elements of order 2 as 1 and 4.

Next, the Corollary 2 indicates the number of possible involutory MDS matrices generated from

an original MDS matrix through the scalar multiplication transformation.

Corollary 2. Let A ∈ D be involutory. Then it is possible to generate kPm−1(k = 1 or k =
2) involutory MDS matrices from matrix A through the scalar multiplication transformation,
where P = pr − 1.

Proof.

By the condition of the Theorem 10, it has Pm ways to choose randomly the vector E over

GF (pr) \ {0}, then the vector F will be calculated according to E by the condition eifi = a, in

detail: fi = ae−1i . In addition, because it has k (k = 1 or k = 2) different values of a in GF (pr)



12 DIRECT EXPONENT AND SCALAR MULTIPLICATION TRANSFORMATIONS OF ...

satisfying a2 = 1, so it is to have kPm different pairs of (E,F ) satisfying the condition of the

Theorem 12, and it can be obtained kPm involutory matrices. The question is how many different

involutory matrices generated in this way?

Let A ∈ D and (E,F ) satisfy the condition of the Theorem 12. Suppose (E′, F ′) satisfies

(E,F ) (A) = (E′, F ′) (A), i.e e′if
′
j = eifj ; i, j = 1, 2, . . . ,m. Similar arguments are as in the

proof of the Theorem 10, there exists c being an other than 0 element inGF (pr) such that e′i = c−1ei
and f

′
j = cf j for all i, j = 1, 2, . . . ,m. Then, it is to have f ′i = cfi = cae−1i = cac−1e

′−1
i = ae

′−1
i

i.e (E′, F ′) also generated by the above way and not depending on c.

Thus, there are P = pr − 1 pairs of (E′, F ′) corresponding to P values of c, satisfying the

condition of the Theorem 12 and multiplying A by them results in the same matrix as multiplying

A by (E,F ).

Consequently, there are kPm/P = kPm−1 different involutory MDS matrices in total generated

by the condition of the Theorem 12.

In case of p = 2, it is to have k = 1, and that number is Pm−1 = (pr − 1)(m−1) .

If p is an odd prime number then k = 2, and that number is 2Pm−1 = 2 (pr − 1)(m−1) . �

For example, for m = 1 and p is an odd prime number, there are only two involutory MDS

matrices are [a1] and [a2], for a1 and a2 are the solutions in GF (pr) of the equation x2 = 1. When

multiplying any row of an involutory matrix by e0 and multiplying its any column by f = ae−1 will

result in following matrices:
[
eae−1ai

]
= [aai], i = 1, 2. It means that the two result matrices are

obtained. On the other hand, it is to have the following equation: 2Pm−1 = 2P 0 = 2..

3.3. The relationship between RMRMRM and RpRpRp

The relationship between RM and Rp is presented by the Theorem 13.

Theorem 13. Let the set D for m ≥ 2 and A ∈ D. Assuming that matrix B ∈ D satisfies
simultaneously ARMB and ARpB. Then there exists l ∈ {0, 1, . . . , r − 1} such that:(

ad

bc

)pl−1
= 1,

for

[
ab
cd

]
is any submatrix of size 2 of matrix A.

Proof.

Suppose that there exists a matrix B ∈ D satisfying simultaneously ARMB and ARpB.

By the Theorem 11, the elements a, b, c, d in A satisfy the following relation:(
ād̄
)

(b̄c̄)−1 = (ad)(bc)−1 (27)

for ā, b̄, c̄, d̄ are elements in B corresponding to the elements a, b, c, d.

According to the assumption, ARpB , so ∃ l, (0 ≤ l ≤ r − 1) such that B = A
dpl

.

As a result, it is to have: ā = ap
l
, b̄ = bp

l
. Replacing these values into (16) obtains:(

ap
l
dp

l
)(

bp
l
cp
l
)−1

= (ad) (bc)−1

or



LUONG TRAN THI, CUONG NGUYEN NGOC 13

(ad)p
l

(bc)−p
l

= (ad) (bc)−1 ,

or (
ad

bc

)pl

=
ad

bc

From this equation, the theorem is proven. �

4. EXAMPLES

In this Section, two following examples are given to demonstrate some results. Let A and B are MDS

matrices over GF
(
28
)

with the irreducible polynomial 0x169 (x8 +x6 +x5 +x3 + 1) and they are

recursive matrices.

First, matrix A has the following hexa form:

A =


29 46 5A 85
2F D2 3D A5
CB 87 A1 ED
8B 87 E6 CA


According to our calculation, matrix A has the branch number equal to 5, number of fixed points

equal to 20 and coefficient of fixed points equal to 2.93874e-039(2−127.9999). Moreover, matrix A is

a recursive matrix:

A = S4 =


0 1 0 0
0 0 1 0
0 0 0 1
29 46 5A 85


4

The cycle of direct 2 exponent transformation of matrix A is 8.

Consider matrix A′ = A
d24

. It is to have:

A′ =


3D 53 48 FB
5D B8 29 C8
A7 F8 CD 92
F2 FB 9F A6


Matrix A′ is calculated and as a result it has the same branch number, number of fixed ints and

coefficient of fixed points as the matrix A. Again this shows that the direct exponent transformation

can preserve the branch number, number of fixed points and coefficient of fixed points of the matrix

A.

In addition, matrix A′ is also a recursive matrix:

B =


14 E6 A2 F6
86 20 9E 73
E3 DA A8 84
71 6D 88 95

 .
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Next, matrix B has the following hexa form:

B′ =


14 E6 A2 4F
86 20 9E D6
E3 DA A8 46
4F 07 8B 6A

 .
According to the calculation, matrix B has the branch number equal to 5, number of fixed points

equal to 20 and coefficient of fixed points equal to 2.93874e-039(2−127.9999). Matrix B′ is generated

from B by multiplying row 4 in Bby 0× 06 and multiplying column 4 in B by 0× 05. It is to have:

The cycle of this scalar multiplication transformation is 15. The branch number of B′ is 5.

Fortunately, matrix B′ has the the same number of fixed points and coefficient of fixed points as

matrix B in this case. Matrix B′ may not be a recursive matrix.

It is known that the number of fixed points of the MDS matrix in AES is 216 (it is big a bit).

Therefore, it is possible to replace that matrix by A′ or B′ to reduce the number of fixed points.

This will limit some attacks based on fixed points on block ciphers. In addition, as A′ is a recursive

matrix it is efficient for hardware implementation.

However, the two above examples are only to demonstrate some our results. In order to use these

matrices for practical applications it is to have to consider many other points.

5. APPLICATIONS OF THE NEW RESULTS ABOUT THE MDS MATRIX
TRANSFORMATIONS ON BLOCK CIPHERS

It can be seen that MDS matrices have been studied because of their preeminent properties. Dynamic

MDS matrices have been also under study in order to improve the security of block ciphers.

The results of Theorem 1, Theorem 2 in [18] show that it can be obtained many different MDS

matrices from an existing MDS matrix by the direct exponent transformation.

When generating dynamic MDS matrices for block ciphers, it is very important to verify whether

the result matrix still owns good cryptographic properties or not? The results of Theorem 6 in

[19] show that the direct exponent transformation indeed preserves good cryptographic properties

including MDS, involutory, symmetric, recursive (exponent of a serial matrix), the number of 1’s and

distinct elements in a matrix, circulant and circulant-like. Therefore, from an MDS matrix with good

cryptographic properties, many different MDS matrices with the good cryptographic properties can

be created. Those suggest us an efficient method for constructing a dynamic diffusion layer for block

ciphers based on the direct exponent transformation.

In this paper, by the Theorem 8, it can be seen that the direct exponent transformation can also

preserve the coefficient of fixed points of MDS matrices. This also suggests us a good way for con-

structing a dynamic diffusion layer for block ciphers by using the the direct exponent transformation

for an input MDS matrix having a small coefficient of fixed points. Then, the different MDS matrices

with the same small coefficient of fixed points as the input MDS matrix can be generated. These

matrices can be used for the diffusion layer in different rounds of block ciphers because they are very

useful for limiting some attacks based on fixed points on block ciphers.

Indeed, the direct exponent transformation is very useful for constructing a dynamic diffusion

layer. Firstly, the storage space can be saved because it may be only an original MDS matrix need

to be stored, then for each round the direct exponent transformation can be used to generate a

corresponding MDS matrix from the original MDS matrix. Secondly, we just only perform exponent
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of each element of the original matrix to create a new matrix, so it is simple. Third, from an

original MDS matrix with good cryptographic properties one can create MDS matrices having similar

properties to use for the encryption rounds.

The result of the Theorem 12 shows that the scalar multiplication transformation can preserve

the involutory property of MDS matrices. Moreover, by the Corollary 2, the number of different invo-

lutory MDS matrices generated from an original involutory MDS matrix by the scalar multiplication

transformation can be specified. These results also suggest us an interesting method for constructing

a dynamic diffusion layer for block ciphers based on that transformation for an input involutory MDS

matrix.

By the Proposition 1 and Theorem 7, it can be checked whether two any MDS matrices belong

to the same equivalence class on the Rp relation or not. Then two MDS matrices not belonging to

the same equivalence class can be chosen and the number of different MDS matrices obtained by the

direct exponent transformation would be a total of matrices from the two equivalence classes. Since if

two MDS matrices belonging to the same equivalence class are chosen then the total number of MDS

matrices obtained is just equal to the cycle of that equivalence class. More generally, it can be chosen

for many different MDS matrices from other equivalence classes on the Rp relation. Therefore, the

total number of MDS matrices obtained by the direct exponent transformation from these equivalence

classes will be much larger than the case of the original matrices selected from the same equivalence

class.

Same as above, the results of Proposition 2 and Theorem 11 can help us to check whether two

any MDS matrices belong to the same equivalence class on the RM relation or not.

The Theorem 9 and Theorem 10 enable us to calculate the number of MDS matrices in a cycle of

the scalar multiplication transformation and the number of different MDS matrices in an equivalence

class on the RM relation. Then two MDS matrices not belonging to the same equivalence class can

be chosen and the number of different MDS matrices obtained by that transformation would be a

total of matrices from the two equivalence classes

By the Theorem 13, it can be checked whether the two given MDS matrices are simultaneously

equivalent on RM and Rp relations or not. This makes sense when the dynamic diffusion layer

algorithms using both of transformations based onRM andRp. Therefore, the condition of Theorem

13 needs to be checked to indicate the two given MDS matrices are simultaneously equivalent on the

RM and Rp relations or not. Meanwhile, the total number of the MDS matrices obtained from these

transformations based onRM andRp in other cases will be larger than in the case of the two original

MDS matrices satisfying simultaneously both of the RM and Rp relations.

Interestingly, increasing to the number of dynamic MDS matrices obtained from the original MDS

matrices through the direct exponent and scalar multiplication transformations will be significant in

the term of increasing to the space of MDS matrices used in dynamic diffusion layer algorithms. Since

then, this contributes to enhance the security of these algorithms.

Consequently, the results obtained from the direct exponent and scalar multiplication transforma-

tions take an important part in constructing dynamic diffusion layers for block ciphers. As a result,

they can serve as an important theoretical basis for creating efficient dynamic algorithms for diffusion

layers in block ciphers. These algorithms are not only effective but also contribute to increase the

security of the ciphers.
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6. CONCLUSION

In this paper, some new results from the conservation of many good cryptographic properties of

MDS matrices under the direct exponent and scalar multiplication transformations are presented. In

addition, other important cryptographic properties obtained from studying the equivalence relations

based on these transformations are given. An estimation of the number of m×m MDS matrices over

GF (pr) is also provided. Finally, these results have been shown to have important applications in

constructing dynamic diffusion layers for block ciphers. The strength of the ciphers against developing

cryptanalytic techniques can be enhanced by the dynamic MDS diffusion layers.
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