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Abstract. The dense families of relation schemes were introduced in [11]. The Armstrong relation
is an essential concept in investigating the relational data model. Constructing Armstrong relation
is a practically importance problem (see, e.g., [8]). The aim of the paper is to continue investigating
some new properties of dense families. Applications of the results in studying the time complexity of
the problem constructing Armstrong relation are given.

Tém tat. Ho trit mat cia luge do quan hé dugce gidi thiéu trong [11]. Quan hé Armstrong la mot
khai niém cot yéu trong nghién cru vé moé hinh dir liéu quan hé. Xay dung quan hé Armstrong 13
bai todn ¢6 tam quan trong trong thirc té (chang han xem [8]). Muc dich ciia bai bdo nay 1a tiép tuc
nghién cttu moét s6 tinh chat cia ho tru mat. I’J'ng dung cic két qud nay vado nghién ctru do phirc
tap cua bai todn xay dung quan hé Armstrong trong 16p BCNT.

1. INTRODUCTION

The relational data model introduced by Codd [4] in 1970 is one of the most powerful
database models. The basic concept of this model is a relation. It is a table, every row
of which corresponds to a record and every column to an attribute. Semantic constraints
between sets of attributes play an important role in logical and structural investigations of
the relational data model, and in both practice and design theory. Informally, FD means that
some attributes values can be unambiguously reconstructed by the others. The concept of
Armstrong relation for FD was introduced by Fagin (see, e.g., [2]). An Armstrong relation
for a set of FDs is a relation that satisfies each FD implied by the set but no FD that is not
implied by it. Hypergraph theory is an important subfield of discrete mathematics with many

relevant applications in both theoretical and applied computer science.

The dense families of relation schemes were introduced in [11] (2005). We have character-

ized minimal keys and antikeys of a relation scheme in terms of dense families.

The paper is organized as follows. In Section 2, some basic concepts and results on the
theory of relational databases and hypergraphs are given. In Section 3, we introduce the notion
of dense families of relation schemes and investigate some properties and applications of dense
families. In Section 4, we prove the time complexity of problem constructing Armstrong

relation by dense families and hypergraphs. The paper ends with conclusion.
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2. BASIC DEFINITIONS

In this section, we begin by recalling some main concepts of the theory of relational
databases that can be found in [1, 5, 6, 8.

Let U be a nonempty finite set of aitributes. The elements of U will be denoted by
a,b,e,...,x,y,z if an ordering on U is needed, by ay, ..., a,. A map dom associates with each
a € U its domain dom(a). A relation R on U is a subset of Cartesian product [, dom(a).

We can define a relation R on U as being a set of tuples: R = {hq,..., h,,}, where

hi: U — U dom(a), hi(a) € dom(a),i=1,2,...,m.
aclU
The concept of FD between sets of attributes was introduced by Armstrong [1]. A FD
is a statement of form X — Y, where X,Y C U. The FD X — Y holds in a relation
R=Ahy,....,hp}on U if

(Vhi, hj € R)((Va € X)(hi(a) = hj(a)) = (Vb € Y)(hi(b) = hj(b))).

We also say that R satisfies the FD X — Y.

This means that the values of the X component of tuples uniquely determine the values
of the Y component.

Let Fr be a family of all FDs that holds in R.

It is obvious that F' = Fi satisfies

(F1) X - X € F,

(F2) X =Y eFRY—-ZecF)=(X—>ZcF),

(F3) X =Y e FRXCVWCY)=(V-oWeF),

(F4) X Y e FRV-oWeF) = (XUV-SYUWEF).

A family of FDs satisfying (F1) — (F4) is called an f-family on U.

Clearly Fg is an f-family on U. It is known [1] that if F' is an arbitrary f-family, then
there is a relation R on U such that F'r = F.

Given a family I of FDs on U, there exists a unique minimal f-family F'* that contains
F. Tt can be seen that F'* contains all FDs which can be derived from F' by the rules (F1) —
(F4).

A relation scheme S is a pair (U, F), where U is a set of attributes and F is a set of FDs
on U. Denote X ={acU:X — {a} € F'}. X is called the closure of X on S. Tt is
obvious that X — Y € F* ifand only if Y C X .

Subset K of U is called a key of S (resp. R)if K - U € F' (resp. K —» U € Fg). K is
a minimal key of S (resp. R) if K is a key of S (resp. R) and any proper subset of K is not
a key of S (resp. R). Denote by Kgs (resp. Kg) the set of all minimal keys of S (resp. R).

The set of antikeys of Ks (resp. Kg), denoted by Kg' (resp. Kp'), is defined as follows:
aset A€ Kg' (resp. Kp') iff

(A1) no subset of A is a key of S (resp. R), and
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(A2) A is maximal with respect to this property in the sense that all proper supersets C'
of A contain at least one key of S (resp. R).

Hence, it is easy to see that the elements of K;l and IC];L1 are maximal non-keys. Moreover,
K;l (resp. K]}l) is uniquely determined by Ks (resp. Kg).

S = (U, F) is in Boyce-Codd normal form (BCNF) if X — {a} ¢ F™ for XT # U and
a & X. If a relation scheme is changed to a relation we have the definition of BCNF for
relation.

Let S = (U, F) be a relation scheme. Clearly, if S = (U, F) is a relation scheme, then
there is a relation R on U such that Fr = F (see, [1]). Such a relation is called an Armstrong
relation of §. Evidently, all FDs of § hold in R.

Now, we introduce some basic concepts about hypergraphs, which will be used in the
sequel. The concepts and facts given in this section can be found in [3, 7, 9, 10].

Let U be a nonempty finite set and put P(U) for the family of all subsets of U. The family
H={F, FEs,...,E,} CP(U) is called a hypergraph on U if E; # 0 holds for all  (in [3] it
is required that the union of E;s is U, in this paper this requirement is removed).

The elements of U are called vertices, and the sets F1, ..., E,, are the edges of the hyper-
graph H.

A hypergraph H is called simple if it satisfies

\V/E“E]EHElgEjiEl:E]

It can verify that g and g are simple hypergraphs.

In this paper, we always assume that if simple hypergraph H plays a role of the set of
minimal keys (resp. antikeys, i.e., maximal non-keys), then H # @ and 0 & H (resp., 0, U & H).
We consider comparison of two attributes as an elementary step of algorithms. Thus, if we
assume that subsets of U are represented as sorted lists of attributes, then a Boolean operation
on two subsets requires at most |U| elementary steps.

Let H be a hypergraph on U. Then min(H) denotes the set of minimal edges of H with

respect to set inclusion, i.e.,
min(H) ={E; € H:VE; ¢ H= E; Z E;},

and max(H) denotes the set of maximal edges of H with respect to set inclusion, i.e.,
max(H) = {F; € H:VE; € H= E; 2 E;}.

It is clear that, min(H) and max(H) are simple hypergraphs. Furthermore, min(H) and
max(H) are uniquely determined by H.
A set T C U is called a transversal of H (sometimes it is called hitting set) if it meets all
edges of H, i.e.,
VEeH:TNE+#0.
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Denote by Trs(H) the family of all transversals of H. A transversal T' of H is called minimal

if no proper subset T” of T is a transversal.

The family of all minimal transversals of H is called the transversal hypergraph of H, and
denoted by Tr(H). Clearly, Tr(H) is a simple hypergraph.

Proposition 2.1. [3] Let H and G be two simple hypergraphs on U. Then
(1) H="Tr(G) if and only if G = Tr(H).
(2) Tr(H) =Tr(G) if and only if H=G.
(3) Tr(Tr(H)) =H.

The following obvious result will be used in the sequel.

Proposition 2.2. Let H be a hypergraph on U. Then

Tr(H) = Tr(min(H)).

Algorithm 2.1. ([7])

Input: let H = {E1,..., £} be a hypergraph on U.

Output: Tr(H).

Method:

Step 0. We set L1 = {{a}: a € F1}. Tt is obvious that £ = Tr({F1}).
Step q+1. (¢ < m) Assume that

['q :SqU{Bl,...,th},

where BiNE,1 =0,i=1,...,t,and Sg={A € L, : ANEyq # 0}
For each 7 (i = 1,...,t,) constructs the set {B; U {b}: b € E,1}. Denote these sets by
AL L AL(E=1,.. ., L,). Let

L1 =8U{AL A8, = Ag A1 <i <ty 1 <p<ri).

Theorem 2.3. ([7]) For everyq (1 < q<m) Ly =Tr({En, ..., Eq}), e, Loy = Tr(H).

We can see that the determinant of Tr(H) based on our algorithm does not depend on
the order of F1,..., E,,.

Remark 2.1. ([7]) Let L4 = SqUA{B1,..., By}, and let [; (1 < g < m — 1) be the number of

elements of L. It can verify that the worst-case time complexity of our algorithm is

m—1
O(UIZ- ) tquy),
q=0

where [p = {5 = 1 and
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lg—tqg, iflg>tg;
U, =
T, if 1, = t,.
Clearly, at each step of the above algorithm, £, is a simple hypergraph. It is known

that the size of arbitrary simple hypergraph on U is less than Cy[F]? where n = |U]. Cy[F] is

[ 2
1) —2".
™

From this, the worst-case time complexity of the above algorithm is less than exponential in

asymptotically equal to

the number of attributes. In cases for which i, <1, (¢ =1,...,m — 1), it is easy to see that
the time complexity of above algorithm is not greater than O(|U|? - |H| - |Tr(H)|?). Thus, in
these cases this algorithm finds 7»(H) in polynomial time in |U|, |H| and |Tr(H)|. Obviously,
if the number of elements of H is small, then this algorithm is very effective. It only requires

polynomial time in |U].

Proposition 2.4. ([7]) The time complexity of finding Tr(H) of a given hypergraph H is (in

general) exponential in the number of elements of U.

Definition 2.1. Let H be a simple hypergraph on UU. We define a family H ' as follows: a
set A€ Hiff

(i) Ac¢ P(U)and A 2 B,YBeH ,

(ii) A is maximal with respect to this property in the sense that all proper supersets C' of
A contain at least one B € H.

Note that we have only one case, when H~! is not a hypergraph. That is, when 7 consists
of the singletons {4;}, where A; € U.
Hence, it is easy to see that if /' is a hypergraph on U, then H~! is a simple hypergraph.

Proposition 2.5. ([10]) Let H be a simple hypergraph on U. Then

H ' =Tr(H).

Remark 2.2. We assume that U = {aq,a9,...,a,} (n > 1). Then, let us take a partition
U=X1UXoU---UX,, UW, where m = [%] and |X;| =3 (1 <i<m).
We set
H={B:|B|=2,BCX, for some i} if |[W|=0.
H={B:|B|=2,BC X, forsomei(1<i<m-—1)orBCX,,UW}if |W|=1.
H={B:|B|=2,BC X, forsomei (1 <i<m)orB=W}if |W|=2.
Clearly, H is a simple hypergraph on U and n — 1 < [H| < n+ 2.
By Proposition 2.5, we have
Tr(H) ={A:|ANX;| =1 for all i} if |W| = 0.
Tr(H)={A:|ANnX;|=1(1<i<m—1)and |[AN(X,,UW)|=1}if |[W]| = 1.
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Tr(H)={A:|ANX;|=1 (1 <i<m)and |[ANW|=1}if |[W|=2.
It is easy to see that |Tr(H)[ > 34
Now let IC be a Sperner system on U (i.e. A, B € K implies A € B). Denote

s(K) =min{m : |R| =m,Kr = K}.

Theorem 2.6. ([6]) \/2|K 1| < s(K) < |K7Y + 1.
Because a simple hypergraph is also a Sperner system, by Theorem 77 and Proposition ,
we have the following corollary.

Corollary 2.1. Let H be a simple hypergraph on U. Then

2/Tr(H)| < s(H) < |Tr(H)| + 1.

3. DENSE FAMILIES OF RELATION SCHEME

In this section, we first introduce the notion of dense family of relation scheme S = (U, F)
[11], that is, a collection subsets of U, which by applying certain condition introduces the set
F. Some results were given in [10, 11], however, some the results shall be proved again and
better. Next, we give an application of dense family, which provides an algorithm for finding a
BCNEF relation R from a given BNCEF relation scheme § such that R is an Armstrong relation
of §.

Let D C P(U) be a family of subsets of a finite set U. We define a set Fp on D as follows:

Fp={X—>Y:(VAeD)X CA=Y C A}.

Proposition 3.1. ([9]) Fp is an f-family on U.
In addition, the following proposition is obvious.

Proposition 3.2. Let Dy and Da be two families of subsets of U. If Dy C Dy then Fp, C Fp,.

The notion of dense family of a relation scheme is defined in [11] as follows.
Definition 3.1. Let S = (U, F') be a relation scheme and let D be a family of subsets of U.
We say that a family D is S-dense (or dense in S) if F* = Fp.

We set Ls = {X T : X CU} ie., Ls is the set of all closures of S. The problem is how

to find dense families. Our next proposition guarantees the existence of at least one dense

family, that is Ls, and Lg is also the greatest S-dense family.

Proposition 3.3. ([11])
(1) The family Ls is S-dense.
(2) Ls is the greatest S-dense family.

The following lemma is obvious.
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Lemma 3.1. Let D be an S-dense family. Then
() FT={X—->Y:(VAeD) X CA=Y C A}.
(2) K — U € F*' if and only if K € Trs(D\ {0}).

Next, we prove some the following fundamental results.

Proposition 3.4.
(1) The family Ms = Ls \{U} is S-dense.
(2) Ks = Tr(D\ {0}), where D is an S-dense family.

Proof.
(1) Suppose X — Y € F. By Proposition 3.2 and Proposition 3.3 (2), we have X — Y €
FM5~
Let X — Y € Faq,. It is clear that if X is a key of S then X — Y € F'™. In case if X is
not key of S, then X+ € Ms. We then have X C X', and hence according to definition of
Fas,

Faa ={V = W:(VAe Ms)V C A= W C A},

we immediately obtain Y C X . Consequently, X — Y € F'".

(2) Suppose K € Ks. Then K — U € F. By Lemma 3.1 (2), we have K € Trs(D \ {0}).
Moreover, it is easy to see that if there exists a K’ C K such that K’ € Trs(D\ {0}) then
K' — U € F'. This contradicts the hypothesis that K is a minimal key of S. Consequently,
K € Tr(D\ {0}) .

Let K € Tr(D\ {0}). Also by Lemma 3.1 (2), we get K — U € F'". It can be seen that,
if there exists a K’ € Kg such that K’ C K, then K'NT #  for all T € D\ {U}. This
contradicts the fact that K € Tr(D\ {0}). Hence K € Ks.

The proposition is proved. [ |

Note that Proposition 3.4 (1) guarantees the existence of another dense family. Proposition
3.4 (2) characterizes a set of all minimal keys of relation schemes by the dense families.

Based on Proposition 3.4, we obtain the following result, which was shown in [10] by
hypergraphs.

Theorem 3.5. Let S = (U, F') be a relation scheme. Then

(1) Ks = Tr(min(Msg)).

(2) Kg' = max(Ms).

Proof.

(1) By Proposition 2.2, Proposition 3.4 (1), and Proposition 3.4 (2), the proof is straight-
forward.

(2) Because min(Mg) is a simple hypergraph on U, according to (1) and Proposition 2.1
(1), we obtain

Tr(Ks) = min(Msg),
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and hence

Tr(Ks) = max(Msg).

On the other hand, by Proposition 2.5 we have
Ks!t=Tr(Ks).

which immediately gives

Kg! = max(Ms).

The theorem is proved. [ |

Theorem 3.5 gives the following application, which is the algorithm for finding a BCNF re-
lation R from a given BCNF relation scheme & such that R is an Armstrong relation of §. This
algorithm is applied to investigate the time complexity of CONSTRUCTING ARMSTRONG
RELATTON.

Algorithm 3.1. (CAR-BCNF)
Input: Let S = (U, F) be a BCNF relation scheme.
Output: A BCNF relation R such that R is an Armstrong relation of §.
Method:
Step 1. From § compute dense family M.
Step 2. From the dense family Mg compute max(Msg).
Denote by A1, ..., A; the elements of max(M.g).
Step 3. Set Qs = {B: B #0,B = A;\ {a},a € U,i=1,2,...,t}. Denote by By,...,B;
elements of Qg.
Step 4. Construct a relation R = {hg, hq,..., h} as follows

for all a € U, ho(a) = 0,Vi = 1,...,1,
0, ifaeb;,
hila) — if a
¢, otherwise.

Theorem 3.6.
(1) The output R of the Algorithm CAR-BCNF is BCNF and an Armstrong relation of S.
(2) The time complexity of Algorithm CAR-BCONF is exponential in the size of S.

Proof. (1) According to Gottlob and Libkin [8], R is BCNF relation.
We set
gR:{Eij11§i<j§l+1},

where

Eij = {(1 cU: hl(a) = h](a)}

Then we construct the family

max(SR) - {Eij € ép: \V/qu € ép = qu Z El]}
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From Algorithm CAR-BCNF and Theorem 3.5 (2), it follows that max(Eg) = Kg*. Tt is well-
known that (Theorem 3.5, [5]) Kp' = max(Eg). From these and the definition of antikeys, we
obtain Kr = Ks. Moreover, it is known that in BCNF class Kr = Kg iff R is an Armstrong
relation of §.
(2) Obviously, the family Qs and relation R are constructed in polynomial time in the size
of max(€r). The family max(Msg) is also constructed in polynomial time in the size of
M. Therefore, the time complexity of Algorithm CAR-BCNF is complexity of step 1. By
Proposition 2.5, Theorem 3.5 (2) and Algorithm 2.1, we see that the time complexity of
Algorithm CAR-BCNF is exponential in the size of S.

The theorem is proved. [ |

4. THE COMPLEXITY OF PROBLEM CONSTRUCTING
ARMSTRONG RELATION

The following problem plays an important role in the theory of relational database design.

Problem 4.1. Let S = (U, F) be a BONF relation scheme. Construct a BONF relation R on
U such thalt R is the Armstrong relation of S.

We prove the following result by hypergraphs and dense families.

Theorem 4.1. The time complexity of Problem 4.1 is exponential in the size of S.

Proof. We prove that:
(1) There is an algorithm finding a BCNF relation R from a given BNCF relation scheme
S = (U, F) such that R is an Armstrong relation of S, and the time complexity of this
algorithm is exponential in the size of §.
(2) There exists a BONF relation scheme S = (U, F') such that the number of rows of any
BCNF relation R so that R is an Armstrong relation of § is exponential in the size of §.

For (1): we have Algorithm CAR-BCNF.

For (2): we consider a simple hypergraph H as in Remark 2.2. Then, by Corollary 2.1 we

s(H) = +/2|Tr(H)|.

Now, we construct a k-relation scheme S = (U, F'), where FF'={B — U : B € H}. Tt it clear
that S is BCNF and Tr(Ks) = Tr(H). From this we get

have

s(Ks) > V233,

On the other hand, the number of rows of BCNF relation R which is constructed in Algorithm
CAR-BCNF satisfies

|B| < U Tr(H)| + 1.

Hence, we always can construct a BCNF relation scheme & such that the number of rows of

any BCNF relation R so that R is an Armstrong relation of § is exponential in the size of S.
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The theorem is proved. [ |

5. CONCLUSION

In this paper, we have introduced the notion of dense families of relation schemes and
investigated some new properties of dense families, and their applications. We have presented
an algorithm finding a BCNF relation R from a given BCNF relation scheme & such that R
is an Armstrong relation of §. Based on the obtained, we have shown that in BCNF class the

time complexity of problem constructing Armstrong relation is exponential in the size of S.
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