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Abstract. This paper introduces an issue in designing a step size update for Least Mean Squared
(LMS) algorithm to remove a transmission power line noise from noisy ElectroEncephaloGraphy
(EEG) signals. We determine a sufficient condition for the convergence of a mentioned step-size
updating for a LMS algorithm. A proposed adaptive filter is shown analytically to converge in the
mean-square error sense. Simulation results illustrate that the performance of a new propose for
step-size varying for the LMS algorithm is very effective.

Tém tat. Dai véi lép bai todn loc nhiéu tir dudng téi dién cho tin hiéu y sinh, bé loc triét tan thich
nghi véi kich thuéc buée thay déi 15 lua chon t6t nhét cho téc do hoi tu, dé én dinh va doé réong
dai triét. Song, véi treong hop cédc tham s6 cia nhiéu khong con thod man cac dieu kién hoi tu cia
thuat todn, ta can cé cich tinh méi cho viéc cap nhat kich thuéc buéc thich nghi. Phan bé ve do
16n cia gradient da cung cadp ¥ twdng va 1a co s& cho phuwong phip gidi quyét bai todn. Bai bdo
dé xudt mot phuwong phép toin hoc trong viéc str dung cich tinh méi cho viéc cap nhat kich thuéc
buée thich nghi dé loc nhiéu trong qué trinh ghi tin hiéu dién ndo db, xéc dinh va chitng minh diéu
kién du dé thuat todn dé xuat 13 hoi tu.

1. INTRODUCTION

In the recording of biomedical signals, a contamination of power line interference is un-
avoidable. Moreover, the frequency of noise is not constant. So the elimination of the dynamic
interferences caused by power transmission lines has been an interest research topic for the
last few years. As we know, a fixed step size notch filter may eliminate the noise whose dis-
tribution is centered exactly at the filter frequency designed. However, the frequency of the
power-line noise is not constant at exactly 50Hz. In cases of eeg signals recording, there are
epileptiform oscillations with frequencies nearby the power line interference frequency which
have been ignored because of the lack of an effective notch filter capable of eliminating the
noise components distorted the original eeg signal. The situation suggests the need to design
a notch filter with an optimal rejection bandwidth that effectively eliminates the time-varying
noise caused by power. The problem was solved in [1] by adaptive notch filter under the
assumption that noise frequency changes slowly. In the case when the noise frequency changes
fast, adaptive notch filters with variable step sizes are used (see [2 — —7]).

Choosing an adequate value of the step-size parameter will minimize the rejection band-
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width required to effectively eliminate the time-varying interference and will preserve optimal
convergence, tracking and maladjustment conditions. The LMS algorithmm with such a step
size could avoid the cumbersome trial and error process.

We use an EEG database for evaluating practical designs in improving accuracy and min-

imizing complexity.

2. AN ADJUSTMENT FOR STEP-SIZES OF LMS ALGORITHM
2.1. An adaptive notch filter using LMS algorithm with a fixed variable step-size
parameter

Magnitude of the transfer function of a fixed notch filter has a sharp shape (see Figure
la).

The transfer function of an optimal notch filter is given by

1 —2cos(2rfo)z !t + 272
H(z) = 1 —2&cos(2m fo)z 1 +&22727 (1)

where, £ is a constant that defines the location of the poles in the unit circle; fj is a frequency

of a power transmission noise.

Fig 1a - Magnitude of transfer function of a adaptive notch filter Fig 1b - Argument of transfer function of a adaptive notch filter
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Figure 1. Magnitude of a transfer function of an optimal notch filter

A very narrow notch is usually desired in order to filter out a sinusoidal interference, which
distorts the original signal. However, if the interference is not precisely known, and if the notch
is very narrow, then the center of the notch may not fall exactly over the interference. When
the reference for the interference is available, an adaptive noise canceling method originally
proposed in [1] may be used. A central frequency of adaptive notch filter is adjusted for an

error between it and frequency of noise to be minimal. B. We propose the following formulas
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for this adjustment.

wi(k+1) = wi(k) +2us(k)az (k), (2)
wa(k +1) = wak) + 2pe(k)wz(k), (3)

where - step-size parameter; wy  and ws - weights of adaptive notch filter (see Figure 2).

x1(k) = Ccos(k2m fo + ), (4)
xo(k) = Csin(k27 fo + ¢). (5)
primary s(k) + n(k) Notch filter
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Figure 2. Model of noise cancel using an adaptive notch filter

The transfer function of the adaptive notch filter can be described as follows (see [1]).

B 1 —2z"1cos2mfy + 272
1 —=2(1 —pC?)z Lcos 2w fo + (1 — 2uC?)z~2’

H(z) (6)

where, C- Amplitude of transmission power noise.
A bandwidth of ANF is determined by

BW = uC*. (7)

2.2. An adaptive notch filter using LMS algorithm with variable step-size param-
eter

The following step size updating was proposed in [2]

p(k + 1) = ap(k) +ve2(k), (8)

where, a- is a forgetting factor with values in [0, 1]; v- is a step size parameter for the adap-
tation of .

Our motivation for updating step sizes is based on the rule the step size becomes smaller
if the current (wq,ws) is closer to the minimum point and becomes larger if it is far from

minimum point.
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For a stability of the algorithm, the superior bound of all value step-size such that u(k) <
/’LmaX‘

A rate of a step-size variation depend on factor ye?(k). This solution is best for a deter-
mined distance from initial (w1, ws2) to minimum point.
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Figure 3: Method of LMS using variable step-size, with optimum start weight matrix
(proposal in [2]).

The LMS algorithm with variable step-size, as writen about, requires an optimum initial
weight matrix. The computational complexcity reflected in zigzag path in Figure 3.

The disadvantage of using formular (8) is that an initial weight matrix near minimum
point randomly. In Figure 4, zigzag path reflects an increased computational complexcity and
misadjustment of a LMS algorithm.

Figure 4: Method of LMS using variable step-size, with start weight matrix near a mini-
mum point(proposal in [2]).

A positions of the minimum point is random, it denpend on random noisy signals. We
need an another solution for any distance from initial weight matrix to minimum point.

To model the above idea, our work was suggested from a distribution of a magnitude of

the gradient on (w1, w2) plane (see Figure 5)

puk +1) = afa(k)=(k), (9)

where, a|xi(k)z(k)| = |[V(k)|.
However a magnitude of gradient |V| that is null at the minimum point on parapoloid (see
[1]). Tt means that g = 0 which can be substituted into the right hand side of Equation (7)

BW = uC* = 0. (10)

So bandwidth of ANF is null whenever the algorithm convergences and a ANF becomes a

Band pass filter. To overcome this difficulty we introduce the step-size update rule as follows

= |1 £ 6
plk 1) = alan ()= ()| e T = T 5Ol (1)
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where, 3- an optimal value of a bandwidth of an ANF, (max{x1(k—n)|n = 1,...,50|})? returns

current value of C2.

Figure 5. Gradient of the quadratic form

The last remark leads the second term of (11) to the constant form 3/C?.

3. RESULT

The following experiments have been carried out for the filter model {(2)-(5), (11)} with
w=plk+1), fo= %, @ = 0. Here, N is the number of samples over one period of statiscally
stationary independent reference signals (4)-(5) with Exz?(k) is the same for all k, Fx3(k)

equals to
N
1 . 2km . 2km 1 5
WC ;SIHTSlnwﬁcy
and Ex?(k) equals to
1 N . 2%k . 2%n 1
2 . . _ 2
1_ﬁ0 ;SIHTSlnwl—Wc.

The a sufficient condition for the convergence of mentioned filter model {(2)-(5), (11)} is

given by the following lemma

Lemma. If 8 < 1/2 and C < 1 then the sequences (2)-(3) of the mentioned filter model

converge.

Proof. First of all, we consider the equation (2) with {(4), (11)}. From

2

(k) = S(k) - Z Wi(k)ai(k), (12)
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and {(2), (4), (11)} follows the evaluation

B
wik + 1) = wi(k) + 2u(k + De(k)an(k) = (1= 255wi(k)wi(k) + Fr, (13)
where Fj, is the remaining parts of {(2), (4), (11)} and its absolute value is bounded by some
constant M independent of k.
Convergence of the last equation follows from the estimation of the coefficient of the

expected value Evp(k) of the linearzation system given by

nlk 4 1) = (12 S (h) (14)
The following estimation for {Fvq(k)}
k
3 g, 1 B(2-C?)
By (k+1) = H[1—2@Ex§(z)]Evo = [1—2@(1—502)]’“]9110 = [1—T]kEv0, (15)
=1
and the assumption 8 < % yield the convergence of the linearization system. The con-

vergence proof of {ws(k)} is the same on basis of the assumptions which ensures 3 < 1 and
then the coefficient of Ewvy(k) less than 1. We use EEG databases to evalue our method. The
denoising of some EEG signals with serious 50Hz noise. We applied the equation (12) below
to compute a MSE. The rate of convergence of the MSE reflects the speed of a convergence
of the algorithm and the midadjustment of MSE reflects stability of algorithm.

L@
MSE = g Z |5(2) — ()|, (12)

where, s(i)- N dimensional vector of the noise-free EEG signal; £(¢)- N dimensional vector of
the estimated EEG signal.
For the experiments presented in this section, N = 12000 samples and ¢) = 200 trials of

the experiment.

Experiment

Figure 6 shows the MSE curves for three different cases of step-size parameter selection.
For the first case the value of step-size parameter was fixed at g = 0.05. This value is smaller
than the optimum value found when using a variable step-size parameter and therefore the
algorithm converges slowly after approximately 2,000 iterations. For the second case when
the step-size parameter was fixed at g = 0.5, near its maximum allowable value , we can
observe that the algorithm converges very fast, after approximately 250 iterations, but has
the disadvantage of a large misadjustment (more clearly at Figure 7).

The noisy EEG signal was also filtered by using our method for the variable step-size
update. Clearly this method maintains equilibrium between fast convergence and small mis-

adjustment.
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Figure 6. Comparison of MSE between LMS with a variable step-size parameter p(n)
and LMS with different fixed step-size parameters p = 0.05, and p = 0.5
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Figure 7. Comparison of MSE between LMS with a variable step-size parameter p(n),
and LMS with different fixed step-size parameters p = 0.05,
and p = 0.5 (the misadjustment reflects stability)
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Figure 8-11 show the noisy EEG signal, the original noise-free EEG signal, and the signal

estimate £(n) obtained with the LMS algorithm using step-size fixed at p = 0.05.
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Figure 8: Estimated signal using fixed step-size u = 0.05 (Top), Orginal Signal:(Center),

Noisy EEG signal(Bottom).

Figure 9 (next phase): Estimated signal using fixed step-size p = 0.05 (Top), Orginal

Signal:(Center), Noisy EEG signal(Bottom).

By comparing these plots in the Figure 8§,

decreased slowly.

Estimated signals (next phase)
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Figure 10 (next phase): Estimated signal

Signal: (Center), Noisy EEG signal(Bottom).

Figure 11 (next phase): Estimated signal using fixed step-size p

Signal:(Center), Noisy EEG signal(Bottom).

using fixed step-size

0.05 (Top), Orginal

0.05 (Top), Orginal

The results of the above denoising progress are shown continuesly in Figure 9, Figure 10

and Figure 11. An estimated EEG signals reflect that some noise remain in a denoised EEG

signal.

In case of a step-size was kept constant with y = 0.5. By comparing these plots in the

Figure 12 a remaining noise in estimated EEG signal is decreased very fast. On the other

hand, a rate of convergence will become faster when the step-size increases.
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Estimated signals
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Figure 12: Estimated signal using fixed step-size p = 0.05 (Top), Orginal Signal:(Center),

Noisy EEG signal(Bottom).
Figure 13(next phase) :

Signal:(Center), Noisy EEG signal(Bottom).

A remaining noise can be informed by compairing the estimated EEG signals with orginal

Estimated signal using fixed step-size = 0.05 (Top), Orginal

EEG signals. Following that way, a stability of algorithm will be decreases when step-size

increase from 0.05 to 0.5.

When a next phases was presented in Figure 13, Figure 14 and Figure 15, it is clearly that

the noise could not remove perfectly if a step-size be fixed at big value.
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Figure 14 (next phase): Estimated signal using fixed step-size p = 0.05 (Top), Orginal
Signal: (Center), Noisy EEG signal (Bottom).
Figure 15 (next phase): Estimated signal using fixed step-size p = 0.05 (Top), Orginal
Signal:(Center), Noisy EEG signal (Bottom).
Figure ure 15 shows the EEG signal plus noise, the original noise-free EEG signal, and

the signal estimate £(n) obtained with the varying step-size parameter algorithm. We can

appreciate that the original signal is completely masked by the noise signal (at bottom of Figure

15), and how well it is reconstructed by the ANF system with varying step-size parameter
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Figure 16 shows the ensemble average (over five hundred realizations) for the adaptation

curve of the step-size parameter when using equation (11). The initial step-size parameter was

set to o = pmax and this parameter converged to its average final value after approximately

300 iterations. Note that after the step-size has reached its average final value, which in this

case was [ finqt — 0.005, it continues to vary around this value.

A Step-size variation

Stepsize

6000
Number of terations.

Figure 16

Figure 17

Figure 16: Convergence behavior of the step-size parameter.
Fig 17: Estimated EEG signals using variable step-size: p = 0.05 (Top), Orginal EEG
Signal: (Center), Noisy EEG signal (Bottom) On the other hand, a denoising is implemented

on replacing an orginal EEG signal by an estimated EEG signal.
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By comparing these plots with the EEG signals in Figure 17, Figure 18, Figure 19 and

Figure 20, we can see that when the step-size parameter is adequately chosen, after convergence

there is no distortion of the filtered signal. The evaluation of a rate of the algorithm using

variable step-size will be finished by compairing Figure 17 with Figure 12. In case of a step-size

was kept constant with g = 0.5, the rate is faster slightly than case of using variable step-size.
This is still true for the evaluation by MSE in Figure 6.
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Figure 18: (next phase) Estimated signals using variable step-size: 1 = 0.05 (Top) Orginal
Signal: (Center), Noisy EEG signal (Bottom).
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Figure 19: (next phase) Estimated signals using variable step-size: 1 = 0.05 (Top) Orginal
Signal: (Center), Noisy EEG signal (Bottom).

Figure 6, Figure 16, Figure 17, Figure 18, Figure 19, Figure 20 reflect that the algorithm
converges fast and stable. This is a optimum combination for Adative Noise canceler using

LMS algorithm with step-size update.
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Figure 20: (next phase) Estimated signals using variable step-size: 1 = 0.05 (Top) Orginal
Signal:(Center), Noisy EEG signal(Bottom).

Fig 21: Comparison of power spectrum of a orginal EEG signaly = 0.05 (Top) and Spec-
trum of a estimated EEG signal(bottom) when using fixed step-size p = 0.5.

There is a distortion of the spectral content in the filtered signal when using fixed step-size

w=0.5 (see Figure 21).
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Figure 22. Comparison of power spectrum of a noisy EEG signal and spectrum of a estimated

EEG signal when using variable step-size

Figure 22 shows the Power spectrum density of the noisy EEG signal (top) and the esti-
mated EEG signal (bottom) when using the variable step-size in this experiment. By compar-
ing these plots we can see that when the step-size parameter is adequately chosen, there is no

distortion of the spectral content in the filtered signal. Component of 50Hz noise is removed

only.
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Comparision with proposal in [2]

For the case the step-size parameter adjustment using Equation (8) the algorithm con-
verged after approximately 500 iterations [2]. For the case the step-size parameter adjustment
using Equation (11), we can observe that the algorithm converged after approximately 300

iterations.

Based on the result of column (2) in this table, we compute band width of the filter use
formular (7). When formular (11) is used we expect that well over 90% of the band width
will be narrowed. It means that using formular (11) is able to improve an acuracy of the LMS
algorithm in a remove a power transmittion noise problem. It could avoid a removement of
epileptiform oscillations with frequencies nearby the power line interference frequency which

have been ignored because of the lack of an effective notch filter not narrow enought.

x 10° Mean Squared Error
14 . . i . .

1 MSE in case of using formular 8 in [2] (dotted line) |

MSE in case of using formular 11 (solid line)

W
Kt )

i i n \ "
—— o A b e St e ot
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Number of iterations

Figure 23. Comparison of MSE using formular (8) (dotted line)
and using formular (11) (solid line)

Table 1. Performance of the measure when the step-size variation with

our propose and with formular (8) in [2]

Mesure An average optimum Band width Number of iterations to
value of Step-size converge
@ @ 3 (O]
proposed variable 0.005 0.0001125 (300
step-size
Variable step-size [2]]0.05 0.0011 500

A number of iterations for convergence is approximate 500 iterations when LMS algo-
rithm use formular (8) to vary a step-size [2|, during number of iterations for convergence is

approximate 300 iterations when LMS algorithm use formular (11) to vary a step-size.

In Figure 24, the begins at (w1(0),w2(0)), the same point with start point in Figure 4,

and stops at the minimum point. The zigzag path reflects that the number of iterations can
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be reduced by using formular (11).

W, A

\\\\\:\—j&*r}ﬂ v0)

- > W,

Figure 24. Method of LMS using variable step-size, with optimum start weight matrix (our proposal [2])

4. CONCLUSION

For the three different cases of step-size parameter selection we can readily identify the
instants in which the noise drifted in frequency. It is important to notice that in all cases
the filters were able to track the frequency changes. However, the variable step-size algorithm
was able to track the frequency changes while maintaining a fast convergence rate, a small
misadjustment and an optimum step-size value.

An adaptive noise canceler system based on a variable step-size LMS algorithm is able to
find an optimum speed of convergence which is of great importance in real-time applications
and allows the minimization of information loss and signal distortion. The proposed filters
could be implemented in existing EEG recording devices or in new devices intended for real-
time ambulatory EEG monitoring.

The choice of the step-size parameter in the adaptation algorithm plays an important role in
combination of the rate of convergence, stability, tracking capabilities and rejection bandwidth
of the filters. The proposed variable step-size method may overcome the cumbersome trial
and error process needed to choose an adequate value for parameters and will minimize the
rejection bandwidth required to effectively eliminate the timevarying interference introduced
by power transmission lines. This last property is of great importance since, as mentioned
in the introductory paragraphs, valuable signal information is found around the interference

frequency band.
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