
Journal of Computer Science and Cybernetics, V.32, N.3 (2016), 243–258

DOI 10.15625/1813-9663/32/3/7689

REAL-TIME TABLE PLANE DETECTION USING
ACCELEROMETER INFORMATION AND ORGANIZED POINT

CLOUD DATA FROM KINECT SENSOR

VAN-HUNG LE1,2, MICHIEL VLAMINCK4, HAI VU1, THI-THUY NGUYEN3, THI-LAN LE1,

THANH-HAI TRAN1, QUANG-HIEP LUONG4, PETER VEELAERT4, WILFRIED PHILIPS4

1International Research Institute MICA, HUST - CNRS/UMI-2954 - GRENOBLE INP,
Vietnam

2Tan Trao University, Vietnam; lehung231187@gmail.com
3Faculty of Information Technology, VietNam National University Agriculture, Vietnam

4Ghent University/iMinds - Image Processing and Interpretation, Belgium

�

Abstract. Table plane detection in the scene is a prerequisite step in developing object-finding-

aided systems for visually impaired people. In order to determine the table plane in the scene, we

have to detect planes in the scene first and then define the table from these detected planes based

on the specific characteristics. Although a number of approaches have been proposed for plane seg-

mentation, it still lacks proper table plane detection. In this paper, the authors propose a table

plane detection method using information coming from a Microsoft Kinect sensor. The contribution

of the paper is three-fold. First, for plane detection step, the dedicated down-sampling algorithms

to original point cloud thereby representing it as the organized point cloud structure in are applied

to get real-time computation. Second, the acceleration information provided by the Kinect sensor is

employed to detect the table plane among all detected planes. Finally, three different measures for

the evaluation of the table plane detector are defined. The proposed method has been evaluated using

a dataset of 10 scenes and published RGB-D dataset which are common contexts in daily activities

of visually impaired people. The proposed method outperforms the state-of-the-art method based on

PROSAC and obtains a comparable result as a method based on organized point cloud where the

frame rate is six times higher.

Keywords. Table plane detection, acceleration vector, organized point cloud, plane segmentation.

1. INTRODUCTION

Plane detection in 3-D point clouds is a critical task for many robotics and computer vision

applications. In order to help visually impaired/blind people find and grasp interesting objects (e.g.,

coffee cup, bottle, bowl) on the table, one has to find the table planes in the captured scenes. From

the extracted table plane, then the relevant features can be calculated such as its normal vector,

center point of the table in the current scene. These features will help to determine the object

positions in the current scene. As a prerequisite step, the table plane extraction should be a robust

algorithm and furthermore high accuracy and low computational cost. However, 3-D point clouds

obtained by low-cost sensors (e.g. from the Microsoft Kinect sensor [13], other depth cameras) are

generally noisy and redundant with a huge number of points. Therefore, in common approaches,

the plane extraction either produces false positives results or requires huge computational costs. By
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exploiting associated data provided by the sensors, the table plane features can be adapted in the

3-D point cloud in a robust way. This paper is motivated by such adaptation in which accelerator

data provided by the Kinect sensor to prune the extraction results. The proposed algorithms achieve

both real-time performances as well as high detection rate of the table planes. In the experimental

evaluations, the proposed method is examined in different contexts to confirm the robustness of the

proposed algorithm.

The paper is organized as follows. Section 2 presents related works on plane segmentation.

Section 3 describes the proposed method with two main topics: plane segmentation and table plane

extraction. Section 4 shows experimental results. Section 5 concludes the paper and gives some ideas.

2. RELATED WORK

The plane extractions/segmentations in a complex scene usually are solved by two main approaches.

The first approach uses robust estimation algorithms such as RANSAC [8], and its variants [3], Least

Squares [1], Hough Transform [2] for estimating the planes in the scene. For example, Yang et

al. [17] proposed to combine the RANSAC algorithm and ‘minimum description length’ for plane

estimation from point cloud data having complex structures. The point cloud is divided into the

blocks, the RANSAC algorithm is performed on each block. Each block is limited from zero to

three planes. This combination generates an algorithm that avoids detecting wrong planes due to

the complex geometry of the 3-D data. Usually, the point cloud of the scene has millions of points.

Therefore, when using the estimation algorithm on this data, it requires a high computational time.

On top of that, the RANSAC-based approaches strongly depend on an heuristically chosen threshold

to eliminate outliers.

The second approach is based on the local surface normal in the scene [5, 6, 7]. Deschaud et

al. [5] proposed an approach for plane detection on unorganized point cloud data. In that paper,

the authors implemented the following three steps. The first step estimates the normal vector at

each point. The second step computes the score of local planarity in each point, after that the best

seed point that represents a good seed plane is selected. The third step is growing this seed plane

by adding all points close to the plane. [6, 7] uses the normal vector of points in organized point

cloud data. Organized point cloud data is structured so that points are arranged in a grid (similar

to image pixels in a matrix structure). Holz et al. [6] proposed an approach for organized point

cloud segmentation. This approach performs segmentation in two steps. First, the segmentation step

is performed on the normal of each point. After that, points having similar local surface normal

orientation are examined and segmented in distance space generate region. This approach is able to

process video with frame rates of up to 30Hz. Chen et al. [7] proposed an approach using hierarchical

clustering on cloud data based on the normal vectors. The clustering performed similar to the ap-

proach in [6], but the authors have represented the data in a graph whose node and edge represent a

group of points and their neighborhood respectively. The clustering is performed on the graph. This

approach can process video with a frame rate of more than 35Hz for 640× 480. Although, all these

approaches implemented plane segmentation in the scene, they do not address table plane detection

in particular. We have proposed an approach for the table plane detection [10] in complex scenes.

We used PROSAC [4] algorithm for plane segmentation and some geometrical constraints for table

plane extraction in the complex scene. However, this approach requires prior knowledge about the

scenes, such as constrains between the wall and the table, the wall and the floor, size of the table.
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Figure 1. Object finding aid for the visually impaired people

Figure 2. The proposed frame-work for table plane detection

3. TABLE PLANE DETECTION

3.1. Overview

Our research context aims to develop object finding and grasping-aided services for visually im-

paired people (see Fig. 1). To this end, it is needed to locate the queried objects in the table. In

order to develop such a service, this paper first deals with detecting the planes in the current scene

and then determining table plane from detected planes. Therefore, we approach this objective as a

problem of table plane detection and extraction from a real scene.

In our work, Microsoft Kinect, a low-cost depth and RGB sensor, is utilized. This sensor becomes

more and more popular in computer vision applications. An object captured by the Kinect sensor

is represented in 3-D space denoted by the coordinates (x, y, z) [13]. This data is generated from

both color and depth images in order to form the point cloud data. The proposed frame-work, as

shown in Fig.2, consists of four steps: down-sampling, organized point cloud representation, plane

segmentation and table plane classification. To achieve low computational costs, the data in the first

step is reduced, targeting a lower sampling rate. However, the sampling rate can not be arbitrarily

low because it can significantly affect the subsequent steps and lower the overall detection quality.

For plane segmentation, RANSAC or one of its variants can be used as referred to in the related

work section. However, this step requires highly accurate and real-time plane extraction. Therefore,

we proposed to represent the information captured from the Microsoft Kinect as an organized point

cloud and perform plane segmentation using normal vector information. To select the table planes

within the extracted planes, the acceleration data from the Kinect sensor is used in the third step.

The main constraint is that a table should stand on the floor. Therefore the table plane should be

parallel with the floor plane. The accelerometer from the Kinect sensor provides us the normal vector

of the ground (floor) plane and other planes, that are parallel with the table plane. The planes which
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Figure 3. (a) Computing the depth value of the center pixel based on its neighborhoods
(within a 3× 3 pixels window); (b) down sampling of the depth image

do not meet this criterion are eliminated. A table plane is identified among the remaining planes if

it is high enough. The proposed method has to be done in the real-time and archives state-of-the-art

detection rate results. In the following sections, four steps of the method are described in detail.

3.2. Point cloud representation

In the scenario of developing an object-finding system that aids the visually impaired people

collecting an object based on their query, separating the table plane from a current observation is a pre-

processing step so that the interested objects lying on the table are more easily detected and localized.

This pre-processing procedure therefore should be high detection rate and low computational costs.

However, the collected point cloud data in a certain scene consists of many 3-D data points (each

point has the coordinates (x, y, z)). This type of data always requires high computational time but

includes many noises. To deal with these issues, we adopt down-sampling and smoothing techniques.

Actually, many down-sampling techniques such as [16, 12, 15, 9] could be applied. Because of our

work utilizing only depth feature, a simple and effective method for down-sampling and smoothing

the depth data is described as below.

Given a sliding window (of size n × n pixels), the depth value of a center pixel D(xc, yc) is

computed from the Eq. 1:

D(xc, yc) =

∑N
i=1D(xi, yi)

N
, (1)

where D(xi, yi) is depth value of ith neighboring pixel of the center pixel (xc, yc); N is the number

of pixels in the neighborhood n x n (N=(n x n) -1). An illustration of the down-sampling procedure

is given in Fig. 3a. As shown, if the input depth image has the size of 640×480 pixels and the sliding

window has the size of 3× 3 pixels, then the output depth image is reduced to 320× 240 pixels. If

the size of the sliding window is increased, then the size of the output depth image is reduced.

It is noticed that this technique does not change the coordinates of pixels and the coordinates

of objects in 3-D space, it only reduces the number of points representing an object. By averaging

depth values in each window, we only retain the center pixels (xc, yc) of all the sliding window, and

other pixels (as shown in Fig. 3b) are removed. Therefore, this step also smoothes the collected data.

After down-sampling, the image data is converted into organized point cloud data. Each data

point has a 3-D coordinate (x, y, z) and color values (r, g, b). Using the RGB camera intrinsic
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parameters [13], each pixel (xp, yp) in the RGB image has a color value C(rp, gp, bp) and a depth

value D(xp, yp) in the corresponding depth image, which is projected into the metric 3-D space using

the following Eq. 2:

x =
z(xp − cx)

fx
; y =

z(yp − cy)

fy
; z = D(xp, yp); (r, g, b) = C(rp, gp, bp) (2)

with (fx, fy) and (cx, cy) being the focal length and principal point, respectively.

The organized point cloud data follows the structure of a matrix as in the image. Each point has

a 2-D index (i, j), in which (i, j) are the indices of the row and column of the matrix respectively.

They are limited by the size of the collected image. For example, an image obtained from Microsoft

Kinect sensor has 640× 480 pixels, then i = 1, ..., row; j = 1, ..., col with [row, col] = [480, 640].
Matrix P presents the organized point cloud data of a scene as below:

P =



p1,1 p1,2 p1,3 p1,4 . . . p1,col

p2,1 p2,2 p2,3 p2,4 . . . p2,col

p3,1 p3,2 p3,3 p3,4 . . . p3,col

p4,1 p4,2 p4,3 p4,4 . . . p4,col

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
prow,1 prow,2 prow,3 prow,4 . . . prow,col


; pi,j = (xi,j , yi,j , zi,j) (3)

where (xi,j , yi,j , zi,j) are values of 3-D coordinate as defined in Eq. 2.

It is noticed that the number of points in the cloud is reduced data after applying the down-

sampling technique. The indices of the down-sampling data via center pixels of the sliding windows

are preserved. By this way, it is easier to find the corresponding pixel in the original color image.

3.3. Plane segmentation

The third step in the proposed framework (as shown in Fig. 2) is plane estimation that is based

on normal vectors extracted from organized point clouds. The planes extraction procedure consists

of the following steps: estimating surface normals, segmentation and merging co-planar points to

generate the planes. The detailed process of the plane segmentation is given in Algorithm 1. First,

for estimating the surface’s normal vector, the approach of Holz et al. [6] was used. Illustrations of

this technique are shown in Fig. 4. A plane at point pi is estimated based on itself pi and its two

neighbors, as shown in Fig.4(b). To estimate a normal vector at a point pi, k-nearest neighbours of

pi are determined within a radius r. The curvature value σ (Eq. 5) is estimated by analyzing the

eigenvectors of the covariance matrix C as given in Eq. 4. The similar value σ and normal vectors of

the points within an organized point cloud P are grouped and clustered to select co-planar points.

These co-planar points are starting points of the region growing algorithm for merging and generating

planes.

C =
1

k

k∑
i=1

(pi − pav)(pi − pav)T , Cvj = λjvj , j ∈ {0, 1, 2}; (4)

σ =
λ0

λ0 + λ1 + λ2
. (5)
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(a) (b) (c) (d)

Figure 4. Illustration of estimating the normal vector of a set point in the 3-D space. (a) a
set of points; (b) estimation of the normal vector of a black point; (c) selection of two points
for estimating a plane; (d) the normal vector of a black point

Figure 5. Example of plane segmentation (a) color image of the scene; (b) plane segmentation
result with PROSAC [10]; (c) plane segmentation result with the organized point cloud

where pav represents the 3-D centroid of the nearest neighbors; λj is the jth eigenvalue of the

covariance matrix; and Vj is the jth eigenvector.

Based on the detected co-planar points, we follow the seed growing regions. Because three-

dimensional voxel grid is established and local surface normal is mapped out to the corresponding

grid cell. Each cell in the 3-D voxel grid (nxr,c, n
y
r,c, nzr,c)

T (r, c are indices of the each cell) [13] has

some points along the normal. The results of this work can generate the cell discretization on the

voxel grid. To solve this problem, the average surface normal orientation in two neighbor grid cells

are compared. If it is less than the threshold of clustering then they will be added to the existing

group. Consequently, the co-planes are merged together.

Thanks to the pre-processing procedures, utilizing the organized point clouds allow for accelerated

computational time. Moreover, original technique in [6], that calculated the ‘integral image’, is

applied to also reduce computational time. In the experimental evaluations, the table plane detection

results are compared in context of utilizing two approaches of the plane segmentation: one inspired

by conventional RANSAC algorithms and another is the proposed techniques based on organized

point clouds to confirm robustness of the method.

3.4. Table plane detection

Besides color and depth features, a Microsoft Kinect sensor provides acceleration information

[13]. This is a vector whose direction points downwards. For each collected frame, there is an

acceleration vector, as shown in Fig. 6. Since complex scenes usually contain different planes such
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Algorithm 1: Plane segmentation

Input: Organized point cloud: P = {p1, p2, ..., pk}
Output: Plane candidates: Planes = {Planesi(Ai, Bi, Ci, Di)}

1 ((nx, ny, nz)T = ComputeNormal(pi); . Compute normal vector of each point pi
2 (nxi , n

y
i , n

z
i )

T = FindNeighBor((nx, ny, nz)T ); . Find the k-nearest neighbors of each
point pi

3 (nxi , n
y
i , n

z
i )

T = SortRegionNeighBor((nxi , n
y
i , n

z
i )

T ); . Sort points in each region
including k-nearest neighbors points based on their curvature values

4 Rn{rn1, rn2, ..., rnn} = Clustering((nxi , n
y
i , n

z
i )

T ); . Clustering region based on
normal space

5 Rd{rd1, rd2, ..., rdm} = Clustering(Rn), (m ≤ n); . Clustering region based on
distance space

6 RN(j) = FindNeighbor(Rd), (j = 1, 2, ...,m); . Finding rnj neighboring regions of rj
region

7 Ang(j) = ComputeAngle(rdj , RN(j)); . Compute the angle between normal of rdj
region and RN(j) regions

8 If(Ang(j) ≤ t) then . t is the angle threshold to merge regions
9 {

10 Ri = MergeRegion(rdj , RN(j)); . Each region has a fitted plane
11 Push Ri → Planes; . Add region Ri to Planes
12 }
13 Return P lanesi(Ai, Bi, Ci, Di);

as the table plane, floor plane, objects’ planes, and wall planes. In order to determine the table

plane, the non-table planes have to be eliminated based on the criterion as scenario constraints. As a

visually impaired people with a mounted Microsoft Kinect on the chest moves around the table, the

acceleration vector is perpendicular to the table plane and floor plane.

To do this, a constraint that is the table stands on the floor is utilized. Therefore, the table plane

is parallel with the floor plane in the current scene. The acceleration vector gives us a normal vector

of the ground/floor plane (and also other planes which are perpendicular to the table plane). The

non-table planes that do not meet this criteria are eliminated. Based on this scheme, it is compute

the angle (ai) between the acceleration vector and a normal one of the detected plane pli which is

obtained from the plane segmentation procedure. If the angle is larger than a threshold t then such

detected plane should be eliminated. Otherwise, we consider it as a table plane candidate and move

to the second step. The results of the first step are planes that are perpendicular to the acceleration

vector. After rotating the y axis such that it is parallel with the acceleration vector, the directions

of the acceleration vector and the y axis are the same as Fig. 6. Therefore, the table plane is

highest plane in the scene, that means the table plane is the one with minimum y-value. Since the

Microsoft Kinect is mounted on the persons chest (as shown in Fig. 1), the table plane is usually the

closest plane to the Microsoft Kinect among the detected planes. Therefore, we choose a plane with

a minimum y-value to be the detected table plane. Moreover, this plane must have enough number

of points (‘mininliers’).
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Acceleration 
vector

Figure 6. Illustrating acceleration vector provided by a Microsoft Kinect sensor

Figure 7. Examples of 10 scenes captured in our dataset

4. EXPERIMENTAL RESULTS AND DISCUSSION

4.1. Setup and dataset

To evaluate the performance of the proposed method, our own dataset and a dataset in [14]

are used. Concerning our dataset, the following experiments have been set up: A Microsoft Kinect

version 1 is mounted on the person’s chest, the person then moves around one table in the room. The

distance between the Kinect and the center of the table is about 1.5 m. The height of the Kinect

compared with table plane is about 0.6 meter. The height of table plane is about 60 → 80 cm.

We capture data of 10 different scenes which include a cafeteria, showroom, and kitchen and, so on.

These scenes cover common contexts in daily activities of visually impaired people. Some examples of

the captured images of the 10 scenes are shown in Fig. 7. For each scene, the subject is asked to move

around a table. Therefore, different view-point is considered in our experiments. The numbers of

captured images (at frame rate 5 fps) are given in Table 1. The size of the image is 640× 480 pixels.

Each frame has a corresponding acceleration vector. The color and depth images are calibrated by

using Microsoft Kinect SDK calibration functions.

The second dataset is introduced in [14]. This dataset contains calibrated RGB-D data of 111

scenes. Each scene has a table plane. The size of the image is 640 × 480 pixels. Some examples of

this dataset are illustrated in Fig. 8. Since this dataset does not provide acceleration information,

we assume the table plane is the largest plane in a scene.
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Table 1. The number of frames of each scene

Scene 1 2 3 4 5 6 7 8 9 10

#frame 950 253 771 292 891 797 411 1717 254 350

Figure 8. Examples of scene in the dataset [14]

4.2. Table plane detection evaluation method

In order to evaluate the proposed technique, it is to prepare the ground-truth of the table planes

for two datasets and define three different evaluation measurements. Concerning the ground-truth,

the table region on each color image is cropped manually. Such a cropped region gives a mask of the

table plane, as shown in Fig. 9b. After that, the corresponding region on the depth image is taken

and then presented as a point cloud data. They are referred them as the ground-truth point clouds.

For the evaluation measurements, since the table plane detection result could be affected by different

factors of the detected planes. In this paper, the accuracy of the detected table plane in term of both

table plane’s parameters and its size or area is considered. In order to evaluate the parameters, it is

to compare the normal vectors delivered from the parameters (e.g., A,B,C) of the detected table

plane) and the one extracted from ground-truth data. However, if only using parameters of the plane,

the size of the detected table would be omitted. In practical experiments, the size of the detected

table can be much smaller than the actual table in the captured scene when projecting the detected

plane into the color image. Whereas, if the evaluation bases only on the size/area of the detected

table, then the detected plane can be skewed. Therefore, three evaluation measures are needed and

they are defined as below.

Evaluation measure 1 (EM1): This measure evaluates the difference between the normal

vector extracted from the detected table plane and the normal vector extracted from ground-truth

data. First, a 3-D centroid of the ground-truth point cloud data is determined. A normal vector at

this point is calculated. The 3-D center point and its normal vector are then extracted from each

detected table plane, as illustrated in Fig. 9. After that, an angle (α) between the normal vector

of detected table plane and a vector T that connects the 3-D centroid of the detected table plane

to the 3-D centroid of the ground-truth is calculated as shown in Fig. 10(a), (α) is expected to be

closed to 90 degree. To evaluate a true detection, a lower and upper threshold for this angle is set

up. In this paper, it is to set thresholds of 85 degrees for the lower and 95 degrees for the upper. A

limitation of this evaluation is that the planes can consists of many noises, so the evaluation results

can be affected by these noises because 3-D centroid is determined from all points (including noises)

belonging to the plane. Therefore, the second evaluation measure to overcome this issue is proposed.

Evaluation measure 2 (EM2): By using EM1, only one point was used (center point of the
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Figure 9. (a) Color and depth image of the scene; (b) mask data of table plane; (c) cropped
region; (d) point cloud corresponding of the cropped region, green point is 3-D centroid of
the region

ground-truth) to estimate the angle. To reduce the noise influence, more points for determining the

normal vector of the ground truth are used. For the EM2, 3 points (p1, p2, p3) are randomly selected

from the ground-truth point cloud. After that, a normal vector n of the plane constituted from two

vectors u and v is computed as follows:

n = [u,v] (6)

where n generated from cross product of two vectors; u is a vector from p1, p2 points; v is a vector

from p1, p3 points. The angle (β) between the normal vector of the detected table plane and n
vector is computed. Since two vectors are parallel, the angle β should be 0 degree. However, in order

to make the evaluation measure to be tolerant to the noise, an upper threshold for (β) is set. If (β)
is lower than this threshold, it is defined as a true detection. It is to set this threshold of 5 degree in

our experimental evaluations (see Fig. 10b).

Evaluation measure 3 (EM3): The two evaluation measures presented above do not take into

account the area of the detected table plane. Therefore, it is to propose EM3 that is inspired by

the Jaccard index for object detection [11]. First, the detected table plane is projected from the

point cloud into the RGB image space, named Rd and an area of the table with manually annotated

ground truth on the image, named Rg is generated. Then, it is to compute the ratio r between the

intersection and union between detected and ground-truth regions as follows:

r =
Rd ∩Rg

Rd ∪Rg
. (7)

If r is greater than a threshold, we define it as a true detection, otherwise a false detection. In [7],

the author used only the overlapping region for determining a true detection. This may be wrong

evaluation if the detected table plane covers whole image. By utilizing EM3, results of the table

plane detection could be evaluated more accurate. For example, the detected table plane could be

true when the number of data points satisfies the constraints of the EM1, and EM2; but its size is not

satisfied according to the EM3 measurement, then it is a false detection. Although, EM1 and EM2

are the traditional evaluations for the plane detection techniques. In this paper, three independent

measurements are utilized besides the computational time, to confirm the robustness of the proposed
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Figure 10. (a), Illustration of the angle between normal vector of the detected table plane
and T. (b), Illustration of the angle between normal vector of the detected table plane ne

and ng; (c) Illustration of overlapping and union between detected and ground-truth regions

technique. Moreover, also the recall and missing rate of the table plane detection are computed.

Recall is defined by the ratio between the number of true detections and the number of table planes

in the dataset while the missing rate is defined as a ratio between the number of missed table planes

and the number of table planes.

4.3. Results and discussion

In order to evaluate the proposed method, we compare it with two other methods. Three methods

are mainly different from one another in term of the implementation techniques for the plane seg-

mentations. The first baseline method, PROSAC is deployed (see details in [10]), whereas the second

one utilizes the techniques proposed in [6, 7]. The proposed method, as described in Sec. 3., utilizes

the down-sampling and smoothing techniques to reduce computational time.

Some parameters are set for the first method as follows: minimum number of points in a plane

are 100 points; the thresholds to determine a point belonging the plane in PROSAC algorithm

[10] is (t = 0.1) (that means 10cm); the threshold to remove floor plane h is 120 cm. Regarding

the second, our method, the parameters are defined as follows: minimum number of points in the

region (mininliers) are 1000 points; the threshold for clustering and merging two regions data: angle

threshold is 5 degrees, the distance threshold is 0.05 (that means 5cm); the threshold to remove floor

plane h is 120 cm. For the proposed method, we set (mininliers) equal 300 points, down sampling

image with size (3× 3). The others parameters are identical to the second one.

These methods are compared with the experimental dataset as described in section 4.1. All

methods are written in C++ and using the PCL 1.7 and OpenCV 2.4.9 libraries on a PC with

Core i5 processor RAM 8G. The comparative results of three different evaluation measures on two

datasets are shown in Table 2 and Table 3 respectively, while the detail result for each scene of our

dataset is illustrated in Fig. 11.

The results of our dataset show that the methods based on organized point clouds (second method

and the proposed method) obtain not only good results in terms of precision and low missing rate but

also computational efficiency. The proposed method obtains similar results compared to the second



254 VAN-HUNG LE ET AL.

Table 2. The average result of detected table plane on our own dataset(%)

Approach
Evaluation Measurement Missing

rate
Frame

per secondEM1 EM2 EM3 Average

First Method [10] 87.43 87.26 71.77 82.15 1.2 0.2

Second Method [6] 98.29 98.25 96.02 97.52 0.63 0.83

Proposed Method 96.65 96.78 97.73 97.0 0.81 5

Figure 11. Detailed results for each scene of the three plane detection methods on our
dataset: (a) using the first evaluation measure; (b) the second evaluation measure and (c)
the third evaluation measure

one (the average recalls are 97% and 97.52% respectively). However, our method gets 5 frames per

second while the second method can only process 0.83 frames per second. The first one has the lowest

recall (82.15%) and lowest computational time (0.2 frames/second) because, this method is based
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on PROSAC algorithm and may generate some wrong planes. In term of missing rate, our method

and the second one have a lower missing rate in comparison with the first method. Some examples

of table detection results of the proposed method are illustrated in Fig. 12. It is interesting to see

that the detection results are coherent with three evaluation measures. Since the third measure uses

a strict constraint on detected area, the recall of three methods decreases. Especially for the first

detection method that is based on PROSAC, it can generate many planes with a small area. An

illustration of this problem is shown in (Fig. 13 - top line). In this example, the detections of the

first method are correct if using the first and second evaluation measure. Since the angle (α) and

the angle (β) defined in the first and second evaluation measures are 85.68% and 4.17% respectively.

However, the r rate of the third measure is 21.3%, which does not satisfy the defined criteria.

The results of the method on the dataset [14] (see Table 3) show that our method obtains a similar

accuracy than the methods in [6], [10] on EM1 and EM2 and outperforms these methods on EM3.

However, this dataset has more noise than our dataset. Therefore, the obtained accuracy is lower

than that of our dataset with EM1, EM2 measures. Concerning EM3 measure, since this dataset is

less complex than our dataset in term of number of planes appeared in the scene (one scene in this

dataset normally has a table plane, a wall plane and a ground plane), accuracy with EM3 is quite

high.

The table detection results on two testing datasets shows that the proposed method achieves

good performance (greater than 97% for EM3) with an acceptable frame rate for working application

(5 frames per second).

Table 3. The average result of detected table plane on the dataset [14] (%)

Approach
Evaluation Measurement Missing

rate
Frame

per secondEM1 EM2 EM3 Average

First Method [10] 87.39 68.47 98.19 84.68 0.0 1.19

Second Method [6] 87.39 68.47 95.49 83.78 0.0 0.98

Proposed Method 87.39 68.47 99.09 84.99 0.0 5.43

Since our method applies down sampling in this paper, the table detection result is compared

with different down sampling factors. The chosen down sampling factors are (3×3), (5×5) and (7×7).

The results are listed on Tab. 4.3.. The table plane detection results are inversely proportional to

the down sampling factor and processing time. The choice of down sampling depends on the system

requirements. With 33 frames per second, 84.13% of average precision is obtained. In some cases,

this result can be accepted because when the system can not detect the table, the visually impaired

people can move lightly in the scene until the Microsoft Kinect can capture better the table.

However, in some cases, all methods could not detect well the table plane because the number

of points belonging to the table is smaller than a threshold mininliers. This case is illustrated

in Fig. 13- bottom line. In this failure case, none of the planes could be detected in the plane

segmentation step.

5. CONCLUSIONS AND FUTURE WORKS

In this paper, a method for table plane detection using down sampling, accelerometer data and

organized point cloud structure obtained from color and depth images of the Kinect sensor is proposed.
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Figure 12. Results of table detection with our dataset (two first rows) and the dataset in
[14] (two bottom rows). Table plane is limited by the red color boundary in image and by
green color points in point cloud. Arrow with red color is normal vector of detected table

Table 4. The average result of detected table plane of our method with different down
sampling factors on our dataset

Down sampling
Average recall

(%)
nbframe per second

(3x3) 97.00 5

(5x5) 92.21 14

(7x7) 84.13 33

The method outperforms the baseline methods in term of both precision and computational time.

A table plane dataset with the ground-truth has been built in the context of the object-finding

aid system. In order to evaluate the proposed method, the authors have performed a quantitative

comparison of the method with two different methods in the literature. Moreover, to confirm the

robustness of the proposed method, three different evaluation measures are utilized. It obtained a 97%

of precision rate with a frame processing rate of 5Hz on the captured dataset. In this research context,
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Figure 13. Top line is an example detection that is defined as true detection if using the two
first evaluation measures and as false detection if using the third evaluation measure: (a)
color image; (b) point cloud of the scene; (c) the overlap area between the 2-D contour of
detected table plane and the table plane ground-truth. Bottom line is an example of missing
case with our method (a) color image, (b) point cloud of the scene. After down sampling,
the number of points belonging to table is 276 that is lower than our threshold

a dataset consisting of 10 different scenes is collected and the frames of each scene were collected from

different perspectives. The dataset is collected in the common environments. Therefore, it can satisfy

the requirements of an aided-system for object finding. Based on the table plane detection results,

we will continue to perform object detection and localization. Finally the aided system is completed

with a communication module that sends the object information to visually impaired people.
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