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Abstract. This study presents a solution to the control of robot–camera system with actuator’s

dynamics to track a moving object where many uncertain parameters exist in the system’s dynamics.

After modeling and analyzing the system, this paper suggests a new control method using an on-

line learning neural network in closed-loop to control the Pan-Tilt platform that moves the Camera

to keep tracking an unknown moving object. The control structure based on the image feature error

determines the necessary rotational velocities on the Pan joint and Tilt joint and computes the voltage

controlling the DC motor in joints such that the object image should always be at the center point in

the image plane. The global asymptotic stability of the closed-loop is proven by the Lyapunov direct

stability theory. Simulation results on Matlab show the system tracking fast and stable.
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Abbreviations. RBF: Radial Basic Function; DC: Direct Current

Symbols:
ξ Image-specializing vector;

Jf Image Jacobian matrix;

q̇d Desired Pan Tilt joint-angle velocity vector;

q̇ The actual joint-angle velocity vector of Pan-Tilt platform;

Jr Jacobian matrix of Pan-Tilt platform;

τ Joint torque vector of Pan-Tilt platform;
wro Target coordinates in the coordinate system of the Pan-Tilt platform;
cro Target coordinates in the camera coordinate system;

uE Voltage vector controlling a direct current motor armature;

i Current vector of direct current motor armature; and

R Resistor matrix of direct current motor armature.

1. INTRODUCTION

Pan-Tilt platform with two layers freely rotates in two azimuthal direction (Pan) and angle (Tilt).

This structure mainly is used as rotating radar platform (fixed or mobile located on car, train) or

rotating tray of optical devices to monitor and test space. The majority of studies on this system

ignores the impact of the actuators due to the fact that the system is often installed with gear

reducer large reduction ratio. However, when the target moves fast and it is necessary to use the

direct transmission, the impact of the dynamics of the actuators can not be ignored. At this moment

it is necessary to install an additional model of the engines mounting in the joints of the pad into the
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dynamics of the whole system; it also needs to consider the interaction between the robot and the

dynamics of actuators.

Currently in the world, there have been many studies and scientific reports on a method for

controlling how to track moving targets using Pan - Tilt platform and camera. A control method

using neural networks to compensate for the uncertainty components of the robot arms tracking

target is described in [1]. The method for controlling how to track targets in 3D space by Pan -

Tilt camera system and using continuous pixel-tracking method and pixel filter is presented in [2].

Paper [3] has introduced the control method to track the target using signals via video obtained from

flying objects. Paper [4] has used remote controlled robot arm having 6 degree-of-freedoms combined

with a flexible control method to follow the target in 3D space. Paper [5] has introduced a new control

approach using nonlinear observers for robot arm and a camera to track a moving target in 3D space.

Stable control method combined with a neural network, identifying the parameters of the robot is

described in [6]. The above reports often overlook the impact of actuators’ dynamics mounted in the

robot joints.

In this paper, the authors study methods for controlling Pan/Tilt pedestal mounted with the

camera tracking a moving target with a number of uncertain parameters and also take into account

the model of a direct current motor mounted in the joints of the pedestal.

The report is divided into four sections. After the introduction, the next part is building a

mathematical model of the system and determining the visual servo problem. Following part is

a proposal of Pan-tilt-camera control algorithm and notice of actuator’s effect. Part 4 presents

verification, simulation and finally there are some evaluation and conclusions.

2. MATHEMATICAL MODEL OF ROBOT CAMERA SYSTEM AND
PROBLEM FORMULATION

The model of the system consists of model of imaging camera, nonlinear dynamics of Pan/Tilt pedestal

and the transfer function of DC motors mounted in the joints.

Figure 1: Camera imaging model
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Description of camera imaging equation

The image of a point P (x, y, z) in space is mapped into the image plane obtained point IP (u, v)
with coordinates as follows (Figure 1):

u =
fx

z
; v =

fy

z
, (1)

in which f is the focal length of the camera. The image of target after being digitized and determined

image features will give the central coordinates of the target on the image plane. This coordinate is

written as ξ = [u, v]T and will be used as a measuring parameter of Pan-Tilt camera system.

Control mission is done via the difference function between desired image features ξd and obtained

image features. This bias function can be defined as follows:

e = (ξ − ξd). (2)

Description of the kinematic and dynamic equations of Pan-Tilt robots [7]:

A block diagram of the overall system is described in Figure 2.

Figure 2: Block diagram of Pan-Tilt-camera system

xc and xo are camera coordinate and target coordinate respectively in the Cartesian coordinate

system attached to the robot platform. Kinematic equation of the robot is described as follows:

xc = p (q) (3)

Time derivation of (3) is:

ẋc =
∂p

∂q

dq

dt
= Jrq̇

where ẋc is the translational velocity and the angular velocity of the camera, Jr the Jacobian matrix

of the robot.

Dynamic equations of the robot (4) and of the DC motor (5), (6) are described as follows:

τ = H (q) q̈ + h (q, q̇) (4)

Li̇ + Ri + Kq̇ + tE = uE (5)
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τ = KT i (6)

in which q = [q1, q2]
T

is joint coordinate vector, τ = [τ1, τ2]
T

joint torque vector of robot, H (q)
positive definite symmetric matrix, showing the robot inertia matrix, and h (q, q̇) a vector which

presents Coriolis torque components, centrifugal and torque components caused by the gravitational

force. uE = [uE1, uE2]
T

is the voltage of controlling armature of two DC motors, i = [i1, i2]
T

current vector of the armature of the DC motors, and L =< L1, L2 > constant diagonal matrix

determining the inductance of the armature winding. R =< R1, R2 > presents resistor matrix of the

armature of a DC motor. KT =< KT1,KT2 > diagonal matrix defining positive torque coefficient

of two motors, K =< KT ,KT > diagonal matrix defining positive factors of feedback voltage of

two motors, and tE a vector which shows uncertainty components of the motor. The uncertainty

components are proposed to be blocked ||tE || ≤ T0, T0 are known components.

Image feature vector depends on locations and directions of the camera, therefore it depends on

q. If m is the number of image features, the image feature vector will have 2m elements. The relation

between image feature vector ξ and xc is defined as follows:

dξ

dt
= Jf

dxc

dt
(7)

In which, Jf is an image Jacobian matrix. On the other hand, ẋc = Jrq̇ therefore, it yields:

dξ

dt
= Jf

dxc

dt
= JfJrq̇ (8)

Definition of general Jacobi matrix:

J (ξ,q) = JfJr (9)

Equation (8) can be rewritten as follows:

ξ̇ = J (ξ,q) q̇ (10)

It is proposed that uncertain parameters of robot are described as follows:

H(q) =
_

H(q) + ∆H(q) (11)

h(q) =
_

h(q) + ∆h(q) (12)

J (ξ,q) =
_

J (ξ,q) + ∆J (ξ,q) (13)

in which
_

H(q),
_

h(q),
_

J (ξ,q) are known components; ∆H(q), ∆h(q), ∆J (ξ,q) are unknown

ones. Replacing (11), (12), and (13) on the place of the equation (4) and (10) results in a dynamic

system of Pan-Tilt-camera platform with a lot of uncertain parameters:

τ =
_

H (q) q̈ +
_

h (q, q̇) + ∆H (q) q̈ + ∆h (q, q̇) (14)

ξ̇ = Ĵq̇ + ∆Jq̇ (15)
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Formulation of visual servoing problem:

The problem of tracking moving target consists in finding out voltage uE = [uE1, uE2]
T

so that

the spindle motors of the camera platform follow moving targets and the error of image feature

e = (ξ − ξd) disappears.

From (14), it can be deduced that:

q̈ =
_

H
−1

(q) τ −
_

H
−1_

h (q, q̇)−
_

H
−1

[∆H (q) q̈ + ∆h (q, q̇)] (16)

Definition of variable describing deviations of image features: z = G(ξ − ξd), in which, G is a

constant matrix [n× 2m], with rank n. Thus, if z→ 0 yields that e→ 0. Taking the first and the

second derivative of z over time results in:

ż = Gξ̇ = GJq̇ = G
_

Jq̇ + G∆Jq̇ (17)

z̈ = Gξ̈ = G
_̇

Jq̇ + G
_

Jq̈ + G∆J̇q̇ + G∆Jq̈ (18)

From (16), (18) it derives:

τ =
_

H
(
G

_

J
)−1

z̈−
_

H
(
G

_

J
)−1

G
_̇

Jq̇ +
_

h + f (19)

with f = (∆H + G∆J)q̈− Ĥ
(
GĴ
)−1

G∆J̇q̇ + ∆h.

Moreover, from (5), (6) and (19) there are:

KTR−1uE =Ĥ
(
GĴ
)−1

z̈− Ĥ
(
GĴ
)−1

G˙̂Jq̇ + ĥ + KTR−1Kq̇

+ KTR−1Li̇ + (∆H + G∆J)q̈− Ĥ
(
GĴ
)−1

G∆J̇q̇ + ∆h + R−1tE

(20)

The variables are set as follows:

ψ = RK−1T Ĥ
(
GĴ
)−1

(21)

With the inverse matrices, it can be seen clearly that the matrix ψ is an invertible matrix:

ψ−1 =
(
GĴ
)

Ĥ−1KTR−1 (22)

f1 = RK−1T

[
(∆H + G∆J)q̈− Ĥ

(
GĴ
)−1

G∆J̇q̇ + ∆h

]
+

+K−1T tE + Li̇
(23)

γ = RK−1T

[
−Ĥ

(
GĴ
)−1

G˙̂Jq̇ + ĥ

]
+ Kq̇ (24)

Combining equations (20), (21), (23), (24) results in:

ψz̈ + γ + f1 = uE (25)

Consequently, the tracking control problem becomes a state of finding voltage uE to control the

system (25) stably approaching lim
t→∞

z(t)→ 0 while there are uncertainties about the component f1.

Of course, when lim
t→∞

z(t)→ 0 there is error in image feature e(t)→ 0.
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3. CONTROL ALGORITHM TRACKING THE MOVING TARGET USING
NEURAL NETWORK

Let us look for the control voltage uE in the form of:

uE = u0 + u1 (26)

u0 = ψ (−KDż−KP z) + γ (27)

u1 is control signals to compensate for the effects of uncertain components will be defined later.

Putting (26), (27) in the place of (25) yields:

z̈ + KDż + KP z = ψ−1 (u1 − f1) (28)

If uncertain components f1 = 0, and choosing u1 = 0, the difference equation will be:

z̈ + KDż + KP z = 0 (29)

Equation (29) is asymptotically stable (z→0) with fast speed and no overshoot if the matrix KD,

KP is chosen suitably. In any case, f1 (0, then it needs to define u1 in order to do that (25)

asymptotically stable. Define:

u′ = ψ−1u1 (30)

f ′ = ψ−1f1 (31)

Replacing (30), (31) on the place of (25) results in:

z̈ + KDż + KP z = u′ − f ′ (32)

It is known that, a neural network RBF (Radial Basis Function) with a finite number of neurons

can approximate unknown continuous and bounded function. Supposed that the robot is working

in the nonsingular area so the f ′ remain s continuous and bounded. It is to build a neural network

with appropriate weight updating laws to approximate f ′ and find out u′ that makes equation (32)

asymptotically stable.

Artificial neural network, to approximate f ’, is described (in Figure 3):

Figure 3: RBF network, approximately f ′

In which, s = [s1, s2, ...]
T

is defined as follows:

s = ż + Cz (33)
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s involve to q, q̇ so f ′ (q, q̇) f ′ (s)

f ′ = Wσ + ε = f̂ + ε (34)

f̂ = Wσ (35)

With W is the weight matrix with law updated online and ε is approximately bounded deviation

‖ε‖ ≤ ε0.

Here the input layer of the neural network is selected as n = 2 . The output layer has n = 2 of

linear neurons. The hidden layer consists of neurons with output function Gauss in the form of:

σj = exp

(
−(εj − cj)2

λ2j

)
; j = 1, 2. (36)

in which cj , λj parameters of the Gaussian distribution function can manually be selected.

Theorem 1. Pan-Tilt robotic camera system with 2 degree-of-freedoms with uncertain pa-
rameters (25) and neural networks (34), (35) will follow moving targets with errors e → 0
if we select control u and updating algorithm Ẇ of neuron network as follows:

u = ψ (−KDż−KP z) + γ + u1 (37)

u1 = ψ

[
(1 + η) Wσ − δ s

‖s‖

]
(38)

Ẇ = −ηsσT (39)

In which KD =D + C,KP =DC;D is a positive definite symmetric matrix D = DT >0,
and η, δ > 0.

Proof. Choose Lyapunov candidate function:

V =
1

2

(
sT s +

n∑
i=1

wT
i wi

)
(40)

Take the derivative V over time:

V̇ = sT ṡ +

n∑
i=1

wT
i ẇi (41)

From (33), (34) and KD = D + C, KP = DC, it derives:

ṡ = u′ − f ′ −Ds (42)

Replacing (42) with (41), yields:

V̇ = −sTDs + sT
(
u′ − f ′

)
+

n∑
i=1

wT
i ẇi (43)

With online updating law:

ẇi = −ηsσi ; i = 1, 2. (44)
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in which wi is i column of matrix W, it results in:

2∑
i=1

wT
i ẇi =

2∑
i=1

−ηwT
i sσi

=− ηsT
2∑

i=1

wiσi

=− ηsTWσ

(45)

and
V̇ = −sTDs + sT

(
u′ − (1 + η)Wσ − ε

)
(46)

Choose
u′ = (1 + η) Wσ − δ s

‖s‖
; δ > 0 (47)

And replace (47) with (46):

V̇ =− sTDs + sT
(
−δ s

‖s‖
− ε
)

≤− sTDs− δ ‖s‖+ ‖ε‖ . ‖s‖
≤ − sTDs− δ ‖s‖+ ε0. ‖s‖

(48)

Choosing δ = ε0 + µ; µ > 0 yields:

V̇ ≤ −sTDs− µ. ‖s‖ ≤ 0 (49)

From (49) V̇ is a negative – semi definite function. This implies that V (t) ≤ V (0) , and
therefore, that s and W are bounded. Because the system is non- autonomous, it cannot
conclude that s converge to zero. The Barbalat’s lemma is used to prove the asymptotic
stability of the system. Let us check the uniform continuity of V̇ . The derivative of V̇
overtime from (48) is:

V̈ =− 2sTDṡ− δ d
dt

(
sT s

‖s‖

)
− d

dt
sTε

=− 2sTDṡ− 2δ
sT ṡ

‖s‖
− 2sT ε̇

(50)

It is founded that V̈ is bounded because s, ε are bounded, sT

‖s‖ is the unite row vector of

s and always bounded, D is the positive-definite constant matrix and constant. Thus V̇ is
uniformly continuous. According to Barbalat’s lemma, the system is asymptotically stable
meaning that s, z→ 0 and.

4. THE SIMULATION RESULT AND ANALYSIS

To demonstrate the proposed algorithms, the following simulation is performed on Matlab-Simulink:

- The chosen target coordinates are (0.8, - 0.3, 0.2) m, the focal length of the camera is f = 5

mm and the initial position of the joint angles are (q1=0; q2 =0).
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- The dynamic parameters of Pan-Tilt pedestal [14]:

H =

[
(J1 + J2 sin2 q2 + J1cos2q2) 0
0 J1

]
[s2N],

κ1 =(J1 − J2) sin q2 cos q2,

h =

[
κ1

.
q̇2 + C1 κ1q̇1

κ1q̇1 C2

] [
q̇1
q̇2

]
[Nm],

J1,J2: Inertial moment of joint 1 and joint 2 with:

J1 = 0.02 [kgm2], J2 = 0.01 [kgm2]

C1, C2: Viscous friction coefficient with C1 = C2 = 0.001.

- Parameters of the two DC motors:

KT =< 2, 2 > [Nm/A]

R =< 0.5, 0.25 > [Ω]

L < 1, 0.5 > [H]

tE = [0.20.1]T [V]

- Uncertainty: 10% of actual value.

- Neural Network parameters RBF:

η = 10;

λ1 = λ2 = 5.0;

c1 = c2 = 0.001;

- Parameters of the control law:

δ = 0.25;

D =< 10, 10 >

C =< 8, 8 >

KP =< 80, 80 > [1/s2]

KD =< 18, 18 > [1/s].

The aim of the visual servoing system is to control Pan/Tilt camera pedestal so that the image

of the target is located in the center of the image plane (u = 0; v = 0). Matlab simulation results

are described in Figures 4, 5, 6, and 7 as follows:

The simulation results indicate that the robot-camera system is stable, although the system is

affected by the dynamics and noise of motors. Despite the fact that there have been still a number of

uncertainty parameters in the dynamic system of the Pan / Tilt pedestal the tracking error converges

zero. It is seen in Figures 5 and 6 after 4.5 seconds, the system has basically tracked the target. The

target image feature also nicely converges to the origin of the image plane in Figure 4.
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Figure 4: Graph of image features

Figure 5: Graph of joint coordinates

Figure 6: Graph of Pan Tilt joint velocity

Figure 7: Voltage graph of motors on Pan-Tilt joints
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5. CONCLUSIONS

The paper proposes a control method for Pan-Tilt-Camera system driven by DC motors to track a

moving object, when there are many uncertainties and noises in system dynamics. An RBF neural

network with online learning weights is used to compensate the effects of unknown quantities and

noises. The asymptotical stability of the overall system is proven by the Lypunov direct method.

Matlab simulation results show that the proposed algorithm could give satisfied convergence and

high precision.

REFERENCES

[1] W. Yu and M. A. Moreno-Armendariz, “Robust visual servoing of robot manipulators with neuro
compensation,” Journal of the Franklin Institute, vol. 342, no. 7, pp. 824–838, 2005.

[2] H. Ukida, M. Kawanami, and Y. Terama, “3d object tracking by pan-tilt moving cameras and
robot using sparse template matching and particle filter,” in SICE Annual Conference (SICE),
2011 Proceedings of. IEEE, 2011, pp. 2004–2009.

[3] T. Wang, G. Liu, and W. Xie, “Visual servoing control of video tracking system for tracking
a flying target,” in Advanced Intelligent Mechatronics (AIM), 2011 IEEE/ASME International
Conference on. IEEE, 2011, pp. 850–855.

[4] C. Zhou and W. Fu, “A study of robot control technology based on stereo vision,” in Proceedings
of 2011 International Conference on Electronics and Optoelectronics, 2011, pp. 29–31.

[5] H. Wang, Y.-H. Liu, W. Chen, and Z. Wang, “A new approach to dynamic eye-in-hand visual
tracking using nonlinear observers,” Mechatronics, IEEE/ASME Transactions on, vol. 16, no. 2,
pp. 387–394, 2011.

[6] R. Garrido, “Stable neurovisual servoing for robot manipulators,” Neural Networks, IEEE Trans-
actions on, vol. 17, no. 4, pp. 953–965, 2006.

[7] P. T. Cat, Modern control methods for industrial robots. The Publishing House of Thai Nguyen
University, 2009, in Vietnamese.

Received on October 04 - 2014
Revised on August 31 - 2015


	INTRODUCTION
	MATHEMATICAL MODEL OF ROBOT CAMERA SYSTEM AND PROBLEM FORMULATION
	CONTROL ALGORITHM TRACKING THE MOVING TARGET USING NEURAL NETWORK
	THE SIMULATION RESULT AND ANALYSIS
	CONCLUSIONS

