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Abstract. In this paper, the identifying undamaged-beam status based on singular spectrum

analysis (SSA) and wavelet neural networks (WNN) is presented. First, a database is built from

measured sets and SSA which works as a frequency-based filter. A WNN model is then designed which

consists of the wavelet frame building, wavelet structure designing and establishing a solution for

training the WNN. Surveys via an experimental apparatus for estimating the method are carried out.

In this work, a beam-typed iron frame, Micro-Electro-Mechanical (MEM) sensors and a vibration-

signal processing and measuring system named LAM BRIDGE are all used.

Keywords. Singular spectrum analysis, frequency-based filter, wavelet neural networks, identifying

structure

1. INTRODUCTION

Automatic monitoring structural condition during its service life which is also called Structural Health

Monitoring (SHM) is a necessary work. The core of any health monitoring system is the ability to

automatically identify structural damages consisting of localizing, predicting damages occurred in the

structure and also estimating severity of them [1]. These are in terms of response and performance

under operational and environmental loadings in real time based on feedback information from the

structure. In SHM systems, as usual, the current structure’s status is compared with its undamaged

condition to realize changes in dynamic response of the structure at these two times [2, 3]. Hence,

undamaged-structure identifying at the initial time is firstly carried out to build a database of the

intact structure for comparing and estimating. To do well this target, there are two related key

factors. The first one is building exact datasets while the other relates to identifying the structure

via these data sets. Recently, for these factors, in order to improve the ability to face with noise

and multi-dimensions of the databases, to face with uncertainty and nonlinear aspects of structure’s

dynamic response, SSA, wavelet transform and neural networks are all used widely, independently or

associatively.
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Regarding data sets used for identification, as usual, they are measured data sets with noise. The

noise in these relates to many reasons such as the precision of the measurement devices, noise on the

measurement devices, environmental conditions of the measurement devices, and unknown nonlinear

characteristics of the actuators [4]. Hence filtering noise and using signal-analysis tools are carefully

treated. One of the effective approaches to handle this problem is to use SSA which is considered as a

new non-parametric tool for data analysis [5,6]. SSA is a technique for time series analysis based on

the principles of multivariate statistics. It decomposes a given time series into a set of independent

additive time series and analyzes them via frequency. Based on a procedure of principal component

analysis, the method projects an original time series onto a vector basis obtained from the series itself.

In this process, the set of these series can be seen as a slowly varying trend representing the signal

mean at each instant. As a result, noise which can be filtered from the original data set together with

the special features of the structure expressed by vibration signals can be extracted [5].

Related to the identifying, it is a process of modeling an unknown system based on a data set of

input–outputs. For mechanical structures, this is done in the form of identifying structural parameters

such as stiffness, vibration factors such as displacement, frequencies, mode shapes, and damping

ratios, and stress and so on [7–11]. Since most of real physical systems are nonlinear, ill-defined and

uncertain, hence it is difficult to directly establish models by conventional mathematical means [12].

In addition, as above mentioned, in order to estimate the status of a structure based on data-driven

methods, one has to establish a correlative relation at two times: the undamaged-structure time and

check-in time. This is really difficult if this process is based on traditional ways because it is not able

to exactly repeat an exciting status at two different times. Hence mathematical models including

artificial neural networks (NN) technique are frequently used to overcome the impending challenges

with different degrees [13–15]. In [13], an NN was used for identifying and predicting the onset of

corrosion in concrete bridge decks taking into account parameter uncertainty. In [14] an NN model

was used to infer the location and the extent of structural damages. Another method deals with the

structural damage detection using measured frequency response functions (FRFs) as input data for

NN presented in [15]. In the data sets, the compressed FRFs were used as the NN input variables

instead of the raw FRF data while the output was a prediction for the actual state of the structure.

A further advantage of this particular approach was found to be the ability to deal with relatively

high measurement noise.

The wavelet transform method analyzes the signal into two dimensions, time-frequency or space-

frequency by using mother functions with two parameters a, and b. The first one, a, called the

scale can establish a variable width- window which can play a role similar to frequency while the

other, b, called the location parameter can change analyzed location. As a result, wavelet transforms

can be able to locally analyze signals to find out irregular events in dynamic response signals such

as vibration signals of the damaged structure in both time or frequency domain [16]. It is known

that NN is a powerful tool for handling problems via data sets of large dimension. Nevertheless,

the implementation of NN suffers from the lack of efficient constructive information related to both,

determining the parameters of neurons and choosing network structure. The combining of wavelets

and neural networks such as in the term of wavelet neural networks (WNN) is a solution for improving

partly the above issues. Based on this combining, wavelets and neural networks can remedy the

weakness of each other. Recently, WNN has been proposed in various works, including managing

health of structures [17–21]. In [21], prediction and identi?cation of nonlinear dynamical systems

based on WNN models were shown. In these models, the traditional-fuzzy rules from Takagi–Sugeno–

Kang fuzzy system were established by participating of wavelet basis functions that have the ability
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to localize both in time and frequency domains.

Consequently, in this paper, a solution for identifying undamaged-beam status based on SSA and

a WNN is presented. First, a database is built from measured data sets and SSA which works as a

frequency-based filter. A mathematical tool for identifying is then designed via the WNN techniques.

For this work, establishing a wavelet frame such that the size of WNN to be reduced, designing

a structure of the WNN based on the created wavelet frame and giving an appropriate solution

for training the WNN are all carried out. In the WNN, each wavelet works as a neuron for both,

processing and storing data. Effectiveness of the proposed method is estimated from surveys via an

experimental apparatus consisting of a beam-typed iron frame, MEM sensors and a vibration signal

processing and measuring system named LAM BRIDGE made by the Lab. of Applied Mechanics

(LAM), HCM City University of Technology.

2. BUILDING DATABASE VIA SSA

To extract information correlated with system response, the main steps are performed as follows.

First, SSA builds a matrix, called the trajectory matrix from the original time series in a process called

embedding. This matrix consists of vectors obtained by means of a sliding window that traverses

the series. The trajectory matrix is then subjected to singular value decomposition (SVD) which

decomposes the trajectory matrix into a sum of unit-rank matrices known as elementary matrices.

Each of these matrices can be transformed into a reconstructed time series by a process known as

diagonal averaging. The obtained time series is called principal components in which the sum of

all the principal components is equal to the original time series. In next step known as grouping,

the selection of the principal components that represent the trend of the signal is carried out. By

using this step, the principal components are selected with which to reconstruct the trend of the

original series. In this work, to perform automatically the selection of the principal components that

represent the trend, the frequency spectra of each principal component is transformed and compared.

As a result, the components which concentrate most of their power in the lowest frequency ranges

represent the trend of the signal [5].

In order to establish a database via the measured data sets, in this paper, SSA for extracting

information correlated with dynamic response state of mechanical systems is used. It can be observed

that the role of this work is as a filtering process. As a result, only vibration signals expressing

vibration features have contributed to the database. In other words, in principle, the trend of a

time series can be described as a function that re?ects slow, stable, and systematic variation over a

long period of time. Hence, by selecting the principal components that represent the trend via the

frequency spectra of each principal component will rebuild the data set conveying the special features

of structure dynamic response. The sign for this selection is the power in the lowest frequency ranges

as mentioned in [6]. Besides in case that vibration frequency is known, this frequency is, of course, a

special sign for this arm. This content will be detailed in section 4.3.

3. DESIGNING THE WNN

3.1. Mathematical formulation

Let TΣ be the filtered data set by SSA consisting of P input-output data pairs(x̄h, yh) , x̄h ∈ <n, yh ∈
<1, expressed by an unknown function f at pointsx̄h, yh = f (x̄h) in which x̄h = [xh1xh2...xhn].
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The dynamic system functionf (x̄h) is approximated by the wavelet transform functions and

wavelet coefficients, in a general form as follows [22–26]:

f̄(x̄h) =
M∑
i=1

Wi

ψa,b∑
a,b

(x̄h) (1)

In (1), M is the number of wavelets which will be discussed in the next subsection, Wi, i = 1...M,
represents the discrete wavelet transform; ψa,b(.) is the two-dimensional wavelet expansion functions

obtained from the mother wavelet function φ(t) by simple scaling a and translation b as below:

ψa,b(x̄h) = Kφ

(
x̄h − a
b

)
, a, b ∈ <M (2)

in which, K is a positive parameter.

To satisfy the orthogonality condition, the mother wavelet function has to satisfy restricting

constraints: the integral of the wavelet must be equal to zero and integral of the square of the wavelet

function must be equal to one. Such constraints make the orthogonal wavelets non-differentiable. In

the proposed WNN model, errors between the approximated and actual outputs are minimized using

a mathematical optimization approach which requires derivatives of the wavelet function. As such,

a non-orthogonal differentiable wavelet function, the Mexican hat function (the Ricker wavelet) [24],

is used in the WNN model.

The value of the Ricker wavelet function corresponding to h-the data sample is calculated by

φ(thk) =
1√

2πσ3
(D −

t2hk
σ2

) exp

(
−
t2hk
2σ2

)
. (3)

Parameters in (3) are calculated as follows:

thk =

∑n
j=1 |wkjxhj − bk|

ak
, h = 1...P ; k = 1...M ; (4)

σ =

∑P
h=1

∑M
k=1 t̄hk

PM
; (5)

D is a positive coefficient, which is chosen D=1 in next surveys of this paper. In (5) t̄hk is the

value of thk in (4) corresponding to the initial rough set of (a, b) belonging to the finite wavelet frame

whose quantity will be illustrated in subsection 3.2.

By using (3, 4, 5), expression (1) can be rewritten by another form as follows:

f̄ (x̄h) = ŷh =
M∑
k=1

vkφ (thk) + d0 (6)

in which vk, wkj (k = 1...M, j = 1...n) and d0 are parameters; ŷi is the i-th appropriated output.

By definition an error function E as below:

E =
1

2

∑P

h=1
(yh − ŷh)2 =

1

2

∑P

h=1

(
yh −

M∑
k=1

vkφ (thk)− d0

)2

, (7)
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from (4) and (7), the following is given:

E =
1

2

∑P

h=1

(
yh −

M∑
k=1

vkφ
(∑n

j=1
|wkjxhj − bk|

/
ak

)
− d0

)2

(8)

The approximating as in (1) is great satisfaction if f̄ (x̄i) → yi. To perform this, the optimal

value of the elements in the parameter vector p defined as below:

p = [ak bk vk wkj d0]T , k = 1...M, j = 1...n (9)

needs to be estimated such that

ŷi =
M∑
k=1

vkφ (gik) + d0 → yi. (10)

It means

E (p)→ 0. (11)

Be noted here that the optimal resolution of (11) can be depicted by an adaptive optimal dis-

cretization via the well-known NN technique. The adaptive discretization consists in determining

the optimal parameters of vector p according to the features of the data set TΣ. The NN which is

established based on a training process and a training data set as shown in Figure 1 is used for this

arm. The NN has one hidden layer and one linear neuron in the output layer, in which wavelet ψ
works as an activation function of M hidden neurons, so-called a wavelet neural networks, WNN. By

this way, the optimal value of [ak bk vk wkj d0]T , k = 1...M, j = 1...n,is estimated via the training

process of the WNN.

Figure 1: Structure and the solution for calculating the optimalparameter set of the WNN
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3.2. Establishing a finite wavelet frame

Regarding the target to be the best approximating the function y = f(x̄) via the wavelet transform

represented by (1), reality shows that the redundant wavelet bases result in making the size of the

system identification WNN model prohibitively large, increasing the computational cost. Questions

need to be answered here are how many wavelets are required? (Meaning M =?) and what are the

wavelets used in this work? For practical implementation, the theoretically in?nite wavelet frame

must be truncated into a ?nite frame (signed I) for the training process. Here, this phase can be

seen as to build the initial rough set of (a, b). For this focus, in this paper the methods presented

in [22, 26] are considered. However, instead of using input-output data space as these methods for

creating the fine set of (a, b) only the input data space for the rough set is used and the fine one will

be established via the neural-networks training technique.

Be noted here that the non-orthogonal Mexican hat wavelet function (3) is not compactly sup-

ported but is rapidly vanishing. Thus, its support, Sa,b, defined by Daubechies [23] as in (12) is used

for establishing I .

Sa,b =
{
x̄ ∈ X : |ψi(x̄)| > εmax

x̄
|ψi(x̄)|

}
, i = 1 . . . L, (12)

where X is the entire input state space of TΣ; ε is a given small positive index and L is the default

number of elements (a, b) as follows [22]:

ap = 2−p, bp,q = q2−p, p, q ∈ N∗ (13)

In order to remove the empty wavelets whose supports do not contain any data, first, find the

value set Ii related to the input data x̄i as follows:

Ii = {(a, b) : x̄i ∈ Sa,b} , i = 1...L; (14)

Subsequently the nonempty wavelet frame is obtained via the union operator ∪ as below:

W =
{
ψa,b : (a, b) ∈ I = ∪Li=1Ii

}
(15)

3.3. Training the WNN

As above mentioned, the optimal value of parameters belonging to vector p is established via the

training process of the WNN. In this paper an update rule for [ak bk vk wkj d0]T , k = 1...M, j =
1...n, during the training process is established based on the well-known Gradient Descent Algorithm.

Based on the Taylor expansion of the error function (8) it can infer

E(pr) ≈ E(pr−1) +∇ET |p=pr−1(pr − pr−1) (16)

where the subscription r depicts the r-th loop. From (16), it can infer that in order to reduce the

error function depicted in (11), the following expression needs to be satisfied:

pr = pr−1 − η∇E|p=pr−1 (17)

In (17), η is a positive parameter called momentum used to adjust the convergence rate of

the training phase. Expression (17) describes the update rule for each parameter in vector p =
[ak bk vk wkj d0]T , k = 1 . . .M , j = 1 . . . n, during the training process.
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Figure 2: The experimental model

4. EXPERIMENTS

4.1. Experimental model

The experimental model is shown in Figure 1 which consists of a beam-typed iron frame with a length

of L = 3 m (1), a motor D (2) carrying a mass M (3) of 0.3528 kg, a frequency converter V (4)

and a measuring system. The measuring system uses 3-axis MEMS acceleration sensors, LIS3DH,

linear displacement sensors, HS10, a computer, and the vibration signal processing and measuring

system LAM BRIDGE (5) made by the Lab. of Applied Mechanics (LAM), HCM City University of

Technology. In this experimental model, M is fixed on the frame at many different positions located

by the co-ordinate (x) along the length L. The center deviation level of M , Md, can be easily varied

by varying the distance d from position of fixed M to the rotation axle center of D. V is used

to change the angular velocity ω of D. Thus, the factors related to the vibration-exciting statuses

(V ES) are 3 parameters (x, d, ω).

4.2. Measuring vibration acceleration

In surveys below, only MEM sensors are used which are fixed at locations 3L/4, L/2, L/4, and

L/5. At the undamaged-frame time, by fixing the motor D at the position x = 1.5 m as well as the

center deviation value Md = 0.14112 kgm, adjusting angular velocity such that ω ≤ 1.047 rad/s,

using a sample frequency to be 500 Hz, the vibration acceleration signals of the frame at MEM-fixed

locations are measured. As a result, the data set as in Figure 3 named TL4 corresponding to the

undamaged frame has been built.

By using the same way and the value of the parameters as above mentioned except the changing

in the position of motor D with the new location to be x = 2.85 m. The MEM fixed at the location

of L/5 is utilized to measure the horizontal vibration acceleration of the frame. The noisy signal in

this case is the data line in Figure 4 which is called the dataset TL5. The TL5 will be used to verify
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Figure 3: Initial data set in the time domain, TL4

the ability to identify the noisy dataset of the WNN while the TL4 will be filtered noise by SSA to use

for estimating the effectiveness of the proposed method in the identifying undamaged-frame status.

4.3. Identifying the noisy dataset

In order to estimate more objectively the proposed method in this and the next survey, the algorithm

for establishing adaptive neuro-fuzzy systems (ANFIS) named ENFS presented in [3] is also utilized.

Regarding the ENFS, let be summarized as follows. In order to build ANFIS from datasets, firstly,

clusters of the same data samples in the jointed-input-output data space are established via a clus-

tering algorithm. The created cluster data space is then used to build fuzzy sets to which an initial

structure of the neuro-fuzzy inference system is created. Finally, this structure is optimized via a

training process. ENFS is also a useful mathematical tool for identifying systems via datasets.

 

 
 

Figure 4: The data output of the TL5 and outputs of the WNN and ENFS
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In order to establish an identifying process via the TL5, firstly in the TL5, five pass and present

samples are used to predict the next future point, means that input is [x(k−4), x(k−3), . . . , x(k)]
and output is x(k+ 1). The WNN and ENFS are then used to identify the new dataset created from

the noisy dataset TL5. The data output and outputs of the WNN and ENFS are shown in Figure 4.

The result depicts the two methods can identify well the dataset. Particularly, the WNN is more

accuracy than ENFS with the mean absolute error (MAE) (18) of them, respectively, are 1.1700.10−5

and 1.2138.10−4 (mm/s2).

MAE =
1

P

P∑
i=1

|yi − ŷi| (18)

where P is the number of samples in the data set; yi and ŷi are the data output and estimate output,

respectively.

4.4. Identifying undamaged-frame status

In this subsection, the filtered 1000-sample data set, TL4, is used for identifying dynamic response

of the beam when it is considered to be undamaged via the proposed WNN. There two phases here

to be performed as follows.

Figure 5: Value of eigen values

First, by using SSA with a window length of L = 20, 20 principal components were separated

from the initial data set TL4 corresponding to 20 eigen values which is shown in Figure 5. The part

extracted from this result related to 5 eigen values, from the first to the fourth together with the last

one, is shown in Figures 6 and 7. Namely, the principal components numbered from 1 to 4 and 20 are

illustrated in Figure 6. Transforming these five ones in the time domain into the frequency domain

resulted in corresponding frequency spectrum (Power Spectral Density, PSD) which are depicted in

Figure 7. In the frequency domain it can observe that the vibration frequency depends deeply on the

corresponding eigen value. Smaller values of eigen value are closely correlative with the high vibration

frequency ranges of the signal, and conversely. This is the key aspect of signal analysis shown in the

rest of this section.
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Based on the theory of SSA as mentioned in section 2, to which the frequencies coinciding the

trend of the signal are the lowest frequency ranges related to the vibration frequency of the frame.

Besides, in cases that system’s vibration frequency to be estimated then the trend of the signal is,

certainly, closely correlated with this value. Let note here that in this survey, the vibration frequency

of the frame is known. During this survey, vibration frequency is always smaller or equal to 10Hz.

Based on this feature, by considering obtaining results depicted figures 6 and 7 we can handle the

trend of the initial signal to be the set depicted in both figures 6a and 6b; all the other ones are noise.

It means that the data set is combined between 6a and 6b expresses best the dynamic response of

the undamaged frame which will be used for training the WNN in the next subsection. The filtered

dataset and the result compared between the initial and the filtered one shown in Figures 8 and 9.

 

    

     

 

   

    
 

(c) 

(a) 

(d) 

(b) 

(e) 

Figure 6: Principal components corresponding to Eig. 1-4 and 20 in the time domain
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Figure 7: Power Spectral Density, PSD, of each principal component

Instead of using an input-output-typed data set as usual for identifying, in this survey, the

proposed method is estimated via a time-series prediction problem as presented in [4, 27]. First, in

the TL4, five pass samples are used to predict the next point, means that input is [x(k− 4), x(k−
3), ..., x(k)] and output is x(k+1). By this way, from the TL4 two data subsets are established. The

first one having 900 samples is used for building FLSs, and the other one having 95 samples is utilized

for testing. Results obtained in the training process shows in Figures 8, 9 and Table 1. Compared

results show that prediction errors related to the proposed method are smaller than that of the ENFS.

MAE of the WNN and ENFS respectively to be 0.0326 and 0.0401 (mm/s2) as depicted in Figure 10

and Table 1. The test set with 95 samples is then used for the WNN and ANFIS which have been

built based on the 900-sample data set as above mentioned. Results in the testing phase are shown in

Figure 11 and Table 1. In this phase, MAE of the WNN to be 0.0756 (mm/s2) is significantly smaller

than that of the ENFS which is 0.1059 (mm/s2). These results show the comparative effectiveness

of the proposed WNN.
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Figure 8: The result obtained based on SSA: the filtered data set TL4

Figure 9: The result obtained based on SSA: the comparison result

Figure 10: Prediction error (mm/s2) of each method in the training process

Figure 11: Prediction error (mm/s2) of each method in the testing phase

MAE [mm/s2]

Training Testing
ANFIS 0.0401 0.1059
WNN 0.0326 0.0756

Table 1: Mean absolute error
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5. CONCLUSION

The solution for identifying the undamaged-beam status using the SSA and WNN technique has been

presented in which the SSA worked as a filter while the proposed WNN took part in identification. By

using SSA, the beam’s vibration-measured data set is separated into subsets based on their vibration

frequency ranges. The beam’s vibration frequency is used to find out the subset that best expresses

the structure’s dynamic response. Subsequently, the WNN model identifies the dynamic response of

the structure based on this filtered subset.

In order to estimate the effectiveness of the proposed method, an experimental apparatus has

been used for the real surveys. This experimental apparatus consists of a beam-typed iron frame,

MEM acceleration sensors and the vibration-signal processing and measuring system LAM BRIDGE.

Results show that SSA is a useful tool for building frequency-based filters, especially in cases struc-

ture’s vibration frequency to be given. For the WNN, it can be used for identifying system offline.

However, appropriate solutions for improving convergent time in the training process need to be

continuously considered. This will be presented in the next paper.
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