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Abstract. Wind power plants can be realized with different generator types using different control

principles. The choice of the generator regardless of control method, potentially destabilizes the grid,

and can even lead to grid collapse. For independent grid (e.g. on islands) this risk is especially great.

The report aimed at giving the reader a general overview of the control methods, and the developers

a better understanding of each generator type to get the right choice for their wind power project.
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Abbreviations

DFIG Doubly-fed Induction Generator IG Induction Generator

DPC Direct Power Control LLDG Low-Load Diesel Generator

DTC Direct Torque Control MPPT Maximum Power Point Tracking

ESS Energy Storage System PMG Permanentmagnet Excited Generator

FC Frontend Converter SCADA Supervisory Control and Data Acquisition

GC Generator-side Converter WPP Wind Power Plant

GVOC Grid Voltage Oriented Control WT Wind Turbine

1. INTRODUCTION

Currently the exploitation of wind energy receives increasing attention from the society in Vietnam.

Many projects have been carried out, in parallel with both (more or less) successful and not yet

successful results. The weaknesses that make exploitation of such systems more difficult are caused

by insufficient understanding of the operating principles, especially the principle of control. Even the

projects with (more or less) success also contain potential long-term risks to the national grid. On

the one hand the paper presents an overview of the control methods in WPP system, on the other

hand it points out the mistakes susceptible in WPP projects in Vietnam.

We know, energy can be extracted from the wind (Figure 1, [1]) by the following formula:

P =
1

2
ρw Av

3
wC (λ, β) , (1)

where P : power; ρw: density of air; A: swept areas of blades; vw: wind speed; λ: ratio of the rotational

speed of the turbine to wind speed; β: angle of rotor blades
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between the turbines of different manufacturers. However, all types of turbines always have one thing 

in common, that is, the coefficient � �,C � �  can always be reflected by a class of power curves, which 

are identical in principle and have the form as in Figure 2. These characteristic curves are kept 

confidential by manufacturers and stored in a look-up table to control turbines. 

Characteristic curves in Figure 2 show: Each wind speed curve has a point with maximum capacity 

to exploit P. Therefore, if the consumer (the grid) is able to accept unlimited P, the control system is 

responsible for changing the turbine rotational speed (the working point) to reach and to maintain 

maximum power point. However, if the turbine is only permitted to generate a capacity of P = const, 

despite the fluctuation of the wind. Then, the rotational speed of the turbine would have to change 

constantly and the control becomes more difficult due to large inertia of the rotor blades [1]. 

Figure 1: Exploiting the power from wind 

turbines 

Figure 2: Characteristic curves for power extraction from wind

2 CONTROL HIERARCHY 

2.1 Operating modes of wind turbines 

We can distinguish two modes of operation, and therefrom the two control modes of wind power 

generation systems. 

2.1.1 Operating mode with the national grid 

This operating mode is characterized as follows: 
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In formula (1), C (λ, β) is the coefficient reflecting the characteristics (the ability to exploit

energy) of wind turbines. This coefficient is also the secret of the manufacturer, making up the

difference between the turbines of different manufacturers. However, all types of turbines always have

one thing in common, that is, the coefficient C (λ, β) can always be reflected by a class of power

curves, which are identical in principle and have the form as in Figure 2. These characteristic curves

are kept confidential by manufacturers and stored in a look-up table to control turbines.

Characteristic curves in Figure 2 show: Each wind speed curve has a point with maximum capacity

to exploit P . Therefore, if the consumer (the grid) is able to accept unlimited P , the control system

is responsible for changing the turbine rotational speed (the working point) to reach and to maintain

maximum power point. However, if the turbine is only permitted to generate a capacity of P = const,

despite the fluctuation of the wind. Then, the rotational speed of the turbine would have to change

constantly and the control becomes more difficult due to large inertia of the rotor blades [1].

2. CONTROL HIERARCHY

2.1. Operating modes of wind turbines

We can distinguish two modes of operation, and therefrom the two control modes of wind power

generation systems.

2.1.1. Operating mode with the national grid

This operating mode is characterized as follows:

• The national grid can be seen as hard grid with extremely large P , with stable voltage and

frequency.
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• The active power is controlled following the curve with optimal power (Figure 2), to extract

maximum power from the wind.

• The power factor cosϕ is often fixed by value nearly 1. That means the WPP will neither

generate nor consume a reactive power Q.

2.1.2. Independent operating mode without the national grid

Specific examples for this operating mode are WPPs on islands with following characteristics:

• Local grids are built by a group of diesel generators with small active power P . These are the

so called wind based hybrid power systems.
• Local grids are soft grid whose voltage and frequency are unstable.

• The load is divided between the group of diesel generators and the WPP. The WPP may

generate only a fixed active power P = const (Figure 2) specified by the rate of distribution.

• The power factor cosϕ of WTs should be set flexibly in the appropriate value to ensure safe

and efficient exploitation of the diesel generators.

2.2. Control hierarchy of a WPP

P

Q

2.1.2 Independent operating mode without the national grid 

P
wind based hybrid power systems

P

2.2 Control hierarchy of a WPP 

Regardless of the used type of generator, the control system of a WPP is always structured by a 3-

level hierarchy as in Figure 3. 

Figure 3: Control hierarchy of wind power plants 

Figure 3: Control hierarchy of wind power plants

Regardless of the used type of generator, the con-

trol system of a WPP is always structured by a

3-level hierarchy as in Figure 3.

2.2.1. Control level I

This control level has the task of a SCADA
system serving the goal of WPP integration

with the grid (national, local). Dependent on the

operation mode this level decides the set points

for P and Q. For large-scale systems (wind
park ), the level plays the role of the supervi-

sory control equipped with the ability to com-

municate between members of wind park and the

dispatching center. With the characteristics of a

SCADA system, on this level we can specify our

principles of energy management.

2.2.2. Control level II

This level realizes the task of turbine control with a feedback closed loop for the turbine rotor speed

ω. Based on the measured wind speed vwind and on the pre-selected operating mode, the system uses

a look-up table to find the set points for the rotor speed ω which can be controlled by varying the

blade pitch angle β. There are two things to note:

• In operating mode with extraction of maximum wind power the system uses a MPPT algorithm

to reach the rotor speed ω on the top of the wind characteristics (Figure 2) dependently on

the measured wind speed vwind. MPPT algorithm is always a secret of turbine manufacturers,

and users do not have the opportunity to intervene at this stage.
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• Rotor and rotor system weigh many tons, resulting in a huge moment of inertia which limits the

dynamic control of the blade pitch angle β in both operating modes P = const or P = max
(Figure 2).

2.2.3. Control level III

This control level contains the real-time algorithms of the generator control structure to control

the flows of active power P (electric torque mG) and reactive power Q (power factor cosϕ), fulfilling

the demands of the level I. To control P and Q, the system uses a back-to-back converter with two

parts GC and FC. The implemented control methods depend on:

• the type of the generator, and

• the operating mode (connected to the national or local grid).

It can be confirmed that the level III is responsible for the control system of WPP (characterized

by rapid dynamics and small inertia, small sampling periods and small modulation periods), which

is connected with grids (characterized by slow dynamics and large inertia), is really a challenge

for investors. The incomplete understanding of this level is the potential risks mentioned from the

beginning of the paper.

3. CONTROL PROBLEMS OF THE LEVEL III

3.1. Overview about control of generators

Figure 4 gives an overview of the control problems for generator types IG, DFIG or PMG ( [2–4])

used in WPP. It can be seen:

• In the case DFIG : Because the back-to-back converter is located on the side of rotor circuit

(not between the stator and grid like the cases IG and PMG), the power electronic converter

must only be sized with nearly 1/3 power of the generator. The cost of systems using DFIGs

is always lower than the cost of systems with PMGs.

• In the cases IM, PMG : Because the back-to-back converter is located between the stator and

grid, the system cost is higher than the cost of DFIG systems, but easier to control.

We can divide the generator control problems into 2 groups: FC control and GC control with a

lot of issues that need to be addressed, but not possible to be introduced in the limited framework

of this paper. Depending on the type of generator DFIG or IG/PMG, the group of GC control can

also be split into different solutions.

3.1.1. FC control

The control problems of this group are basically the same in all three cases IG, DFIG and PMG. It

can be summarized as follows ( [3, 7]):

• The main method is the GVOC. Some works have tested the method DPC inspired by the

DTC of electric three-phase AC drives.

• The control must ensure the decoupling between P and Q, as well as the flexible setting of

cosϕ. It only needs a linear control structure [7].
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In the cases IM, PMG

3.1.1 FC control 

P Q

• The control must satisfy the regulations of the grid harmonics. In some cases the FC control 

can be extended by an active filter function. 

Figure 4: Overview of the control problems for generator types DFIG, IG and PMG

3.1.2 GC control in the case DFIG 

Because the stator of DFIG is directly connected to the grid, therefore this is the case with most 

challenge regarding to the generator control. 

• The main method is the GVOC. 

P Q mG

Figure 4: Overview of the control problems for generator types DFIG, IG and PMG

• The control must satisfy the regulations of the grid harmonics. In some cases the FC control

can be extended by an active filter function.

3.1.2. GC control in the case DFIG

Because the stator of DFIG is directly connected to the grid, therefore this is the case with most

challenge regarding to the generator control.

• The main method is the GVOC.

• The control must ensure the decoupling between P and Q (decoupling between mG and cosϕ),

as well as the flexible setting of cosϕ.

• The control structure can be either linear or nonlinear.

• Crowbar control.

3.1.3. GC control in the cases IG, PMG

In practice, the generator type IG is no longer used. Currently we can not find on the market this

generator type used by turbine manufacturers, but only PMG. For PMG, there are 2 possible solutions

for GC as follows:

• GC is a simple non-controlled rectifier : In this case following characteristics are to note.

+ The amount of the input energy on the primary side (wind energy) is decided only by

the turbine control system (control of rotor speed ω). The input energy must be totally

transferred to the grid.
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+ A DC-DC boost converter must be used on the DC link to increase the magnitude of the

DC voltage to the level of the FC input.

• GC is a controlled rectifier :

+ In combination with the turbine control, the GC can effectively control the energy flow

from the primary side. The often used principle is the pole flux oriented control.

+ Decoupling control between the electric torque mG and the pole flux ψp.
+ The control structure can be either linear or nonlinear.

3.1.4. Related control problems for both groups FC and GC

Beside separate control problems only for GC or FC, there are a lot of control task related to the

complete system WPP:

• Fulfilling the grid code (more in section 4): While symmetrical or nonsymmetrical voltage dips,

the WTs should be able to stay on grid and to handle without disconnection.

• The standard output voltage of WTs is 690V AC. The wind turbines must be equipped with

690V/22kV (or 690V/110kV) transformer to synchronize with the grid. This leads to problems

to be solved:

– The neutral-point voltage of the primary side varies. A neutral-point voltage control

must be implemented to ensure that the DC current is zero.

– Common-mode voltage stress : The switching action of the rectifier and inverter nor-

mally generates common-mode voltages which are essentially zero-sequence voltages su-

perimposed with switching noise. This voltage is very harmful for the winding insulation,

and causes ignition through the parasitic capacitance Cp which reduces the life of bear-

ings.

• Equipments supporting to stabilize the grid voltage in case of independent operating mode.

The equipments can be either energy storage systems or low-load diesel generators.

– The ESSs with the ability to charge or discharge energy very quickly can help to stabilize

the grid voltage while wind fluctuation.

– The main task of LLDGs is the generation of reactive power Q, and therefore the gen-
eration of the grid for WTs with DFIG. This equipment is not able to compensate the

wind fluctuation.

3.2. Main difference between the DFIG and PMG control

To illustrate the difference between 2 generator types, we should begin with DFIG in Figure 5a.

Because the stator of DFIG is directly connected with the grid, the turbine rotor speed ω as well

as the rotational speed of the DFIG is bounded in the range ±33% compared with the synchronous

speed. A brief statement of the main points of DFIG control can be given as follows [7]:

• Range of oversynchronous speed : Figure 5a illustrates clearly that in this range the energy,

flowing through the rotor winding, is generated by the wind. That means, the reactive power

Q is generated by the wind.
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Range of oversynchronous speed

Synchronous speed

Range of subsynchronous speed Q

grid frequency, and this fact allows the power extraction from wind in a relatively wide range. 

• WPP using PMGs is the only type of system, which can operate independently without grid 

(national and local). 

a)                                                                                 b) 

Figure 5: Regarding to the rotational speed: a) the control of DFIG is dependent on range of oversynchronous or 

Figure 5: Regarding to the rotational speed: a) the control of DFIG is dependent on range of
oversynchronous or subsynchronous speed, and b) the control of PMG is nearly unlimited

• Synchronous speed : At the point of synchronous speed, corresponding to the stator frequency

50Hz, the rotor frequency is zero. A DC current flows in the rotor circuit. Special attention for

this point in control concept is necessary, to avoid damages of the rotor.

• Range of subsynchronous speed : In this range Q is supplied by the grid. This is the main

disadvantage, which limits the use of DFIGs for WPPs on islands.

In contrast to DFIG, Figure 5b shows that:

• PMGs are excited by permanent magnets and do not consume reactive power Q.

• The stator of PMGs is not directly connected with the grid. The rotor speed is not dependent

on grid frequency, and this fact allows the power extraction from wind in a relatively wide

range.

• WPP using PMGs is the only type of system, which can operate independently without grid

(national and local).

4. CONTROL DURING GRID FAULTS

Previously, in order to protect itself when grid faults occur, the control system may separate WTs out

off the grid. In recent years, the exploitation of wind power has reached the scale of the plant (wind
parks); WPPs separation out off the grid potentially causes local oscillations. These local oscillations

can spread out and lead to the risk of grid collapse.
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To prevent this negative scenario, many countries have made regulations which strictly prohibit

the separation out off the grid in some cases of grid faults. The WTs must have the ability to “ride
through” during grid faults ( [18–22]), and must be able to generate reactive power Q for supporting

the grid stability as well as for avoiding the spread of voltage oscillations.

4.1. The term “grid code”

wind 
parks

ride 
through Q

ride through grid code

increases steadily back to 90% (the allowed low level). In the whole process of grid faults 

3000ms (150 grid cycles), the WPP is not allowed to separate itself out off the grid. The WPP 

must be able so to control that its output voltage exactly follows the grid voltage. During this 

control process the generation of active power P is not necessary. 

Fulfilling the grid code is the required condition for grid connection of WPPs. At begin this issue 

has created new challenges for control design. In recent times this issue has been investigated also at 

the HUST very intensively. 

Figure 6: The ability “ride through” is defined by the term “grid code” ([21]) 

4.2 WPP control with grid tracking 

Figure 6: The ability “ride through” is defined by the term
“grid code” ([21])

The mentioned ability to “ride through”

during grid faults is standardized by

the term “grid code” illustrated in Fig-

ure 6, in which the definition of the

group E.On Netz (Germany) is clearly

explained.

Here in words:

The grid voltage amplitude sud-

denly drops from 100% to 15% of the

nominal level. The level 15% maintains

approximately 500ms (25 grid cycles),

then the grid voltage recovery increases

steadily back to 90% (the allowed low

level). In the whole process of grid faults

3000ms (150 grid cycles), the WPP is

not allowed to separate itself out off

the grid. The WPP must be able so

to control that its output voltage ex-

actly follows the grid voltage. During

this control process the generation of ac-

tive power P is not necessary.

Fulfilling the grid code is the required condition for grid connection of WPPs. At begin this issue

has created new challenges for control design. In recent times this issue has been investigated also at

the HUST very intensively.

4.2. WPP control with grid tracking

In section 3, all control problems in WPPs are listed. The main challenge for manufacturers is to find

a solution for both problems to design the control structure and to fulfill the grid code (section 4.1).

This is particularly difficult for the system using DFIG, and it can be confirmed: Not any commercial

DFIG system on the market can meet this requirement.

To visualize the level of difficult or easy to meet the requirement ”grid code” between the generator

types DFIG and PMG, we only have to take a closer look for Figure 7.

• Because the stator of PMG is not directly connected to the grid, it will be relatively easy

the FC (a DC-AC converter) so to control that its output voltage exactly follows the grid

voltage during grid faults, as required by grid code.

• Because the stator of DFIG is directly connected to the grid, the control efforts from the

rotor side only have indirect effects. In addition, when the grid voltage is suddenly decreased,
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stator of PMG is not directly connected to the grid
(a DC-AC converter) so to control that its output voltage exactly follows the grid voltage 

during grid faults, as required by grid code. 

• Because the stator of DFIG is directly connected to the grid, the control efforts from the rotor 

side only have indirect effects. In addition, when the grid voltage is suddenly decreased, the 

DFIG operation will change into the nonlinear operating mode. These are the two main causes 

of difficulty in case DFIG control to meet the grid code. 

Figure 7: DFIG so to control that WPP fulfills the grid code is much more difficult than PMG control 

5 CONTROL STRUCTURES FOR DFIG 

The preceding sections have highlighted the difficult problems of DFIG control. This section presents 

Figure 7: DFIG so to control that WPP fulfills the grid code is much more difficult than PMG
control

the DFIG operation will change into the nonlinear operating mode. These are the two main

causes of difficulty in case DFIG control to meet the grid code.

5. CONTROL STRUCTURES FOR DFIG

The preceding sections have highlighted the difficult problems of DFIG control. This section presents

the investigation results of recent years to overcome this.

The most implemented principle is the grid voltage oriented control thereby the d-axis (the real

axis) is the axis of the grid voltage vector (Figure 8). Starting from the following machine equations

(2): {
us = Rsis + dψs

dt + jωsψs
ur = Rrir + dψr

dt + jωrψr
(2)

The state space model of DFIG in the grid voltage oriented reference frame (3) will be obtained as

follows [7]:

dx

dt
= Ax + Bsus + Brur (3)
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where:

A =


− 1
σ

(
1
Tr

+ 1−σ
Ts

)
ωr

1−σ
σTs

−1−σ
σ ω

−ωr − 1
σ

(
1
Tr

+ 1−σ
Ts

)
1−σ
σ ω 1−σ

σTs
1
Ts

0 − 1
Ts

ωs
0 1

Ts
−ωs − 1

Ts

 ;

Bs =


− 1−σ
σLm

0

0 − 1−σ
σLm

1
Lm

0

0 1
Lm

 ; Br =


1
σLr

0

0 1
σLr

0 0
0 0


With: state vector xT =

[
ird, irq, ψ

/
sd, ψ

/
sq

]
; stator voltage vector uTs = [usd, usq] as input

vector on stator side; rotor voltage vector uTr = [urd, urq] as input vector on rotor side. The used

symbols in system matrix A, rotor-side input matrix Br and stator-side input matrix Bs mean: Tr,
Ts: time constants of rotor and stator circuit; Lm: mutual inductance; Lr: rotor-side inductance; ω:

mechanical rotor angle speed; ωr, ωs: angle speed of rotor and stator circuit; σ: total leakage factor.

Outgoing from the model (3) the following physical relations (4) can be easily derived, and then

illustrated in Figure 8:

sinϕ =
|ψs|/Lm − irq

|is|
; mG = −3

2
zp
Lm
Ls

ψsqird (4)

The main conclusion following the equation (4) is that the current component ird plays the
role of torque control or active power control and the current irq is the reactive power forming
component. This conclusion means that the most important control loop in the structure is the
inner loop. The variety of the inner current loop extends from linear to nonlinear controller whose

successful designs will be presented in the next sections. The outer loop normally contains two PI-

controller for active power P as well as reactive power Q or power factor cosϕ. Figure 9 shows the

control hardware of WPPs.

5.1. Linear control

Since the two rotor current components ird, irq play the role of P and Q control variables an inner

control loop to impress the rotor current vector is needed. The discrete model of the rotor current

can be derived by iterative integration of the equation (3):

ir (k + 1) = Φ11ir (k) + Φ12ψ
′
s (k) + Hs1us (k) + Hr1ur (k) (5)

or in component form:{
ird (k + 1) = Φ11ird (k) + Φ12irq (k) + Φ14ψ

/
sq (k) + h11susd (k) + h11rurd (k)

irq (k + 1) = −Φ12ird (k) + Φ11irq (k) + Φ13ψ
/
sq (k) + h11rurq (k)

(6)

In equations (5) and (6) the stator flux and the stator voltage might be regarded as disturbances

to be compensated by a feed-forward control on the one side. On the other side, these values are

nearly constant and therefore can be compensated exactly and fast enough by the implicit integral

part of the controller, so that their feed-forward compensation may be omitted.
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Figure 8: Vector diagram of DFIG in grid 

voltage oriented coordinates [7] 

Figure 9: Control hardware for WPP using DFIG [5] 
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The two dimensional current controller (Figure 10) can be design with dead-beat behavior which

will result in fast dynamics and accuracy. The design ensures good decoupling between the components

ird and irq, and therefore between active power P and reactive power Q or power factor cosφ.

However, it must be said, for a less fast (and thus less noise sensitive) behaviour, designs with

finite adjustment times or PI-type designs may be applicable as well.

The linear control structure has been extremely successful and very often implemented in com-

mercial systems. However, since the grid code has been introduced, it should also be recognized

that compliance with this requirement presents problems for the linear approach, because that such

compliance is a nonlinear operation equivalent.

5.2. Nonlinear control

In recent years many nonlinear control approaches ( [11–15]) for DFIG have been investigated. The

results have shown that only two concepts could be proved as applicable for the practice.

5.2.1. Control using exact linearization

The basic idea of the exact linearization ( [16, 17]) can be shortly summarized as follows: If the

nonlinear MIMO system in the form (7):


dx

dt
=f (x) + H (x)u

y =g (x)
(7)
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Figure 10: Generator-side linear control structure of WPP using DFIG ([5], [7]) 

grid code

5.2.1 Control using exact linearization 

exact linearization

d
dt

relative difference orders

Figure 10: Generator-side linear control structure of WPP using DFIG ( [5–7])

belongs to the class of processes with a vector of relative difference orders, the condition for exact

linearization, then the system (7) can be transformed using the coordinate transformation (8):

z =

 z1
...

zn

 = m (x) =



m1
1 (x)

...

m1
r1 (x)

...

mm
1 (x)

...

mm
rm (x)


=



g1 (x)
...

Lr1−1f g1 (x)
...

gm (x)
...

Lrm−1f gm (x)


(8)

into the following linear MIMO system: 
dz

dt
=Az + Bw

y =Cz
(9)

The original input u is then controlled by the coordinate transformation law:

u = a (x) + L−1 (x)w (10)
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The vector a(x) and the matrix L−1(x) in (10) look as follows:

L (x) =

 Lh1L
r1−1
f g1 (x) · · · LhmL

r1−1
f g1 (x)

...
. . .

...

Lh1L
rm−1
f gm (x) · · · LhmL

rm−1
f gm (x)

 ; a (x) = −L−1 (x)

 Lr1f g1 (x)
...

Lrmf gm (x)


(11)

Formula (11) also requires the ability, with respect to the coordinate transformation or to the

exact linearization, to invert the matrix L(x). In equations (8) and (11), the term:

Lfg (x) =
∂g (x)

∂x
f (x) (12)

notifies the Lie derivation of the function g(x) along the trajectory f (x). Following the equation (9)

the process is now linear in the new state space z so that only linear controller must be designed.

Besides the exact linearization, the input-output decoupling (decoupling between both axes dq)

relations are totally guaranteed. The so called concept with direct decoupling is dynamically

effective for the complete state space.

Starting from equation (3) it can be easily recognized that also DFIG can be exactly linearized.

Using the coordinate transformation (8), the new generator-side control scheme can be derived as

in the Figure 11. The investigation results from this control approach show that the new direct

decoupling concept clearly outperforms the linear control in both aspects:

• Smaller oscillation amplitudes of stator and rotor currents occur in the first milliseconds after

the fault instant while the rotor current controllers work in limitation mode. This means prac-

tically, that the system may cope with more serious fault events without triggering hardware

protection functions.

• The system control functionality is regained very fast after the controllers return to linear

operation, resulting in short recovery time from disturbances and continuation of defined control

behaviour.

5.2.2. Flatness-based control

The concept of flat systems was introduced by Fliess, Lvine, Martin and Rouchon in the years 1992-

1999 ( [8–10]). The application of the idea of flat systems can be re-iterated shortly as follows.

Given is the following nonlinear system:

dx

dt
= f (x,u) (13)

with dimx = n, dimu = m < n and rank (∂f/∂u) = m. The system (13) is differentially flat,

or shortly flat, if the two following conditions are fulfilled:

• Condition 1: There exists an output vector y and finite integers l and r such that:

y =

 y1
...

ym

 = F

(
x,u,

du

dt
, ...,

dlu

dtl

)
(14)
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Figure 11: Generator-side control scheme using exact linearization by state coordinate transformation and two 

separate axis controllers to impress current components ([7], [25]) 

5.2.2 Flatness-based control 

d f
dt

n m n f m

Condition l r

l

l

m

y
d dF
dt dty

Condition

rr

r r
d d d dP Q
dt dtdt dt

dP dt f P Q

Figure 11: Generator-side control scheme using exact linearization by state coordinate transformation
and two separate axis controllers to impress current components ( [7, 25])

• Condition 2: Both input vector u and state vector x can be expressed in function of y and

its successive derivatives in finite number:

x = P

(
y,
dy

dt
, ...,

dry

dtr

)
; u = Q

(
y,
dy

dt
, ...,

d(r+1)y

dt(r+1)

)
(15)

with dP/dt = f (P, Q). The output vector y is called a flat output. The 2nd equation in (15) is

also called the “inverse” process model of the system (13) with the output (14). According to (14)

and (15) it can be concluded that to every output trajectory t 7→ y (t) being enough differentiable,

there corresponds a state and input trajectory:

t 7→ (x (t) , u (t)) =

(
P

(
y,
dy

dt
, ...,

dry

dtr

)
; Q

(
y,
dy

dt
, ...,

d(r+1)y

dt(r+1)

))
(16)

that identically satisfies the system equations. Conversely, to every state and input trajectory t 7→
(x (t) , u (t)) being enough differentiable and satisfying the system equations, a trajectory:

t 7→ y (t) = F

(
x,u,

du

dt
, ...,

dlu

dtl

)
(17)

should correspond. In the case that both conditions (14), (15) are fulfilled, and the system (13) and

its output vector (14) are flat, we can figure out a general control structure as in the Figure 12 which

is engineer-friendly and easier to understand as the original nonlinear system.

The operation of the concept in Figure 12 can be summarized as follows:

• If the process satisfies the conditions of the flatness, the inverse model of the process may be

used as a feed forward component of a tracking control concept.
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t t

rr

r r
d d d dt t t P Q
dt dtdt dt

t t t
l

l
d dt t F
dt dt

should correspond. In the case that both conditions (14), (15) are fulfilled, and the system (13) and its 

output vector (14) are flat, we can figure out a general control structure as in the Figure 12 which is 

engineer-friendly and easier to understand as the original nonlinear system. 

Figure 12: The general flatness-based control structure ([7])

The operation of the concept in Figure 12 can be summarized as follows: 

• If the process satisfies the conditions of the flatness, the inverse model of the process may be 

used as a feed forward component of a tracking control concept. 

• The forward component is effective only when the input signal y
*
 is so often differentiable like 

the output signal y of the process. Therewith, the use of a trajectory set for y
*
 is absolutely 

necessary. 

• Thus, the output signal y in the case of the perturbed system to the input signal y
*
 along the 

Figure 12: The general flatness-based control structure ( [7])

Figure 13: Flatness-based control structure for GC in WPPs using DFIG: Each control loop contains beside the 

two feed forward and feedback components also a set point trajectory ([7]) 

5.2.3 Simulation results 

Figure 13: Flatness-based control structure for GC in WPPs using DFIG: Each control loop contains
beside the two feed forward and feedback components also a set point trajectory ( [7])

• The forward component is effective only when the input signal y∗ is so often differentiable like

the output signal y of the process. Therewith, the use of a trajectory set for y∗ is absolutely

necessary.

• Thus, the output signal y in the case of the perturbed system to the input signal y∗ along the

trajectory exactly follows and the steady-state error is eliminated in the new position of rest,

a third component is still needed as feedback. In the case of electrical machines, PI controllers

will be sufficient.

Based on the structure in Figure 12 the detailed flatness-based control structure for DFIGs can

be developed as in the Figure 13.

5.2.3. Simulation results

Some simulation results are now included to demonstrate the superiority of the nonlinear control

strategies over the linear concept. In the simulations, the results for a linear control system according
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to Figure 10 and the nonlinear scheme outlined in Figure 11 are compared for 3 different voltage drops

to 70%, 50% and 25% retained grid voltage (Figure 14). Both control schemes had been implemented

into an otherwise identical converter-generator system of a 2500 kW WPP. For sole comparison of

the control concept, hardware protection and FRT features had been excluded deliberately.

In all 3 cases, it can be stated that prolonged duration of the grid fault and especially in large

voltage drop, the linear scheme threatens to lose the controllability. It is different for nonlinear control.

In the figures on the right side with nonlinear control we can clearly see that after the beginning of

the network fault controllability recovered quickly. The ability of the “ride through” has become in

a nonlinear concept better so that compliance with the rule “grid code” is better guaranteed.

5.2.3 Simulation results 

drops to 70%, 50% and 25% retained grid voltage (Figure 14). Both control schemes had been 

implemented into an otherwise identical converter-generator system of a 2500 kW WPP. For sole 

comparison of the control concept, hardware protection and FRT features had been excluded 

deliberately. 
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Figure 14: Grid voltage drop to (a) 70%, (b) 50% and (c) 25% retaining voltage 

2500 kW converter-generator system: (left) linear control scheme, (right) nonlinear control scheme with exact 

linearization, (top) mechanical rotor peed [rpm], grid voltage [V], electric torque [10 Nm], (bottom) rotor 

current d (torque) [A], rotor current q (flux) [A]

In all 3 cases, it can be stated that prolonged duration of the grid fault and especially in large 

ride through
grid code
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Figure 14: Grid voltage drop to (a) 70%, (b) 50% and (c) 25% retaining voltage 2500 kW converter-
generator system: (left) linear control scheme, (right) nonlinear control scheme with exact lineariza-
tion, (top) mechanical rotor peed [rpm], grid voltage [V], electric torque [10 Nm], (bottom) rotor
current d (torque) [A], rotor current q (flux) [A]

6. CONCLUSION

The paper presents an overview of the control problems in WPPs using different types of generators,

in order to give the readers a basic understanding of the following groups of problems:

• Operating modes and control hierarchy of a wind power plant using IG, DFIG or PMG.

• Control problems of the real-time level or of the generator control.

• Control problems during grid faults and the term of grid code.

• Linear and nonlinear control concepts for WPPs using DFIG.

The section “REFERENCES” introduces to the readers the abundant resource, derived from the

investigation results of the control system of WPPs obtained at Hanoi University of Science and

Technology for more than 15 past years [23–66].

REFERENCES

[1] E. Hau and H. Von Renouard, Wind turbines: fundamentals, technologies, application, eco-
nomics, Springer Heidelberg New York Dordrecht London, 3rd translated edition, 2013.

[2] H. Polinder, D.J. Bang, H. Li and Z. Chen, “Concept Report on Generator Topologies, Me-
chanical & Electromagnetic Optimization,” Delft University of Technology, Aalborg University,
2007.

[3] H. Li and Z. Chen, “Overview of different wind generator systems and their comparisons,” IET
Renewable Power Generation, vol. 2, no. 2, pp. 123–138, 2008.



330 NGUYEN PHUNG QUANG

[4] G. Abad, J. López, M.A. Rodríguez, L. Marroyo and G. Iwanski, “Doubly Fed Induction Machine
– Modeling and Control for Wind Energy Generation,” John Wiley and Suns, Inc. Publication,
2011.

[5] N. P. Quang, J.-A. Dittrich and A. Thieme, “Doubly-fed induction machine as generator: control
algorithms with decoupling of torque and power factor,” Electrical Engineering / Archiv für
Elektrotechnik, pp. 325-335., 1997.

[6] N. P Quang, (Máy điện dị bộ nguồn kép dùng làm máy phát trong hệ thống phát điện chạy
sức gió: Các thuật toán điều chỉnh bảo đảm phân ly giữa mômen và hệ số công suất) DFIG as
generator in wind power plants: Decoupling control between electric torque and power factor,
Proc. of the 3rd Vietnam Conf. on Automation (3rd VICA), Hanoi, 1998, pp. 413-437.

[7] N. P. Quang and J.-A. Dittrich, Vector Control of Three-Phase AC Machines – System Devel-
opment in the Practice, Springer - Berlin - Heidelberg, 2008.

[8] M. Flies, J. Levine, P. Martin, and P. Rouchon, “On differentially flat nonlinearsystems,” in
IFAC Symposium on Nonlinear Control System Design, Bordeaux, France, 1992, pp. 408–412.

[9] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “A lie-backlund approach to equivalence and
flatness of nonlinear systems,” Automatic Control, IEEE Transactions on, vol. 44, no. 5, pp.
922–937, 1999.

[10] J. Lévine, Analysis and control of nonlinear systems: A flatness-based approach, Springer Dor-
drecht Heidelberg London New York, 2009.

[11] A. Isidori, Nonlinear Control Systems, 3rd Edition, Springer-Verlag, London, 1995.

[12] A. Isidori, Nonlinear Control Systems II, Springer-Verlag, London, 1999.

[13] M. Krstíc, I. Kanellakopoulos and P. Kokotovíc, Nonlinear and Adaptive Control Design, John
Wiley & Sons, Inc., New York, 1995.

[14] F. Khorrami, P. Krishnamurthy and H. Melkote, Modeling and Adaptive Nonlinear Control of
Electric Motors, Springer Berlin Heidelberg New York, 2003.

[15] R. Ortega, A. Loría, P.J. Nicklasson and H. Sira-Ramírez, Passivity-based Control of Euler-
Lagrange Systems: Mechanical, Electrical and Electromechanical Applications, Springer London
Berlin Heidelberg, 1998.

[16] M. Bodson and J. Chiasson, “Differential-geometric methods for control of electric motors,”
International Journal of Robust and Nonlinear Control, vol. 8, no. 11, pp. 923–954, 1998.

[17] T. Wey, Nichtlineare Regelungssysteme: Ein differentialalgebraischer Ansatz, B.G. Teubner
Stuttgart – Leipzig – Wiesbaden, 2001.

[18] J.-A. Dittrich and A. Stoev, “Grid fault proof doubly-fed induction generator system,” in CD
Proc. of 10th European Conf. on Power Electronics and Applications EPE2003 Toulouse, 2003.

[19] J.-A. Dittrich and A. Stoev, “Comparison of fault ride-through strategies for wind turbines with
dfim generator,” in CD Proc. of 11th European Conf. on Power Electronics and Applications
EPE2005 Dresden, 2005.

[20] EWEA Working Group on Grid Code, “European grid code requirements for wind,” in Brussels,
Requirements - Position Paper, 2008.

[21] F. Santjer and R. Klosse, “New supplementary regulations for grid connection by E. ON Netz
GmbH,” DEWI Magazin, no. 22, pp. 28–34, 2003.



GENERAL OVERVIEW OF CONTROL PROBLEMS IN WIND POWER PLANTS 331

[22] G. Krause, “From turbine to wind farms-technical requirements and spin-off products (chapter
2. wind farms and grid codes),” InTech, Janeza Trdine 9, 51000 Rijeka, Croatia, 2011.

[23] C. X. Tuyển, N. P. Quang, “(Các thuật toán phi tuyến trên cơ sở kỹ thuật Backstepping điều
khiển máy điện dị bộ nguồn kép trong hệ thống phát điện chạy sức gió)Backstepping-based
control algorithms for DFIG in wind power plants),” in Proc. of the 6th Vietnam Conf. on
Automation (6th VICA), Hanoi, 2005, pp. 545–550, 2005.

[24] N. Q. Tuấn, P. L. Chi and N. P. Quang, “Control structure with direct decoupling for DFIG,”
Special issue - Control and Automation, no. 6(2), pp. 28–35, 2005.

[25] N. P. Quang, J.-A. Dittrich, and P. N. Lan, “Doubly-fed induction machine as generator in
wind power plant: Nonlinear control algorithms with direct decoupling,” in CD Proc. of 11th
European Conf. on Power Electronics and Applications EPE2005 Dresden, 11-14 September,
2005.

[26] N. P. Quang, L. A. Tuấn, T. X. Hùng, P. K. Phúc, and P. T. Kiên, “(Hệ thống phát điện sức gió
công suất 20kW hoạt động ở chế độ ốc đảo) 20kW wind power system in grid-isolated operating
mode,” , Journal Automation today, no. 1+2(65+66), pp. 76–79; 83, 2006.
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