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Abstract. The paper introduces an algorithm to design a feedback controller, which guarantees

the tracking of time varying bilinear system outputs for desired values in the presence of input con-

straint. The proposed controller employs the ideas of receding horizon principle and constrained

optimal control. A theorem for the tracking stability of closed loop system is given. An updated law

of weighting matrices in the cost function to keep the input constraint condition is also proposed.

Finally, the tracking behavior of the closed loop system is illustrated through a numerical example.
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1. INTRODUCTION

The problem of output tracking control for nonlinear systems in the presence of constraints is known as

an interesting problem of control theory, which has attracted the attention of many control researchers

for a long time, but still has not been fully investigated so far. This control problem is attractive

since the obtained tracking controller can take into account the limitation of actuators through

the input and state constraints, restrict the overshoot of system states as well, and hence prevent

damages to system components. Unfortunately, this problem has still not been fully studied due to

very large classes of nonlinear systems. Therefore, to effectively solve the problem, a certain class of

nonlinear systems as good representative of others should be determined. One of such class is bilinear

systems since the bilinear model is the most natural form to express the nonlinearities of industrial

processes [1].

There are recently many researches on the control of bilinear systems, however most of them focus

only on either the unconstrained tracking performance [2, 3], or the constrained stability properties

[4–8]. Moreover, to stabilize nonlinear systems with constraints, it is usually recommended to employ

MPC techniques in which an appropriate penalty function is added to the cost function. Nevertheless,

the question of how to obtain this penalty function for nonlinear MPC is still open.

This paper presents an algorithm to design state feedback tracking controllers for time-varying

bilinear systems. This algorithm is constructed based on the conventional receding horizon control

(RHC) technique which guarantees the asymptotic tracking of the obtained closed loop system output

for a desired value in the presence of input constraints. Especially, the proposed algorithm does not

need any additional penalty function in the cost function as introduced in [7, 8].

The organization of the paper is as follows. The main results are presented in Section 2 of which a

numerical example is also given to illustrate the proposed algorithm. Then some concluding remarks
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are given in Section 3.

2. MAIN RESULTS

In this section, the main results on the output tracking controller design for time-varying bilinear

systems (also called as controlled subject) modeled by discrete-time equations are presented. The

mathematical model of the controlled subject is as follows:{
xk+1 = A(xk, k)xk +B(xk, k)uk
y
k

= C(xk, k)xk +D(xk, k)uk
(1)

where
xk = (xk[1], xk[2], . . . , xk[n])T ∈ Rn

uk = (uk[1], uk[2], . . . , uk[m])T ∈ Rm

y
k

= (yk[1], yk[2], . . . , yk[m])T ∈ Rm

denote the vectors of system states, inputs and outputs at the time tk = kT , respectively and

A(xk, k) ∈ Rn×n, B(xk, k) ∈ Rn×m, C(xk, k) ∈ Rm×n, D(xk, k) ∈ Rm×m

are matrices depending on both system states and time.

The tracking control problem for the bilinear system (1) is related to the synthesis of a state

feedback controller, which guarantees:

- the asymptotic convergence of output signal y
k
→ y

ref
, where y

ref
is a desired reference, and

- the satisfactory of the required input constraints

uk ∈ U (2)

where U is a given subset of control space.

To resolve this tracking control problem, one of the suitable methods is to employ RHC technique.

2.1. Motivation from conventional receding horizon control

Recently, RHC which is also referred to as model predictive control (MPC) or moving horizon op-

timal control (MHOC) is widely admitted to be an effective methodology for solving multivariable

constrained control problems. Hitherto, more than 3000 successful applications of RHC have been

founded in industry [5].

The main idea of RHC is to minimize a performance index in the form of a certain objective

function in the future that would be subjected to constraints on the control signals. Figure 1a)

depicts the basic structure of an RHC controller with three main sub-system blocks. The purposes

of those three blocks are as follows:

- The first block is predictive model. This block takes the measured system state vector xk from

the controlled subject (plant) at the current time tk = kT and gives N values of predicted

states xk+i, i = 1, 2, . . . , N − 1 and predicted outputs y
k+i

, i = 0, 1, . . . , N − 1 in current

prediction horizon [k,N).
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Usually, the predictive model is used with the same discrete-time equations (1) of plant. There-

fore, the predictive output vector y
k+i

is obtained from this predictive model which in general

is expressed as a function of future inputs uk+i, i = 0, 1, . . . , N − 1 as follows:

xk+i =p
i
(U), i = 1, 2, . . . , N − 1

y
k+i

=q
i
(U), i = 0, 1, . . . , N − 1

(3)

where the vector U is defined as:

U = col
(
uk, uk+1, . . . , uk+N−1

)
∈ RmN (4)

- The second block is any chosen objective function J according to the desired performance of

closed loop system. The following objective functions could be employed:

J =
N−1∑
i=0

(
xTk+iQxk+i + uTk+iRuk+i

)
(5)

for the stability of closed loop system, or

J =
N−1∑
i=0

(
eTk+iQek+i + uTk+iRuk+i

)
(6)

for the output tracking to a desired output vector , where ek+i = y
ref
− y

k+i
, are tracking

errors in the current prediction horizon [k,N) and are any symmetric positive definite matrices.

Together with (3) it is obviously that the objective function J(U) at current time tk = kT is

a function which only depends on the vector U .

- The last block is an optimization algorithm applied to solve optimization problem:

U∗ = arg min
U∈UN

J(U) (7)

subjected to the input constraint UN ⊂ RmN , where J(U) is obtained from the second block.

Generally, (7) is a nonlinear optimization problem of which the objective function J(U) is not

a quadratic function of U . Hence, sequential quadratic programming (SQP) is one of the most

used algorithm in the implementation of (7), which is known as a successful method to solve a

constrained nonlinear optimization problem off-line [9].

Finally, only the first element u∗k of resulting optimal sequence U∗ = col
(
u∗k, u

∗
k+1, . . . , u

∗
k+N−1

)
is sent to the plant as the control signal during the time interval kT ≤ t < (k + 1)T whereas the

others are discarded. At the next time instant tk+1 = (k + 1)T , k = 0, 1, . . . all calculating steps

above are repeated to find the new control signal u∗k+1 with the prediction horizon moved forward as

described in Figure 1b). In that way, RHC is a type of quasi-optimal control, which has the feature

that constraints can be implemented in the controller. This helps the system operating efficiently

and preventing equipments from damages.

On the other hand, conventional RHC has three main disadvantages:
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1. While RHC requires the iterative off-line solution of nonlinear optimization problem (7) on a

finite prediction horizon, which is generally not convex, the obtained U∗ may not be the global

solution. And if U∗ is only a local solution, the control performance would be bad.

2. The finiteness of the prediction horizon impacts also badly on the performance of closed loop

system. If the prediction horizon is not chosen large enough, the closed loop system would be

unstable, especially for nonlinear systems.

3. Furthermore, conventional RHC controllers usually need a huge computational power due to

the use of a nonlinear optimization algorithm such as SQP to solve the nonlinear optimization

problem (7).
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Fig.1 Basic structure of an RHC controller 
 
So ideally, instead of using finite prediction horizon [ ),k N  and applying SQP or other similar 

nonlinear optimization algorithms to obtain an off-line solution ku  of (7), an infinite horizon [ ],k ∞  

would be utilized and an optimal control method such as the variation technique or the dynamic 
programming would be implemented to determine an on-line solution ( )k ku x  associated with a time-

invariant cost function over the infinite horizon [ ],k ∞ : 

 ( )
0

minT T
k i k i k i k i

i

J x Qx u Ru
∞

+ + + +
=

= + →∑  (8) 

This satisfies the required constraint k iu U+ ∈ . 

However, a solution of such constrained optimal problem (8) with constant weighting matrices 
,Q R  cannot be analytically found in general. Thus, this paper presents an approach to overcome the 

mentioned problems for time-varying bilinear system (1). This approach is based on the repeating 
solution of optimal control problem with an infinite time-varying cost function: 

 ( )
0

minT T
k k kk i k i k i k i
i

J x Q x u R u
∞

+ + + +
=

= + →∑  (9) 

which is moved forward together with the prediction horizon [ ],k ∞ , where their time-dependent 

weighting matrices ,k kQ R  are updated to correspond with the required constraint of  ku  given in (2) 

after each moving step. 
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dynamic programming technique, can only be applied for the stabilizing problem, not for the tracking 

ref
y  

k ie +
*
ku  k

y  

kx  
k i
y +  

tk  1k + 1N − N  

a) b) 

current prediction horizon 

next prediction horizon Controlled 
subject 

Objective 
function 

Predictive 
model 

Optimization 
algorithm 

Figure 1: Basic structure of an RHC controller

So ideally, instead of using finite prediction horizon [k,N) and applying SQP or other similar

nonlinear optimization algorithms to obtain an off-line solution uk of (7), an infinite horizon [k,∞]
would be utilized and an optimal control method such as the variation technique or the dynamic

programming would be implemented to determine an on-line solution uk(xk) associated with a time-

invariant cost function over the infinite horizon :

J =
∞∑
i=0

(
xTk+iQxk+i + uTk+iRuk+i

)
→ min (8)

This satisfies the required constraint uk+i ∈ U . However, a solution of such constrained optimal

problem (8) with constant weighting matrices Q,R cannot be analytically found in general. Thus,

this paper presents an approach to overcome the mentioned problems for time-varying bilinear system

(1). This approach is based on the repeating solution of optimal control problem with an infinite

time-varying cost function:

Jk =

∞∑
i=0

(
xTk+iQkxk+i + uTk+iRkuk+i

)
→ min (9)

which is moved forward together with the prediction horizon [k,∞], where their time-dependent

weighting matrices Qk, Rk are updated to correspond with the required constraint of uk given in (2)

after each moving step.
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2.2. Receding state feedback control with infinite horizon

Since the on-line optimal state feedback controller uk(xk), which is directly obtained via the dynamic

programming technique, can only be applied for the stabilizing problem, not for the tracking problem,

the aforementioned constrained tracking control problem for the time-varying bilinear system (1)

should be converted to a stabilizing control problem. While the vector xk of system states at the

current time instant tk = kT is assumed to be measurable, the given time-varying bilinear system

(1) can be considered as a linear time-varying system during the time interval kT ≤ t < (k + 1)T ,

as follows: {
xk+1 = Akxk + Bkuk
y
k

= Ckxk +Dkuk
(10)

where Ak = A(xk, k),Bk = B(xk, k), Ck = C(xk, k),Dk = D(xk, k) are all determined matrices

at the current time tk. Moreover, if the state vector and control signals of (10) at the tracking steady

state are denoted by xs, us, then these values must satisfy:{
xs = Akxs + Bkus
y
ref

= Ckxs +Dkus
(11)

⇔
(
Ak − In Bk
Ck Dk

)(
xs
us

)
=

(
0
y
ref

)
where In is the n× n identity matrix. Therefore, if the following assumption is true:

Assumption 1. The matrix:

Gk =

(
Ak − In Bk
Ck Dk

)
∈ R(n+m)×(n+m) (12)

is invertible for all k.

then both steady state vectors xs, us of the system (10) are uniquely obtained from:(
xs
us

)
= G−1k

(
0−
y
ref

)
=

(
Ak − In Bk
Ck Dk

)−1( 0−
y
ref

)
(13)

Now, define the deviated values from steady state as follows:

δk =xk − xs
ρ
k

=uk − us
(14)

then the original tracking control problem of system (10) can be appropriately converted to the

stabilizing problem of the following system, which is obtained by subtracting (10) and (11):

δk+1 = Akδk + Bkρk (15)

in the presence of input constraint:

ρ
k
∈ ∆ with ∆ =

{
ρ
−
∈ Rm

∣∣∣∣ ρ− + us ∈ U
}

(16)
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This now can be seen as the nominal system of (10). Subsequently, to optimally stabilize the nominal

system (15) over the infinite prediction horizon [k,∞], the following cost functions is used:

Jk =

∞∑
i=k

(
δTi Qkδi + ρT

i
Rkρi

)
→ min (17)

Where two symmetric positive definite weighting matrices Qk, Rk will be updated by each moving

step of prediction horizon along time axis while taking into account the input constraint (16). In

the unconstrained scenario and based on dynamical programming, the on-line solution δk(ρ
k
) of

formulated optimal control problem (17) for nominal system (15) is already given in [9] as follows:

ρ
k

= −
(
Rk + BTk LkBk

)−1BTk LkAkδk (18)

where the matrix Lk is obtained from following discrete Riccati equation:

Lk = Qk +AT
kLkAk −AT

kLkBk
(
Rk + BTk LkBk

)−1BTk LkAk (19)

It can be easily seen from equations (18) and (19), that the module of ρ
k

depends on two weighting

matrices Qk = QT
k > 0 and Rk = RT

k > 0, which are arbitrarily selected. More precisely, the

bigger rate ‖Rk‖/‖Qk‖ is, the smaller ‖ρ
k
‖ will be. Hence, in constrained circumstance, Qk, Rk

can also be appropriately chosen, such is together with the forward movement of infinite prediction

horizon [k,∞], k = 0, 1, . . . along the time axis, then, the obtained ρ
k

will satisfy the required input

constraint given in (16).

However, some conditions of the stabilizing problem may arise in application, where there is

no solution ρ
k

to the corresponding optimal control problem (17) that satisfies the constraint (16).

Thereby, for the feasibility of original stabilizing control problem, the following assumption is needed.

Assumption 2. At each sampling time kT, k = 0, 1, . . . there always exist two symmetric
positive definite matrices Qk, Rk such that ρ

k
is obtained from (18) and (19) satisfies (16).

Finally, the constrained tracking control signal uk for the original time-varying bilinear system

(1) can be now recovered from the obtained optimal solution ρ
k

associated with equations (18), (19)

as follows:

uk = ρ
k

+ us

The following algorithm summarizes all iterative calculating steps above to determine the expected

tracking control signal uk for time-varying bilinear system (1), which satisfies the constraint (2).

Algorithm 1. Constrained tracking control of time-varying bilinear systems

1. Select any two symmetric positive definite matrices Q and R. Specify two updated factors
0 < η < 1, 1 < µ. Set k = 0.

2. Measure the current state vector xk from system (1). Calculate Ak = A(xk, k), Bk =
B(xk, k), Ck = C(xk, k), Dk = D(xk, k) and determine xs, us of (1) according to (13).

3. Calculate ρ as follows: ρ = −
(
R+ BTk LBk

)−1BTk LAk (xk − xs) where the matrix is obtained

from: L = Q+AT
kLAk −AT

kLBk
(
R+ BTk LBk

)−1BTk LAk

4. If ρ /∈ ∆ with ∆ is given in (16), then set R := µR and go back to the step 3. Otherwise go
to the next step.
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5. Send ρ + us to the system (1) during the time interval kT 6 t < (k + 1)T as the control
signal uk. Then set R := ηR, k := k + 1 and go back to the step 2.

Figure 2 depicts the obtained closed loop system using proposed algorithm as an infinite horizon

state feedback RHC controller.
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Figure 2: Output tracking RHC controller

2.3. Tracking stability of the closed loop system

To verify the output tracking behavior of closed loop system depicted in Figure 2 in the sense, that

all system signals y
k
, xk, uk asymptotically converge on desired values y

ref
, xs, us respectively, two

aforementioned assumptions are needed. It can be seen that these assumptions make the desired

performance:

y
k
→ y

ref
, xk → xs, uk → us (20)

satisfied if and only if the nominal system (15) is asymptotically stable. And now, this expected

asymptotic stability of the nominal system (15) is obtained from the following theorem.

Theorem 1. The time-varying closed loop system involving the nominal system (15) and
the state feedback optimal controller (18) is asymptotically stable.

Proof. Denote the vector of control signals of the closed loop system by (Figure 3a):

ρ(t) = ρ
k

forkT ≤ t < (k + 1)T (21)

then the vector of system states can be described during the time interval by:

δk+1 = Akδk + Bkρk =
[
Ak − Bk

(
Rk + BTk LkBk

)−1BTk LkAk

]
δk = Fkδk

where
Fk = Ak − Bk

(
Rk + BTk LkBk

)−1BTk LkAk (22)

Hence it follows that the state vector of the closed loop system in the whole control time
t ≥ 0 is:

δk =Fk−1δk−1 = Fk−1Fk−2δk−2 = (Fk−1Fk−2 · · ·Fk−i) δk−i
...

=
k∏

i=1

Fk−iδ0 = Fkδ0
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where Fk is the matrix defined as:

Fk =
k∏

i=1

Fk−i (23)

Furthermore, due to the positive definiteness of Qk, Rk it is obtained:

J∗k = min
∞∑
i=k

(
δTi Qkδi + ρT

i
Rkρi

)
<∞

⇒
(
δTi Qkδi + ρT

i
Rkρi

)
→ 0

⇒ δi → 0 and ρ
i
→ 0

Therefore, all matrices Fk, k = 1, 2, . . . given in (22) are Schur matrices [9]. As a result,
Fk defined in (23) is also a Schur matrix and satisfies: lim

k→∞
Fk = Θ From this point and

together with equation (18), it can be easily point out that (Figure 3b): lim
k→∞

ρ
k

= 0 and this

is equivalent to the asymptotic stability subject to the input constraint (16) of the nominal
system (15), which is controlled by ρ

−
(t) given in (21). Hence, the tracking stability of closed

loop system depicted in Figure 2 (in the sense of (20)) subject to input constraint (2) can
be deduced from Assumptions 1 and 2.
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2.4. Numerical example

Hereafter, the proposed algorithm will be illustrated through the tracking control problem for follow-

ing second order time-varying bilinear system: xk+1 =

(
1 x2k[1]
1 0.5

)
xk +

(
1
1

)
uk

yk = (1,1)xk

with the input constraint |uk| 6 1, where xk = (xk[1] , xk[2])T denotes the state vector. This

system has the matrix Gk defined in (12):

Gk =

(
Ak − In Bk
Ck Dk

)
=

 0 x2k[1] 1
1 −0.5 1
1 1 0

 ,
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which is invertible for all k, because of det(Gk) = x2k[1] + 1.5 6= 0 for all xk. Hence, Assumption 1

is satisfied. Furthermore, with desired value yref , the system state vector xs and the control input

us at the steady state are obtained according to equation (13) as follows:

(
xs
us

)
=

 0 x2k[1] 1
1 −0.5 1
1 1 0

−1 0
0
yref

 =
yref

x2k[1] + 1.5

 x2k[1] + 0.5
1

x2k[1]


⇒0 ≤ |us| ≤ |yref |

Therefore, in the case of |yref | < 1 the control problem could be feasible, or Assumption 2 could be

satisfied.

Figure 4a) exhibits the control signal uk and Figure 4b) displays the real output signal yk of

closed loop system, which is obtained by simulation with: Q = 10I2, R = 1, µ = 2 and yref = 0.5
for two separated updated cases η1 = 1/4 (dashed line) and η2 = 1/3 (dot line). They show that the

output yk for both cases converges asymptotically on the desired value yref , while uk still belongs

to the subset |uk| ≤ 1 of control space.
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    
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 =

 

with the input constraint 1ku ≤ , where ( )[1] , [2]
T

k kkx x x=  denotes the state vector. 

This system has the matrix kG  defined in (12): 
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C D
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which is invertible for all k , because of  2det( ) [1] 1.5 0k kG x= + ≠  for all kx . Hence, Assumption 1 is 

satisfied. Furthermore, with desired value refy , the system state vector sx  and the control input su  at 

the steady state are obtained according to equation (13) as follows: 
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  ⇒   0 s refu y≤ ≤  

Therefore, in the case of 1refy <  the control problem could be feasible, or Assumption 2 could be 

satisfied. 

Fig.4a) exhibits the control signal ku  and Fig.4b) displays the real output signal ky  of closed loop 

system, which is obtained by simulation with: 

 210 ,  1,  2Q I R µ= = =  and 0.5refy =  

for two separated updated cases 1 1 4η =  (dashed line) and 2 1 3η =  (dot line). They show that the 

output ky  for both cases converges asymptotically on the desired value refy , while ku  still belongs to 

the subset 1ku ≤  of control space. 

 
 
 
 
 
 
 
 
 

a) b) 

Figure 4: Simulation results

3. CONCLUSIONS

The output tracking control problem of time-varying bilinear systems subject to input constraints is

under study in this paper. A framework is proposed to design the state feedback controller, which

guarantees both the output tracking of the closed loop system subject to given input constraints and

the asymptotic stability of corresponding nominal system. The main idea of the proposed design

framework is based on RHC strategy over the infinite prediction horizon and an updated law of

weighting matrices Qk, Rk in the cost function moving forward together with the infinite prediction

horizon [k,∞], k = 0, 1, . . . along the time axis. The key for this parameter updating is the fact

that the bigger rate ‖Rk‖/‖Qk‖ is, the smaller variation values ‖ρ
k
‖ of the nominal system input

will be. A numerical example is presented to illustrate the applicability of the proposed constrained

output tracking controller into practice.

Finally, whereas the proposed framework is primary constructed for discrete time system (1), it
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can be also applied to control continuous time bilinear systems described by:{
ẋ = A(x, t)x+B(x, t)u

y = C(x, t)x+D(x, t)u
(24)

if there are all matrices in it continuous, because by using the following approximation for the differ-

entiation:

ẋ ≈
xk+1 − xk

T

in a sufficiently small sampling time, the continuous time system (24) will be converted suitably to:{
xk+1 = [I + TA(xk, k)]xk + TB(xk, k)uk

y
k

= C(xk, k)xk +D(xk, k)uk

This is obviously equivalent to (1).
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