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Abstract. User modeling is a task which customizes and adapts the systems to meet users’ specific

needs. The user modeling is widely used in many areas. For example, in e-commerce, it is used for

modeling consumers’ preferences (behaviours) then predicting their future preferences to recommend

suitable products to them. In e-learning (e.g., intelligent tutoring systems - ITS), the user modeling

is used to model the learners (students) to track/predict their performance/knowledge.

In this work, an approach which integrates forecasting model into matrix factorization model

to take into account sequential/temporal effects in user modeling since users’ need/knowledge may

change overtime is introduced. The model as well as how to use stochastic gradient descent to

learn this model, then resulting with an algorithm are thoroughly presented. The proposed model

is validated using several data sets which are extracted from both e-commerce and e-learning areas.

Experimental results on these data sets show that the proposed approach performs nicely. This could

be a promising approach for user modeling.

Keywords. User modeling, matrix factorization, factorization forecasting, sequential effect, recom-

mender systems, intelligent tutoring systems

1. INTRODUCTION

User modeling is an interesting topic which has been used in many areas [7] such as Adaptive hy-

permedia systems, Intelligent tutoring systems (ITS), Expert systems, Recommender systems (RS),

etc1.

For example, in Adaptive hypermedia systems, the user modeling is used to display contents and

hyperlinks that are chosen on basis of users’ specific characteristics.

In e-commerce, the user modeling is used for modeling consumers’ preferences/ behaviors then

predicting their future preferences to produce suitable recommendations [16,17].

Recommender System is a type of information filtering system which is used to predict user pref-

erence on an item which had not been seen in the past (item could be song, movie, video clip, paper,

etc). For example, in an online shopping system such as Amazon, to maximize the user shopping ca-

pability, the system usually takes into account which user likes which item based on the past behaviors

of the user (these behaviors could be the users’ rate, number of clicks, browsing time,.. on the items).

Using these behaviors, the system can automatically predict the next items which the user may prefer

and then recommend them to that user. Besides e-commerce area, Recommender System is now used

1en.wikipedia.org/wiki/User modeling
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in many other areas such as in entertainment: Music recommendation (e.g., www.last.fm), movie rec-

ommendation (e.g., www.netflix.com), video clip recommendation (e.g., www.youtube.com). There

are many published works in this area including state-of-the-art techniques such as Matrix Factor-

ization [12]. Other works can be found in [17].

Another used area of the user modeling is in e-learning such as intelligent tutoring systems (ITS)

in which their aim is to help students in a specific field of study. In this area, the user modeling is used

to model the learners’(students’) performance, to track/predict their knowledge, and to recommend

learning resource such as books, papers, web links, etc. to the learners [4, 20, 24]. The tutoring

system can adapt to specific student by presenting appropriate exercises/examples as well as offering

hints/help where the student is most likely to need them.

This work focuses on two main areas which are recommender systems (RS) and intelligent tutoring

systems (ITS). In these two areas, many works have been published. Typical works in RS and ITS

can be found in [17] and [13], respectively.

For improving model performance in user modeling, time (or sequence) is an important factor

and should be taken into account. For example, in the recommender systems, user preferences

(or activities) may change overtime. In the tutoring systems, the learner’s knowledge may also

accumulate/improve overtime (that is what we expect in education since the students may gain

experience overtime). Thus, sequential/temporal effect is an important information for the models.

In this work, an approach, which is extended from previous work in [22], that integrates forecasting

model into matrix factorization model to take into account the sequential/temporal effect in user

modeling is thoroughly introduced.

2. PROBLEM FORMULATION

In this work, the method which uses historical data about user activities/behaviors to predict the

user activities/behaviors in the future is proposed.

The user activity/behavior may have different name/meaning depending on the systems. For

example, in recommender systems, they could be user rating, user click, etc.; In tutoring systems, the

user activity/behavior could be represented by student performance, grading, score, etc. To simplify

the terms, from this point forward, user feedback is called instead of user activities/ behaviors/

performances/..

More formally, let U be the set of users (u be a user), I be the set of items (i be an item), T be

the set of times, and R be the set of feedback on the items by the users.

Let

Dtrain ⊆ (U× I×T×R)

and

Dtest ⊆ (U× I×T×R)

be the train data set and test data set, respectively.

Then the problem of predicting the user feedback is, given Dtrain to find

r̂ : U× I×T→ R

such that a measure E(r̂, r) will be satisfied a certain condition, where r is the the true feedback,

i.e.,
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r : U× I×T→ R, (u, i, t) 7→ r

For example, if E is an error measure, e.g., root mean square error (RMSE), it needs to be

minimum.

RMSE =

√∑
(u,i,r,t)∈Dtest(r − r̂(u,i,t))2

|Dtest|

The time can be exploited by two different ways:

1. Concrete time, which represents specific points of time, as used in the literature [6]. This

kind of time is usually used in context-aware recommender systems, e.g., weekend, weekday,

Christmas day, etc [1, 8, 21].

2. Relative time, which describes sequence (order) of the data, e.g., the sequence of solving

problem in tutoring systems. This kind of time is usually used in forecasting techniques or in

modeling sequential data [3, 14].

This work focuses on the relative time. Thus, the formulation of the train set and the test set

is changed, denoting

Dtrain ⊆ (U× I×R)∗

and

Dtest ⊆ (U× I×R)∗

3. FACTORIZATION MODELS

In this section, first, the current state-of-the-art model in recommender systems, which is matrix

factorization [12], is summarized. Then, an extended model which is called tensor factorization is

presented. These models belong to the group of latent factor models.

3.1. Matrix Factorization

Matrix factorization is the task of approximating a matrix X by the product of two smaller matrices

W and H such that X can be re-constructed from these two smaller matrices [12], .i.e.

X ≈WHT

An illustration of matrix decomposition is presented in Figure 1

In the context of recommender systems, the matrix X is the partially observed ratings matrix;

W ∈ R|U|×K is a matrix where each row u is a vector containing the K latent factors (K <<
|U|,K << |I|) describing the user u and H ∈ R|I|×K is a matrix where each row i is a vector

containing the K factors describing the item i.
Let wuk and hik be the elements of W and H (w and h are their vectors, respectively), respec-

tively, then the rating given by a user u to an item i is predicted by:

r̂ui = w · hT =

K∑
k=1

wukhik (1)
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Figure 1: An illustration of matrix factorization

where W and H are the latent matrices (model parameters) and can be learned by optimizing an

objective function given a criterion such as Root Mean Squared Error (RMSE).

RMSE =

√∑
(u,i,r)∈Dtest(rui − r̂ui)2

|Dtest|
(2)

3.2. Training Phase

Using matrix factorization, training the model is to find the optimal parameters W and H. One

approach is that, first, these two matrices are initialized with some random values, e.g., from the

normal distribution N (0, σ2) with mean = 0 and standard deviation σ2 = 0.01, and compute the

error (objective) function, for example

OMF =
∑

(u,i,u)∈Dtrain

e2ui (3)

where

e2ui = (rui − r̂ui)2 = (rui −
K∑
k=1

wukhik)
2 (4)

then try to minimize this error function by updating the values of W and H iteratively, e.g., using

gradient descent [19].

To minimize the error function in equation (3), it is needed to know for each data point in which

direction to update the value of wuk and hik. Thus, gradients of the function (4) are computed:

∂

∂wuk
e2ui = −2euihik = −2(rui − r̂ui)hik (5)

∂

∂hik
e2ui = −2euiwuk = −2(rui − r̂ui)wuk (6)

After having the gradients, the values of wuk and hik are updated in the direction opposite to

the gradient:

w′uk = wuk − β
∂

∂wuk
e2ui = wuk + 2βeuihik = wuk + 2β(rui − r̂ui)hik (7)
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h′ik = hik − β
∂

∂hik
e2ui = hik + 2βeuiwuk = hik + 2β(rui − r̂ui)wuk (8)

where β is a learning rate (0 ≤ β < 1 ).

The values of W and H are iteratively updated until the error converges on its minimum

(OMF
Iter(n−1)

−OMF
Itern

< ε) or reaching a predefined number of iterations.

Regularization term: To prevent over-fitting, one can modify the error function (4) by adding

a term which controls the magnitudes of the factor vectors such that W and H would give a good

approximation of X without having to contain large numbers. The error function now becomes:

OMF = (rui − r̂ui)2 + λ
(
||W||2F + ||H||2F

)
(9)

= (rui −
K∑
k=1

wukhik)
2 + λ

(
||W||2F + ||H||2F

)
(10)

where λ is a regularization term (0 ≤ λ < 1 ) which is used to prevent overfitting and ||.||2 is a

Frobenius norm 2. For example,

||W||F =

√√√√ |U |∑
u=1

K∑
k=1

|wuk|2

With this new error function, the values of wuk and hik are updated by

w′uk = wuk + β(2euihik − λwuk) = wuk + β(2(rui − r̂ui)hik − λwuk) (11)

h′ik = hik + β(2euiwuk − λhik) = hik + β(2(rui − r̂ui)wuk − λhik) (12)

Algorithm 1 describes details of training a matrix factorization model using stochastic gradient

descent (the stochastic gradient descent is used for all algorithms in our work since it has been

shown that the computing cost of stochastic gradient descent has a huge advantage for large-scale

problems [11]).

First, the parameters W and H are initialized randomly from the normal distribution N (0, σ2)
with mean is 0 and standard deviation σ2 = 0.01, as in lines 2-3. While the stopping condition is not

met, e.g., reaching the maximum number of predefined iterations or converging (OMF
Iteration(n−1)

−
OMF
Iterationn

< ε), the latent factors are updated iteratively. For example, in each iteration, an

instance in the training set (u, i, p) is randomly selected, then the prediction for this user and item

is computed, as in lines 5-9. Then the error in this iteration is estimated and the values of W and

H are updated as in lines 11-14.

3.3. Prediction Phase

After the training phase, there are the two optimal latent factors W and H, the remaining task is

straightforward. The rating of user u in for a given item i is predicted easily by equation (1).

Please note that, for the new users or the new items, those are in the test set but not in the train

set, the global average (average rating of all users in the training set) can be simply returned. This

is a cold-start problem [18], however, this problem will not be under discussion in this study.

2http://en.wikipedia.org/wiki/Matrix norm#Frobenius norm



138 NGUYEN THAI-NGHE AND LARS SCHMIDT-THIEME

Algorithm 1 Learn a matrix factorization using stochastic gradient descent with K latent
factors, β learning rate, λ regularization term, and a stopping criterion

1: procedure MF-SGD(Dtrain, K, β, λ, stopping condition)
Let u ∈ U be a user, i ∈ I an item, r ∈ R a rating score
Let W [|U |][K] and H[|I|][K] be latent factors of users and items

2: W ← N (0, σ2)
3: H ← N (0, σ2)
4: while (Stopping criterion is NOT met) do
5: Draw randomly (u, i, r) from Dtrain
6: r̂ ← 0
7: for k ← 1, . . . ,K do
8: r̂ ← r̂ +W [u][k] ∗H[i][k]
9: end for

10: eui = r − r̂
11: for k ← 1, . . . ,K do
12: W [u][k]←W [u][k] + β ∗ (eui ∗H[i][k]− λ ∗W [u][k])
13: H[i][k]← H[i][k] + β ∗ (eui ∗W [u][k]− λ ∗H[i][k])
14: end for
15: end while
16: return {W , H}
17: end procedure

3.4. Tensor Factorization

Tensor Factorization is a general form of matrix factorization. A tensor is also known as a cube and

its modes is also called dimensions. A two-mode tensor is a matrix and a three-mode tensor is thus

the cube [6, 10].

Given the three-mode tensor Z with its size |U|× |I|× |T|, where the first and the second mode

describe the user and the item, respectively; the third mode describes the time. ThenZ can be written

as a sum of rank-1 tensors by using the Tucker tensor [23] or by using the CANDECOM-PARAFAC

tensor [9] as in the following:

Z ≈
K∑
k=1

λk wk ◦ hk ◦ qk (13)

where λk is a scalar vector; ◦ is an outer product; and each vector wk ∈ R|U|, hk ∈ R|I|, and

qk ∈ R|T| describes the latent factors of user, item, and time, respectively. An illustration of tensor

decomposition is presented in Figure 2.

The tensor factorization (or tensor decomposition) approach has been used in many other areas

such as recommender systems, topic modeling, link prediction, and more [6, 10,15]. However, on the

time mode, most of them are used for aforementioned concrete time.

The idea is adopted from this tensor factorization approach to model the temporal/sequential

effects in user modeling by using the relative time which is usually used in forecasting problems.
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Figure 2: A tensor is decomposed into three low-rank matrices

4. FACTORIZATION FORECASTING APPROACH

In this section, the model that incorporates the forecasting technique into the latent factor model is

introduced. Similar to Matrix Factorization [12] which is presented in previous section, here, a tensor

is decomposed into three smaller matrices so that the original tensor can be re-constructed from these

matrices, as presented in Figure 2.

There are several ways to decompose the tensor as presented in [10]. In this work, three smaller

matrices are obtained by optimizing an objective function using stochastic gradient descent approach.

The objective function for optimizing is presented as

OFF =
∑

(u,i,r)∈Dtrain

e2uiT + λ (||W||2F + ||H||2F + ||H′||2F + ||Q||2F + b2
u + b2

i ) (14)

=
∑

(u,i,r)∈Dtrain

(ruiT − r̂uiT )2 + λ (||W||2F + ||H||2F + ||H′||2F + ||Q||2F + b2
u + b2

i ) (15)

In this objective function, difference to matrix factorization where there are only two latent

matrices W and H representing for the latent factors of the user and item, respectively. Here, two

more matrices are in use. The first matrix is Q which is the time latent matrix, as presented in

Figure 2. The second matrix is H’ which take into account the information of the previous item in

the sequence since in our previous work shows that this work well for sequential data [22].

Moreover, in the objective function, µ, bu, and bi which are global average, user bias, and item

bias are included, as shown in [12], respectively.

The global average µ is determined by

µ =

∑
(u,i,r)∈Dtrain r

|Dtrain|
(16)

The user bias bu is determined by:

bu =

∑
(u′,i,r)∈Dtrain|u′=u (r − µ)

|{(u′, i, r) ∈ Dtrain|u′ = u}|
(17)
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Algorithm 2 Learn a factorization forecasting model using stochastic gradient descent with
K latent factors, β learning rate, λ regularization weight, L history length, and stopping
condition
1: procedure TFF(Dtrain, K, β, λ, L, stopping condition)
2: {W, H, H’, Q} ← N (0, σ2)

3: µ←
∑

r∈Dtrain r

|Dtrain|
4: for each user u do
5: bu ←

∑
i (rui−µ)
|Dtrain

u |
6: end for
7: for each item i do
8: bi ←

∑
u (rui−µ)
|Dtrain

i |
9: end for

10: while (stopping condition is NOT met) do
11: Draw randomly (u, i, ruiT ) at row T from Dtrain

. T is considered as current time in the sequence

12:

r̂uiT ← µ+ bu + bi +

K∑
k=1

(
wukhik

(∑L
t=1 h

′
(T−t)k · qtk · r

u
T−t

L

))
13: euiT ← ruiT − r̂uiT
14: µ← µ+ β · euiT
15: bu ← bu + β · (euiT − λ · bu)
16: bi ← bi + β · (euiT − λ · bi)
17: for k ← 1, . . . ,K do
18:

wuk ← wuk − β
(
∂OFF

∂wuk

)
19:

hik ← hik − β
(
∂OFF

∂hik

)
20: for t← 1, . . . , L do
21:

h′(T−t)k ← h′(T−t)k − β

(
∂OFF

∂h′(T−t)k

)
22:

qtk ← qtk − β
(
∂OFF

∂qtk

)
23: end for
24: end for
25: end while
26: return {W, H, H′, Q, bu, bi, µ}
27: end procedure
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The item bias bi is determined by:

bi =

∑
(u,i′,r)∈Dtrain|i′=i (r − µ)

|{(u, i′, r) ∈ Dtrain}|i′ = i|
(18)

In the objective function (15), the second term

λ (||W||2F + ||H||2F + ||H′||2F + ||Q||2F + b2
u + b2

i )

is the regularization which is used to prevent over-fitting, and the first term e2uiT is the squared error,

which is determined by

e2uiT = (ruiT − r̂uiT )2

where ruiT is the true feedback value of user u on item i at time T , and r̂uiT is the prediction value,

determined by

r̂uiT = µ+ bu + bi +
K∑
k=1

wukhikΦTk (19)

where K is the number of latent factors; T is the (current) time in the sequence to predict; and ΦTk

is determined by

ΦTk =

∑L
t=1 h

′
(T−t)k · qtk · r

u
T−t

L
(20)

For simplification purpose, Moving Average forecasting3 with a period L on the time mode is in

use, however, other forecasting techniques could also be applied in the similar way.

In ΦTk equation, qtk is the time latent factor; ruT−t is the true feed back of user u at the previous

time in a sequence; L is the history length as using in the Moving Average method and h′(T−t)k is

the latent factor of the previous item in the sequence.

In this approach, the ideas in [14, 22] are used for both e-commerce and e-learning areas. For

example, in e-commerce area, [14] have used matrix factorization with Markov chains to model

sequential behavior by learning a transition graph over items that is used to predict the next action

based on the recent actions of a user. The authors proposed using previous “basket of items” to

predict the next “basket of items” with high probabilities that the users might want to buy.

In the intelligent tutoring system environment, a natural fact is that the performance of the

learners not only depend on the recent knowledge (e.g., the knowledge in the previous problems or

lessons, which act as “previous basket of items”) but also depend on the cumulative knowledge in

the past that the learners have studied [22]. Thus, for modeling the sequential/temporal effects, the

researchers propose integrating the forecasting technique into the latent factor model.

For learning the model (in equation (15)) using stochastic gradient descent, the model parameters

(W, H, Q,..) are iteratively updated using the following gradients

3Moving average is an unweighted mean of previous n data points in the sequence
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Data set #User #Item #feedback

Algebra 2009-2010 (Algebra) 3,310 1,422,200 8,918,054

Bridge-to-Algebra 2009-2010 (Bridge) 6,043 888,834 20,012,498

Assistments 8,519 35,978 1,011,079

Movielens-100k 943 1,682 100,000

Movielens-1M 6,040 3,900 1,000,209

Table 1: Data set information

∂OFF

∂wuk
= −2euiThikΦTk + λwuk (21)

∂OFF

∂hik
= −2euiTwukΦTk + λhik (22)

∂OFF

∂h′(T−t)k
= −2euiTwukhik

(∑L
t=1 qtk · ruT−t

L

)
+ λh′(T−t)k (23)

∂OFF

∂qtk
= −2euiTwukhik

(∑L
t=1 h

′
(T−t)k · r

u
T−t

L

)
+ λqtk (24)

Finally, it comes up with a learning algorithm as presented in Algorithm 2 which briefly summa-

rizes the training process of the proposed factorization forecasting model.

In the Algorithm 2, first, the parameters (W,H,H’,Q) are initialized randomly from the normal

distribution N (0, σ2) with mean is 0 and standard deviation σ2 = 0.01, as in line 2. Then, the

values of the global average, user bias, and item bias are computed as in lines 3-9. While the

stopping condition is not met, e.g., not reaching the predefined number of iterations or not converging

(OFF
Iteration(n−1)

−OFF
Iterationn

< ε), the latent factors and the biased terms are updated iteratively.

After the training phase, the parameters are obtained. Then, one can easily predict the value of

the user feedback using equation (19).

5. EXPERIMENTS

This section presents several benchmark data sets which are collected from real systems that the

proposed method can be applied. Those are belong to educational environment (intelligent tutoring

systems - ITS) and entertainment environment (recommender systems - RS).

5.1. Practical issues and Data sets

5.1.1. Data sets from the ITS

In this environment, data sets from the KDD Challenge 20104 and the ASSISTments Platform5 are

used for experiments. These data sets represent the log files of interactions between the students

4http://pslcdatashop.web.cmu.edu/KDDCup/
5http://teacherwiki.assistment.org/wiki/Assistments 2009-2010 Full Dataset
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Figure 3: Predicting student performance: A scenario (Picture source: pslcdatashop.web.cmu.edu/
KDDCup)

and the tutoring systems. While the students solve problems in the tutoring system, their activities,

success and progress indicators are logged as individual rows in the data sets. The user feedback in

these data sets are the student performance scores (0: incorrect; 1: correct). This also is the target

prediction task.

Figure 3a presents an example of the task6. Given the circle and the square as in this figure,

the task for students could be “What is the remaining area of the square after removing the
circular area?” [22]

To solve this task (question), students could do some smaller subtasks which is called as solving-

step. Each step may be required one or more skills (or it can be called as “knowledge components”),

for example:

- Step 1: Calculate the circle area (the required skills for this step are the value of π, square,

multiplication, and finally putting them together area1 = π ∗ (OE)2)

- Step 2: Calculate the square area (skill: area2 = (AB)2)

- Step 3: Calculate the remaining (skill: area2 − area1)

Each solving-step is recorded as a transaction. Figure 3b presents a snapshot of the transactions.

Based on the past performance, students’ next performance (e.g. correct/incorrect) in solving the

tasks will be predicted.

5.1.2. Data sets from the RS

The Movielens7 data sets are also used for experiments. These data sets are extracted from a movie

recommender system (Figure 4) which are widely used in RS area.

Detailed information about these data sets are presented in Table ??.

6
Source: https://pslcdatashop.web.cmu.edu/KDDCup

7http://grouplens.org/datasets/movielens/
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Figure 4: A snapshot from Movielens system

5.2. Evaluation metric and Baselines

The most popular metric - root mean squared error (RMSE) - is used to evaluate the models.

RMSE =

√∑
(u,i,r,t)∈Dtest(r − r̂(u,i,t))2

|Dtest|

To understand how the proposed approach improves to the other methods, the RMSE of sev-

eral methods is reported such as global average, user average, and the current state-of-the-art in

recommender systems which is Matrix Factorization - MF [12]. Moreover, the RMSE of the state-

of-the-art in user (student) modeling in the ITS, which is Bayesian Knowledge Tracing [2, 5], is also

reported as well.

5.3. Empirical results

The RMSE results are presented in Figures 5 and 6. It can be observed that the Factorization

Forecasting (FF) approach performs nicely compared to the other methods including the current

state-of-the-art (Matrix Factorization - MF) in recommender systems (user modeling).

Table 2 presents the RMSE of the proposed methods and the well-known Bayesian Knowledge

Tracing (BKT) [2, 5]. The results also show that the factorization forecasting (FF) approach have

improvements compared to the BKT model.

Data set BKT FF

Algebra 0.30561 0.30159
Bridge 0.30649 0.28700
Assistments 0.46919 0.43964

Table 2: RMSE of BKT vs. FF Approach
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Figure 5: RMSE on ITS data (Algebra, Bridge and Assistments data set)

Figure 6: RMSE on recommender system data (Movielens data sets)
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6. CONCLUSIONS

This work introduces an approach which integrates forecasting model into matrix factorization model

to take into account the sequential/temporal effects in user modeling. Experimental results on several

data sets which are extracted from both e-commerce/entertainment and e-learning areas show that

the proposed approach performs nicely, thus, this approach could be promising for user modeling

area.

The researchers continue to improve the model such as including multi-relational concepts to

the model as well as to compare the proposed approach with other advanced methods such as

TimeSVD++ [11].
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[20] N. Thai-Nghe, L. Drumond, T. Horváth, , A. Nanopoulos, and L. Schmidt-Thieme, “Matrix
and tensor factorization for predicting student performance,” in Proceedings of the 3rd Interna-
tional Conference on Computer Supported Education (CSEDU 2011). Best Student Paper Award,
Noordwijkerhout, the Netherlands, 2011, pp. 69 – 78.
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