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Abstract. Maximum Distance Separable (MDS) code has been studied for a long time in the

coding theory and has been applied widely in cryptography. The methods for transforming an MDS

into other ones have been proposed by many authors in the literature. These methods are called

MDS matrix transformations in order to generate different MDS matrices (dynamic MDS matrices)

from an existing one. In this paper, some new results on the preservation of many good cryptographic

properties of MDS matrices under direct exponent transformation are presented. These good cryp-

tographic properties include MDS, involutory, symmetric, recursive (exponent of a companion
matrix ), the number of 1′s and distinct elements in a matrix, circulant and circulant-like. In

addition, these results are shown to have important applications in constructing dynamic diffusion

layers for block ciphers. The strength of the ciphers against developing cryptanalytic techniques can

be enhanced by the dynamic MDS diffusion layers.
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1. INTRODUCTION

Claude Shannon, in his paper of “Communication Theory of Secrecy Systems” [1] defined confusion
and diffusion as two mandatory properties, required for the design of block ciphers. Confusion is to

make the relationship of statistical independence between ciphertext string and plaintext string more

complicated while diffusion is associated with dependency of output bits on input bits.

As we know, MDS matrices were first introduced by Serge Vaudenay in FSE’95 [2] as a linear

case of multipermutations. Multipermutations or MDS matrices characterize the notion of perfect

diffusion [3], which requires that the change of some t out of m input bits must affect at least

m − t + 1 output bits. The branch number of diffusion layer in Substitution-Permutation Network

(SPN) structure has been regarded as an important criterion for diffusion layer design. For block

ciphers, the resistance against strong attacks (such as linear and differential attacks) depends on

the branch number of diffusion layers of the ciphers. The greater the branch number is the higher

security of block cipher will be. As an MDS matrix corresponds to a permutation with maximum

branch number, it provides the best level of diffusion. Therefore, MDS matrices have been used for

diffusion in many block ciphers such as: AES [4,5], SHARK [6], Square, Twofish [7], Anubis, Khazad,

Manta, Hierocrypt and Camellia. These are also used in stream ciphers like MUGI and cryptographic

hash functions like WHIRLPOOL.
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Thank to the usefulness of MDS matrices, besides building MDS matrices from MDS codes (e.g.

Reed-Solomon codes), there are lots of methods for constructing them such as: Cauchy matrices [8],

Hadamard matrices [9], Vandermonde matrices [10], Companion matrices [11], recursive MDS matri-

ces and so on.

However, the construction of the MDS diffusion layers (the diffusion layer represented by MDS

matrices [12,13]) with low-cost implementation is a major challenge for the designers. There are three

main research directions on MDS matrices to obtain low-cost implementation, namely: the construc-

tion of MDS matrices having a large number of 1s and a small number of different constants [14,15],

the construction of involutory MDS matrices [9,10,16–18], the construction of recursive MDS matri-

ces [11–13,19,20]. In addition, some circulant and circulant-like MDS matrices were proposed [14,15].

The MDS matrices satisfying simultaneously all afore mentioned properties are desirable for block

cipher designers and have good cryptographic properties. However, they are very challenging to con-

struct. To further enhance the security of the block ciphers, dynamic block ciphers (block ciphers

which are made dynamically in one of their components) have been under study, for example [21–23].

In [21,22], the authors constructed a key-dependent diffusion layer by creating MDS matrices depend-

ing on a secret key for each round. In [23], the authors constructed a dynamic block cipher in both

substitution and permutation layers, by building a bank of S-boxes and MDS matrices depending on

a secret key. Accordingly some MDS matrix transformations have been studied to generate dynamic

MDS matrices from an existing one such as: direct exponent, scalar multiplication [24], and permu-

tations of rows and columns [15, 22]. However, no studies have ever shown the conservation of good

cryptographic attributes of an MDS matrix as mentioned above under these transformations. The

concept of direct exponent of an MDS matrix was first presented by Ghulam Murtaza and Nassar

Ikram [24]. In this paper, some novel results on the direct exponent transformation are presented

including: direct p exponent of an MDS matrix over GF (pr) which is an MDS matrix; the cycle

of the direct p exponent transformation; the conservation of many good cryptographic properties of

MDS matrices under direct exponent transformation such as: MDS, involutory, symmetric, recur-
sive (exponent of a companion matrix ), the number of 1s and distinct elements in a matrix,
circulant and circulant-like. In addition, these results are shown to have important applications in

constructing dynamic diffusion layers for block cipher systems.

The paper is organized as follows. Section 2 presents some preliminaries and related works

including the theorem in [24] about direct square of an MDS matrix and the opposite opinion of the

authors in [25] about this theorem. In Section 3, some new theorems on the preservation of good

cryptographic properties of MDS matrices are established. Section 4 provides important applications

of the new results achieved in this paper in block ciphers. And conclusion of the paper is in Section 5.

2. PRELIMINARY AND RELATED WORKS

2.1. MDS matrices

Since MDS matrices provide perfect diffusion, they are extremely useful for block ciphers and hash

functions. The idea comes from coding theory in particular from maximum distance separable code

(MDS). In this context, two important theorems from coding theory are stated.

Theorem 1 ( [26, page 33]). If C is a [n, k, d] code then n− k≥d− 1.

Codes with n− k = d− 1(or d = n− k + 1), are called maximum distance separable code, or

MDS code for short.
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Theorem 2 ( [26, page 321]). A [n, k, d] code C with generator matrix G = [I∨A] where A
is a k × (n− k) matrix, is MDS if and only if every square submatrix (formed from any i
rows and any i columns, for any i = 1, 2, . . .,min {k, n− k}) of A is nonsingular.

The following fact is another way to characterize an MDS matrix.

Fact: A square matrix A is an MDS matrix if and only if every square submatrices of A
are nonsingular.

2.2. Direct exponent of an MDS matrix

The definition of direct exponent of an MDS matrix was introduced by Ghulam Murtaza and Nassar

Ikram in [22]. The authors gave the direct exponent definition, as follows:

Definition 1 ( [24]). Let F be a Galois field. Let matrix A = [ai,j ]m×m, ai,j∈F , then

Ade =
[
aei,j

]
m×m

, (e = 1, 2, 3. . .) is called direct e exponent matrix of A. And Ad2 is called

direct square matrix of A.

The result of [24] is as follows:

Theorem 3 ( [24]). If A = [ai,j ]m×m, ai,j∈F is an MDS matrix, then direct square matrix
Ad2 of A is an MDS matrix.

In [25], the authors proved that the above theorem was not correct. In the next section, this issue

will be further developed.

3. THE PRESERVATION OF GOOD CRYPTOGRAPHIC PROPERTIES
OF MDS MATRICES THROUGH THE DIRECT EXPONENT

TRANSFORMATION

In this Section, the statement and proof of the Theorem 3 [22] above is adjusted. In addition, the

theorem on the preservation of good cryptographic properties of MDS matrices under the direct

exponent transformation is stated and proven.

Consider the following theorem:

Theorem 4. Let A = [ai,j ]m×m, ai,j∈GF (pr) be an MDS matrix, for some prime number

p, then direct p exponent matrix Adp =
[
api,j

]
m×m

of A is an MDS matrix.

Proof. According to the supposition, matrix

A = [ai,j ]m×m, ai,j∈GF (pr) is MDS, thus all the submatrices of A are nonsingular.

We know that, if ai, (i = 1, 2, . . .n)∈GF (pr) then:

(a1 + a2 + · · ·+ an)p = (ap1 + ap2 + . . .+ apn) (1)

Consider matrix Adp =
[
api,j

]
m×m

over GF (pr). As A is an MDS matrix, so ai,j 6=0,

result in api,j 6=0. Therefore, all submatrices of size 1 of Adp are nonsingular.

Next, it is to prove that all 2 × 2 submatrices of Adp are nonsingular. Indeed, consider
an arbitrary 2× 2 submatrix of Adp , such as the following matrix:
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MP2 =

[
apbp

cpdp

]
then apply (1), the determinant of this matrix is:

apdp − bpcp = (ad − bc)p

Let U2 = (ad − bc), then U2 is exact determinant of corresponding 2× 2 submatrix of A
as the following: [

ab
cd

]
Since A is an MDS matrix, so U2 6=0. As a result, the determinant of matrix MP2 is Up2 6=0.
Thus matrix MP2 is nonsingular. Consequently, all 2×2 submatrices of Adp are nonsingular.

Suppose inductively that all submatrices of size (k − 1) of Adp have determinants equal
to p exponent of determinants of corresponding submatrices of size (k − 1) of A, and we will
prove that this is true for k (k≤m) .

Consider an arbitrary k × k submatrix of Adp , such as:

MPk =


bp0,0b

p
0,1...b

p
0,k−1

bp1,0b
p
1,1...b

p
1,k−1

...
. . .

bpk−1,0b
p
k−1,1...b

p
k−1,k−1


Apply (1) then the determinant of MPk is calculated as follows (developing follow the

first row of MPk):

bp0,0

∣∣∣∣∣∣
bp1,1b

p
1,2. . .b

p
1,k−1

...
. . .

bpk−1,1b
p
k−1,2. . .b

p
k−1,k−1

∣∣∣∣∣∣−bp0,1
∣∣∣∣∣∣

bp1,0b
p
1,2. . .b

p
1,k−1

...
. . .

bpk−1,1b
p
k−1,2. . .b

p
k−1,k−1

∣∣∣∣∣∣+. . .+(−1)k−1bp0,k−1

∣∣∣∣∣∣
bp1,0b

p
1,1. . .b

p
1,k−2

...
. . .

bpk−1,0b
p
k−1,1. . .b

p
k−1,k−2

∣∣∣∣∣∣
bp0,0U

p
k−1,1 − b

p
0,1U

p
k−1,2 + . . .+ (−1)k−1bp0,k−1U

p
k−1,k[

b0,0Uk−1,1 − b0,1Uk−1,2 + . . .+ (−1)k−1b0,k−1Uk−1,k

]p
where Uk−1,1, Uk−1,2, . . ., Uk−1,k are in turn determinants of k submatrices of size (k1) of A
corresponding with k submatrices of size (k1) of MPk in the above formula.

Let Uk = b0,0Uk−1,1 − b0,1Uk−1,2 + . . .+ (−1)k−1b0,k−1Uk−1,k
It is clear that Uk is exact determinant of the corresponding k × k submatrix of A as

follow (corresponds with matrix MPk):
b0,0b0,1...b0,k−1
b1,0b1,1...b1,k−1

...
. . .

bk−1,0bk−1,1...bk−1,k−1


Since matrix A is MDS, so Uk 6=0, as a result Upk 6=0. Therefore, the determinant of matrix

MPk is Upk 6=0. Thus matrix MPk is nonsingular. Consequently, all submatrices of size k of
Adp are nonsingular.

With above inductive proof, it concludes that Adp is an MDS matrix.
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Comment 1.
1. After the Theorem 4 it can be seen that for a given m ×m MDS matrix, it is possible
to generate other ones of the same size by doing the direct p exponent transformations.
Moreover, all the square submatrices of an MDS matrix are MDS, so one can also generate
many different MDS matrices of smaller size from an original MDS matrix by this method.
2. For GF (pr), direct e exponent of matrix A is Ade may not be an MDS matrix if e 6=p.
The authors in [23] provided an example of a 3× 3 matrix over GF (7) , (p = 7, r = 1)]:

A =

625
433
551


A is an MDS matrix. But the direct square matrix Ad2 (e = 2) of A is not MDS:

Ad2 =

622252

423232

525212

 (mod7) =

144
222
441


Because the submatrix

[
44
22

]
of Ad2 is singular.

Consider direct p exponent matrix of A, Adp = Ad7 :

Ad7 =

672757

473737

575717

 (mod7) =

625
433
551


In this case, matrix Ad7 is the original matrix A, thus it is obvious that Ad7 is an MDS

matrix.

Corollary 1. Let A = [ai,j ]m×m, ai,j∈GF (pr) be an MDS matrix, for a prime number p,

then A
dpk

=
[
ap

k

i,j

]
m×m

, (k = 1, 2, . . .) of A is an MDS matrix.

Next, it is to show the τ number (cycle) that when doing direct p exponent of an MDS matrix

for τ times will result in the original MDS matrix.

Consider matrix A = [ai,j ]m×m, ai,j∈GF (pr), with p is a prime number.

Suppose that there are c distinct elements in matrix A, denoted by a1, a2, . . ., ac. They are all

other than 1 and orders of them over GF (pr) are in turn n1, n2, . . ., nc. Denote +?N2 is the set

of positive integers and lcm (n1, n2, . . ., nc) is the least common multiple of n1, n2, . . ., nc.
We have the following theorem:

Theorem 5. Let A = [ai,j ]m×m , ai,j∈GF (pr) be an MDS matrix, for some prime number
p,then we have Adpτ = A for τ = min {B} and:

+ : lcm (n1, . . ., nc)∨
(
pk − 1

)
k∈N2

B =?

Moreover, τ is the smallest value such that Adpτ = A.
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Proof. As A is an MDS matrix then all of elements of A are nonzero and have finite orders.
So lcm (n1, . . ., nc) exists and it is a positive integer.

Obviously r∈B, because pr − 1 is divisible by the orders of any elements other than 0,
a∈GF (pr). Therefore, pr − 1 is divisible by lcm (n1, . . ., nc). As the result, there exists the
number τ = min {B}≤r.

From the definition of τ , there exists the positive integer d such that pτ−1 = d.lcm (n1, . . .,
nc) and then for all a∈A, so ap

τ−1 = ad.lcm(n1,...,nc) = 1, or ap
τ

= a. Consequently, Adpτ = A.
Suppose that there exists a positive integer t satisfying Adpt = A. Then for an

element a∈A, it yields ap
t

= a. It follows that ord (a)∨
(
pt − 1

)
, so it is induced that

lcm (n1, . . ., nc)∨
(
pt − 1

)
. Therefore t∈B, then τ≤t.

The number τ is called cycle of the direct p exponent transformation of matrix A.

Comment 2. With cycle τ , perform direct p exponent of the MDS matrix for τ times then
the resulting matrix is equal to the original MDS matrix. By this method, it can obtain τ -1
different MDS matrices from an existing MDS matrix if τ > 1.

Example 1. Let A = [ai,j ]m×m be an MDS matrix over GF (pr) where p = 3, r = 8. Note

that the number 38 − 1 = 6560 is divisible by the orders of elements in GF
(
38
)
. Suppose

that matrix A includes four distinct elements (other than 0 and 1), they are: a1, a2, a3, a4.
Let the orders of these elements over GF

(
38
)

be in turn: n1 = 2, n2 = 5, n3 = 8, n4 = 10.
(Obviously, the number 6560 is divisible by these orders).

→ lcm (n1, n2, n3, n4) = 40

We try in turn numbers k = 1, 2, .., 7 until the first one is found satisfying the condition:

pk − 1 = d.lcm (n1, n2, n3, n4)

In this case, it is found that the first number satisfying this condition is k = 4, i.e. 341 = 80 =
2.40.

Then, the cycle is τ = 4.

Therefore, doing direct p exponent matrix A for four times yields the original matrix A.

Theorem 6. Let A = [ai,j ]m×m , ai,j∈GF (pr) be an MDS matrix, for some prime number
p. Let τ is the cycle of the direct p exponent transformation of matrix A. Then direct
pk (1≤k≤τ) exponent of matrix A preserves following properties:

1. MDS

2. Involutory (i.e. if
(
A = A−1

)
then A

dpk
=
(
A
dpk
)−1

)

3. Symmetric (i.e. if
(
A = AT

)
then A

dpk
=
(
A
dpk
)T

)

4. Recursive (exponent of a companion matrix)

5. The number of 1s and distinct elements in matrix A.

6. Circulant and circulant-like.

-Item 1: comes directly from the Theorem 1 and Corollary 1.
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-Item 2: Follow the assumption A = A−1, so A2 = I , then all of elements on the main diagonal of A
are 1 and other elements are zero. Therefore, it results in:

m∑
j=1

ai,jaj,i = 1 for i = 1, 2, . . ..,m.

m∑
j=1

ai,jaj,t = 0 for i, t = 1, 2, . . ..,m∧i6=t
(2)

Suppose that B = A
dpk

=
[
ap

k

i,j

]
m×m

is direct pk (1≤k≤τ) exponent of matrix A. Then

elements on the main diagonal of B2 are:
m∑
j=1

ap
k

i,ja
pk

j,ifor i = 1, 2, . . ..,m. Apply (1), it yields:

m∑
j=1

ap
k

i,ja
pk

j,i =
m∑
j=1

(ai,jaj,i)
pk =

(
m∑
j=1

ai,jaj,i

)pk
, (i = 1, 2, . . ..,m).

From (2) it is to infer:
m∑
j=1

ap
k

i,ja
pk

j,i = 1, for i = 1, 2, . . ..,m.

Similarly, the elements that do not belong to the main diagonal of B2 are:
m∑
j=1

ap
k

i,ja
pk

j,tfor i, t =

1, 2, . . ..,m∧i 6=t.
Apply (1), it results in:

m∑
j=1

ap
k

i,ja
pk

j,t =
m∑
j=1

(ai,jaj,t)
pk =

 m∑
j=1

aijajt

pk

, (i, t = 1, 2, . . ..,m; i 6=t)

From (2) it is to infer:
m∑
j=1

ap
k

i,ja
pk

j,t = 0for i, t = 1, 2, . . ..,m∧i6=t.

Therefore, obviously B2 = I or B = B−1.

-Item 3: Follow the assumptionA = AT , so ai,j = aj,ifor i = 1, 2, . . .,m−1; j = i+1, . . .,m. Suppose

B = A
dpk

= [bij ]m×m =
[
ap

k

i,j

]
m×m

is direct pk (1≤k≤τ) exponent of matrix A. Since

ai,j = aj,i → ap
k

i,j = ap
k

j,i then for matrix B it yields: bi,j = bj,ifor i = 1, 2, . . .,m − 1; j =

i+ 1, . . .,m. Hence, B = BT .

Item 4: Follow the assumptionA is a recursive matrix that is exponent of a companion matrix. Suppose

S is this companion matrix, i.e. A = Sm, where S has following form:

S =


010· · ·0
001· · ·0

...
...
...
. . .

...

000· · ·1
s1s2s3· · ·sm


and elements si (1≤i≤m)∈GF (pr).
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AsA = Sm then every element ofA is a function of variables si (1≤i≤m). Hence, an arbitrary

element of row i and column j of matrix A has following form:

ai,j =fi,j (s1, s2, . . ., sm)

=b0 +
∑

1≤u≤m
busu +

∑
1≤u<v≤m

bu,vsusv + . . .+ b1,2,...,ms1s2. . .sm
(3)

where bu (1≤u≤m) ; bu,v (1≤u < v≤m) ; . . .; b1,2,...,m are coefficients of function fij corre-

sponding to ai,j . For example, when u is fixed, bu is number of elements su in the presentation

of ai,j . Because GF (pr) has characteristic p then the coefficients are computed as modulo p.

Therefore, the coefficients bu (1≤u≤m) ; bu,v (1≤u < v≤m) ; . . .; b1,2,...,m are all in GF (p).

Suppose B = A
dpk

= [bij ]m×m =
[
ap

k

i,j

]
m×m

is direct pk (1≤k≤τ) exponent of matrix A.

Then an arbitrary element bi,j of B has following form:

bi,j = ap
k

i,j =

busu +
∑

1≤u<v≤m
bu,vsusv + . . .+ b1,2,...,ms1s2. . .sm

pk

Apply (1), it yields:

bi,j = bp
k

0 +
∑

1≤u≤m
= bp

k

u s
pk

u +
∑

1≤u<v≤m
bp
k

u,vs
pk

u s
pk

v + . . .+ bp
k

1,2,...,ms
pk

1 s
pk

2 . . .s
pk

m (4)

Now the argument is similar to the coefficients: bu (1≤u≤m) ; bu,v (1≤u < v≤m) ; . . .;
b1,2,...,m, so the coefficients in the presentation of bi,j are also in GF (p). Base on the Fermats

little theorem, it yields:

bpu = bumodp (1≤u≤m) ,

or

bpu = bumodp = bu, (1≤u≤m) .

Hence,

bp
k

u = bu, (1≤u≤m)

Similarly, there also have: bp
k

u,v = bu,vmodp = bu,v; . . . ; b
pk

1,2,...,m = b1,2,...,mmodp = b1,2,...,m.

Putting these results in (4) results in:

bus
pk
u +

∑
1≤u<v≤m

bu,vs
pk
u s

pk
v + . . .+ b1,2,...,ms

pk

1 s
pk

2 . . .s
pk
m (5)

bi,j = b0 +
∑

1≤u≤m
2

(5)

Consider direct pk (1≤k≤τ) exponent of matrix S:

Ś =


010· · ·0
001· · ·0
...
...
. . .

. . .
...

000· · ·1
sp
k

1 s
pk

2 s
pk

3 · · ·s
pk
m


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Then, it is similar to Sm (sp
k

i instead of si), an element of row i and column j of Śm has form:

ái,j =fi,j

(
sp
k

1 , s
pk

2 , . . ., s
pk

2

)
=

bus
pk
u +

∑
1≤u<v≤m

bu,vs
pk
u s

pk
v + . . .+ b1,2,...,ms

pk

1 s
pk

2 . . .s
pk
m (6)

b0 +
∑

1≤u≤m
2

(6)

where, fij and its coefficients are exact the elements in (3).

Compare (5) and (6), one can obtain:

bi,j = ái,j (0≤i, j≤m− 1).

It means that B = Śm.

Consequently, if A = Sm, B = A
dpk

and Ś = S
dpk

then B = Śm.

Item 5: Suppose that matrix A has c distinct elements which are all other than 1 and denoted by

a1, a2, . . ., ac. Obviously, these elements are nonzero because A is an MDS matrix. When one

performing the direct pk (1≤k≤τ) exponent transfromation of an MDS matrix how is many

times longer then element 1 unchanged.

On the other hand, we prove that the direct pk (1≤k≤τ) exponent of matrix A , A
dpk

=[
ap

k

i,j

]
m×m

always has ap
k

i 6=1, (1≤i≤c).

Indeed, consider the case when r = 1. Let a∈GF (p) be an arbitrary element other than 0
and 1. If ap = 1 then p∨ (p− 1). This is ridiculous.

Consider the case when r > 1. Let a∈GF (pr) be an element other than 0 and 1. If ap = 1
then it yields p∨ (pr − 1). So there exists a positive integer d satisfying: pr − 1 = dp for

pr − 1 > d≥1. This equation is equivalent to:

pr − dp = 1↔ p
(
pr−1 − d

)
= 1.

Clearly, the left side of the above equation is obtained as an integer divisible by p but the

right side is not divisible by p. It leads to contradictions.

Hence, for an arbitrary element other than 0 and 1, a∈GF (pr) , (r≥1), we always have ap 6=1.

This entails ap
k 6=1, (1≤k≤τ).

Consequently, for ∀ai∈A, (1≤i≤c) then ap
k

i 6=1, (1≤k≤τ).

Thus the direct pk (1≤k≤τ) exponent transfromation of an MDS matrix preserves the number

of 1s of the original MDS matrix.

Now it is to prove that for ai 6=aj , (1≤i, j≤c) then ap
k

i 6=a
pk

j ( 1≤k≤τ ).

Indeed, suppose the opposite: ∃k,( 1≤k≤τ ): ap
k

i = ap
k

j ↔ ap
k

i − a
pk

j = 0. Apply (1), it is

deduced that: (ai − aj)p
k

= 0↔ ai = aj . This contradicts with the assumption ai 6=aj , so

ap
k

i 6=a
pk

j , ( 1≤k≤τ ) for 1≤i, j≤c.

Thus the direct pk (1≤k≤τ) exponent transfromation of an MDS matrix also preserves the

number of distinct elements of the original MDS matrix.
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-Item 6:

+ Suppose A is a circulant matrix, i.e. A has the form:

A = ◦ (a0, . . ., am−1) =


a0
am−1

...

a1

a1
a0
...

a2

. . .

. . .
...

. . .

am−1
am−2

...

a0


Performing direct pk (1≤k≤τ) exponent of matrix A, it yields:

A
dpk

=


ap

k

0

ap
k

m−1
...

ap
k

1

ap
k

1

ap
k

0
...

ap
k

2

. . .

. . .
...

. . .

ap
k

m−1
ap

k

m−2
...

ap
k

0


Obviously the matrix obtained is also a circulant matrix:

A
dpk

= ◦
(
ap

k

0 , . . ., a
pk

m−1

)
+ If A is a Type-I circulant-like matrix ([ [15]]) then A has the following form:

A =

[
a 1

1T B

]
where B = ◦ (1, a1, . . ., am−2), 1 = (1, . . ., 1)︸ ︷︷ ︸

m−1l [1EA7?]n

, 1 is the unit element and a′is and a are

any nonzero elements of the GF (pr) other than 1.

When performing direct pk (1≤k≤τ) exponent of matrix A, one can obtain:

A
dpk

=

[
ap

k
1

1T Bpk

]

Since B is a circulant matrix, according to the above proof it is deduced that Bpk is also a

circulant matrix. As element a is other than 0 and 1 in GF (pr), according to the proof of

Item 5 it follows that ap
k

is also other than 0 and 1 in GF (pr). Thus, A
dpk

is also a Type-I

circulant-like matrix.

Notice.

1. The inverse matrix of A has the similar form:

A−1 =

[
á b́

b́T B́

]
where B́ = ◦ (b0, b1, . . ., bm−2), b́ = (b, . . ., b)︸ ︷︷ ︸

m−1 times

and á, b́ and b′is are any elements of

GF (pr).

2. The inverse matrix of A
dpk

also has the same form as matrix A−1.
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4. APPLICATIONS OF THE RESULTS FROM THE DIRECT EXPONENT
TRANSFORMATION IN BLOCK CIPHERS

As introduced in the Section 1, MDS matrices have been studied because of their preeminent prop-

erties.

There have been several studies on the construction of dynamic diffusion layers for block ciphers

recently, for example [21–23]. In [21, 22], the authors constructed a key-dependent diffusion layer by

creating MDS matrices depending on a secret key for each round. In [23], the authors constructed

a dynamic block cipher in both substitution and permutation layers, by building a bank of S-boxes

and MDS matrices depending on a secret key.

When generating dynamic MDS matrices for block ciphers, it is very important to verify whether

the resulting matrix still owns good cryptographic properties for implementation or not? According

to Theorem 4, 5, 6 (Section 3), the MDS matrix transformation based on direct pk (1≤k≤τ) ex-

ponent indeed preserves good cryptographic properties. Therefore, from an MDS matrix with good

cryptographic properties, many different MDS matrices with the good cryptographic properties can

be created. Those suggest us an efficient method for constructing a dynamic diffusion layer for block

ciphers based on the direct exponent transformation.

Indeed, the direct exponent transformation is very useful for constructing a dynamic diffusion

layer. Firstly, the storage space can be saved because it may be only an original MDS matrix

need to be stored, then for each round the direct exponent transformation can be used to generate a

corresponding MDS matrix from the original MDS matrix. Secondly, we just only perform exponent of

each element of the original matrix to create a new matrix, so it is simple. Third, from an original MDS

matrix with good cryptographic properties one can create MDS matrices having similar properties

to use for the encryption rounds. For example, for a given involutory MDS matrix many different

involutory MDS matrices by the direct pk (1≤k≤τ) exponent transformation can be obtained. These

matrices can be used in dynamic diffusion layers for rounds of a block cipher.

Thus, the direct exponent transformation takes an important part in constructing dynamic dif-

fusion layers for block ciphers. Consequently, it can serve as a theoretical basis for creating efficient

dynamic algorithms for diffusion layers in block ciphers. These algorithms are not only effective but

also contribute to increase the security of the ciphers.

5. CONCLUSION

In this paper, some new results on the conservation of many good cryptographic properties of MDS

matrices under the direct exponent transformation are presented. In addition, these results have been

shown to have important applications in constructing dynamic diffusion layers for block ciphers. The

strength of the ciphers against developing cryptanalytic techniques can be enhanced by the dynamic

MDS diffusion layers.

REFERENCES

[1] C. E. Shannon, “Communication theory of secrecy systems*,” Bell System Technical Journal,
vol. 28, no. 4, pp. 656–715, 1949.

[2] S. Vaudenay, “On the need for multipermutations: Cryptanalysis of md4 and safer,” in Fast
Software Encryption. Springer, 1995, pp. 286–297.



302 THE PRESERVATION OF GOOD CRYPTOGRAPHIC PROPERTIES OF MDS MATRIX ...

[3] C. P. Schnorr and S. Vaudenay, “Black box cryptanalysis of hash networks based on multiper-
mutations,” in Advances in CryptologyEUROCRYPT’94. Springer, 1995, pp. 47–57.

[4] J. Daemen and V. Rijmen, “Aes proposal: Rijndael (version 2). nist aes website,” 1999.

[5] F. P. NIST, “197,” advanced encryption standard (aes),” november 2001.”

[6] V. Rijmen, J. Daemen, B. Preneel, A. Bosselaers, and E. De Win, “The cipher shark,” in Fast
Software Encryption. Springer, 1996, pp. 99–111.

[7] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson, “Twofish: A 128-bit
block cipher,” NIST AES Proposal, vol. 15, 1998.

[8] J. Nakahara Jr and E. Abrahao, “A new involutory mds matrix for the aes.” IJ Network Security,
vol. 9, no. 2, pp. 109–116, 2009.

[9] R. Elumalai and A. R. Reddy, “Improving diffusion power of aes rijndael with 8x8 mds matrix,”
International Journal of Scientific & Engineering Research, vol. 2, pp. 1–5, 2011.

[10] M. Sajadieh, M. Dakhilalian, H. Mala, and B. Omoomi, “On construction of involutory mds
matrices from vandermonde matrices in gf (2 q),” Designs, Codes and Cryptography, vol. 64,
no. 3, pp. 287–308, 2012.

[11] K. C. Gupta and I. G. Ray, “On constructions of mds matrices from companion matrices for
lightweight cryptography,” in Security Engineering and Intelligence Informatics. Springer, 2013,
pp. 29–43.

[12] D. Augot and M. Finiasz, “Exhaustive search for small dimension recursive mds diffusion layers
for block ciphers and hash functions,” in 2013 IEEE International Symposium on Information
Theory Proceedings (ISIT). IEEE, 2013, pp. 1551–1555.

[13] S. Wu, M. Wang, and W. Wu, “Recursive diffusion layers for (lightweight) block ciphers and
hash functions,” in Selected Areas in Cryptography. Springer, 2013, pp. 355–371.

[14] P. Junod and S. Vaudenay, “Perfect diffusion primitives for block ciphers building efficient mds
matrices, selected areas in cryptography 2004: Waterloo, canada, august 9-10, 2004. revisited
papers,” Lecture Notes in Computer Science. Springer-Verlag.

[15] K. C. Gupta and I. G. Ray, “On constructions of mds matrices from circulant-like matrices for
lightweight cryptography,” institution, Tech. Rep. ASU/2014/1, 2014.

[16] A. Youssef, S. Mister, and S. Tavares, “On the design of linear transformations for substitution
permutation encryption networks,” in Workshop on Selected Areas of Cryptography (SAC96):
Workshop Record, 1997, pp. 40–48.

[17] K. C. Gupta and I. G. Ray, “On constructions of involutory mds matrices,” in Progress in
Cryptology–AFRICACRYPT 2013. Springer, 2013, pp. 43–60.

[18] A. Youssef, S. Tavares, and H. Heys, “A new class of substitution-permutation networks,” in
Proceedings of Third Annual Workshop on Selected Areas in Cryptography (SAC96), Queens
University, Kingston, Canada, 1996, pp. 132–147.

[19] J. Guo, T. Peyrin, and A. Poschmann, “The photon family of lightweight hash functions,” in
Advances in Cryptology–CRYPTO 2011. Springer, 2011, pp. 222–239.

[20] M. Sajadieh, M. Dakhilalian, H. Mala, and P. Sepehrdad, “Recursive diffusion layers for block
ciphers and hash functions,” in Fast Software Encryption. Springer, 2012, pp. 385–401.



TRAN THI LUONG, NGUYEN NGOC CUONG, LUONG THE DUNG 303

[21] G. Murtaza, A. A. Khan, S. W. Alam, and A. Farooqi, “Fortification of aes with dynamic
mix-column transformation.” IACR Cryptology ePrint Archive, vol. 2011, p. 184, 2011.

[22] W. Mohamed, Ridza and M. Abdulrashid, “A method for linear transformation in substitution-
permutation network symmetric-key block cipher,” international application published under
the patent cooperation treaty, 10 may 2012, pp. 3-14.

[23] F. Ahmed and D. Elkamchouchi, “Strongest aes with s-boxes bank and dynamic key mds matrix
(sdk-aes),” International Journal of Computer and Communication Engineering, vol. 2, no. 4,
p. 530, 2013.

[24] G. Murtaza and N. Ikram, “Direct exponent and scalar multiplication classes of an mds matrix.”
IACR Cryptology ePrint Archive, vol. 2011, p. 151, 2011.

[25] J. Yang, Z.-X. Ma, J. Yang, and J. Cheng, “On direct exponentiation of maximum distance
separable matrices,” Xinan Minzu Daxue Xuebao(Ziran Kexue Ban), vol. 37, no. 3, pp. 452–455,
2011.

[26] F. J. MacWilliams and N. J. A. Sloane, The theory of error correcting codes. Elsevier, 1977.

Received on October 04 - 2014
Revised on August 31 - 2015


	Introduction
	Preliminary and related works
	MDS matrices
	Direct exponent of an MDS matrix

	The preservation of good cryptographic properties of MDS matrices through the direct exponent transformation
	Applications of the results from the direct exponent transformation in block ciphers
	Conclusion

