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STABILITY OF DIFFERENCE SCHEMES IN SOLVING
THREE-DIMENSIONAL MATTER TRANSPORT DIFFUSION EQUATION
AND APPLICATIONS

NGUYEN DUC LANG!, TRAN GIA LICH?

L College of Sciences, Thai Nguyen University, Vietnam
2 Institute of Mathematics, 18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam

Abstract. Some algorithms for solving three-dimensional transport diffusion equation are presented.
The stability of these difference schemes with the first and second order approximations in time and
space steps, and nonnegative property of numerical solutions are proved. As an application, numerical
experiments for some test cases and for the water quality of the Cau river in Thai Nguyen City are
presented.

Tém tAt. Bai bdo trinh bay mot sé thuit todn tinh truyén tdi, khuéch tan vat chat va 6 nhiém moi
trirdmg bang phirong phép sai phan hitu han. Chtrng minh sur 6n dinh ciia mot s6 so do6 sai phan xap
xi phuong trinh vi phan bac O(7 + k), O(7 + h?), O(7% + h), O(2 + h?) véi T 14 bude thui gian,
h = max{Az, Ay, Az}, Ax, Ay, Az 1a cic buéc khong gian va tinh chat khong am cia nghiém
bang s6. Két qua tinh todn thit nghiém cho cdc bai toAn mau va bai todn 6 nhiém mréc séng Cau -
thanh phé Thai Nguyén.

INTRODUCTION

There are several finite difference schemes for solving the transport diffusion equation.
Some of them have the second order approximation (see [2,3,5,7,10]). Theoretically, a nu-
merical solution of approximation difference scheme of higher order is better than that of lower
order one. However, in practice there are some cases, where numerical solutions of lower order
approximation difference schemes are better than that of high order ones. For example, the
numerical solution of the difference scheme with the weight coefficient 8 = 0.6 (i.e the first
order approximation in time) is better than that for 6 = 0.5 (i.e the second order approxima-
tion orders in time). It happens that, may be the time and space steps cannot take very small

values or complexity of algorithms can leads to great numerical error etc.

1. MATHEMATICAL MODELING

The mathematical modeling described the matter transport and diffusion processes is given
in the form (see [1,4])
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8C+ 8C+ 6C’+ oC C—g@—g@ 880 _y (1)
ot Ox Ay 82 Ox Ox Oy Oy 0" oz ’
The equation (1) can be rewritten in the forms
oC oC oC oC g oC
E‘f’ 18m ‘f’CLQa—‘f’wa—‘f’Uc—l/AC—&Maz f, (2)
or
o G@Jr 3C+a@+ac_l/320_l/820_ 820*]‘“ (3)
at | Mox oy TPz a2 Va2 " Haz T
v v d o? o?
wherealzu—%;agzv—a—y;agzw 8MA78962 8—y2;(96,y,z)€GCR3, (S
0,7]; G = {(z,y,2) : (2,y) € Yo C R%0 < z < H} is a cylinder ; C is the matter

concentration; (u,v,w) - the flow velocity vector; v > 0 - the horizontal diffusion coefficient;
w2 0 - the vertical diffusion coefficient; o 2 0 - the decay coefficient; f - the source function.
Functions w, v, w, o, v, u, f are of the variables =, vy, z, t.

The equation (1) or (2) or (3) is one of parabolic type (see [6]).

The initial and boundary conditions are given by

Clz,y,2,0) = COx,y,2) at t = 0,C(z,y,2,t) = plx,y,2,t) on B if u, < O,@ =
aC aC on
Oon X ifwu, 20, — = al,a = 0on X9 — = 0 on X, where ¥ is the bounding cylindrical

z
surface of G, g - the bottom face, >ip - the top face, 7 - an outside normal vector of 3

—

and wu,— the projection of velocity vector on the vector 7.

The equation (2) (or (3)) can be rewritten in the form

oC
EJrQC f, (4)
whereQ*Z?’ Qi Q *ag—l/a—2+g Qy = 2—l/a—QJrg Q *wg—
B P Y R R oy 3 0T oz
g 0 o 0 ? o

+3 (or Q3 = ag

5:"5: 5 ez t3)

2. ALGORITHMS (see [2,3,7])
Let GG be overlaid with grid points G, = {(%m, Yn, 2j);m = 0,..., M;n = 0,...,N,j =

., J}, while [0,T] - grid points: T, = {0 = {p < &1 < ... < g = K.7 = T} denotes

SOm n,] 30<xm7ynyz]7tk>
Differencing equation (4) we obtain

k+1 _ ik
G 2O | etz ekt 4 (1—0)C*| = fF1/2 witho <0< 1

i
which implies that

(L+ 7N/ CR = 7R HL2 1 — 7 (1 — 0)QF 2|k, (5)
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We use the following approximation
(14 70QF71/2) = (1 + 70)(QF /2 4 QT2 4 b /2
= (1 + 70052 (1 + 70052 (1 + 70052+ O(72). (6)
Substituting (6) in (5) yields that

(1+ 702 ) (1 4+ 7005 T2 (1 4 roh TR ORT = g2
+[1 = 7(1 = Ok + O(?). (7)

The equation (7) can be decomposed as follows

(1 -+ 7R 2O = 7 b2 4 1 (1 - )RR, (8)
1+ 7_9912c+1/2)01c+2/z), _ Ck+1/37 (9)
(1 + 70QE T2 okt = oki2/3, (10)

From (6) we have (8) - (10) approximates (1) or (2) or (3) with the order of approximation
O(7%).
The equations (8), (9), (10) are differenced by the two following difference schemes:

a. Upwind difference scheme

ki1/2 ~k+1/3 k+1/3 kt1/2 ~k+1/3 k+1/3
ki1/2 k13 [ a1+ |ai] / Cm,n,j - Cmfl,n,j ar — |ai1] / Cm+1,n,j - Cm,n,j
& Cm,n,j T\ 9 A - A
2 g @ 2 g @
k+1/3 k+1/3 k+1/3 k+1/2
_ 12 Cm+1,n,j - 2Cm,n,j + Cmfl,n,j v Tmn,j Ck+1/3 (11)
manaj <A$>2 3 manaj ?
ki1/2 ~kt+2/3 k+2/3 kt1/2 ~Kk+2/3 k+2/3
kt1/2 ~kt2/3 [ a2 + |ag] / Cm,n,j - Cm,nfl,j as — |az| / Cm,n+1,j - Cm,n,j
{2, Cm,n,j T\ 9 A - A
2 g Y 2 g Y
k+2/3 k+2/3 k+2/3 k+1/2
_kt1/2 Cm,n+1,j - 2Cm,n,j + Cm,nfl,j v O ~k+2/3 (12)
m7n7j (Ay)2 3 m7n7j ’

kt1/2 k1 kel kt1/2 qktl ket
QF 120k <’w+|’W|> 2O i = Cotnj +<w—|’WI> /2 Cptait1 = O
k _ (wt vl

manaj 2 . AZ 2 - AZ
m,n,j m,n,j
k+1/2 k+1/2 k+1/2
(Az)Q m7n7]+1 m,n,g (Az)Q m,n,g manﬂfl 3 m,n,g ?
(13)
k+1/2 -k kT2 4k k+1/2 ~k k+1/2 ~k
Q2 / Cm,n,j - Ql Cm,n,j + QQ Cm,n,j + QS Cm,n,j‘ (14>
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Substituting (11) - (14) in (5) and (8) - (10) yields the difference equations approximating
the equation (1) or (2) or (3) with the order O(72 + k) if & = 1/2 and the one O(7 + h) if
0 # 1/2, where h = max{Ax, Ay, Az}.

Substituting (11) and (14) in (8) yields that

@ k13 @ k13 | o k1/3 .
Oémcmfl/,n,j + 6m0m,n,§' + ’ymmeLl/,n,j - 6m7 (15>
N . T +|a1|)§1+77117/j2 7'91/51?717;2
WhEre Gm = 2Ax  (Aw)?
70|a1|k+1/2 0rg Y2 gkt
/6I — 1 + m,n,jy m,n,jy + m,n,g
" Az (Az)? 3
L R A o
m = 2Ax (Az)? '
5 = Thy Oy = T(L = O)QF12CE,
Similarly, putting (12) in (9) we get
OOl 5 BECLLT 1+ O = o, (16)
N ~ tl(ax + |a2|),];+77117/j2 7'91/,]:;17;2
whnere oy — — 2Ay - (Ay)2 )
P 70|as |Z;+71/]2 27’91/5;1 ;2 7'905;1 §-2
e — + phig! phig! phig! ;
Ay (Ay)? 3
kt1/2 kt1/2
I R T
Tn = — - i
20y (Ay)?
y  ~4k+1/3
0 = Copij
Combining (13) and (10) yields that
z rvk+41 z rvk+41 z vk+1 _ 5z
%G i1 T 07 Chn i 7 O i = 95 (17)
k+1/2
O A L I iy
where af = — AL AT
Olliinl Tyt bmage) 00N
62' _ 1+ m,n,J + m,n,j 1/2 m7n7]+1/2 mn,y
J Az (Az)? 3
k+1/2
0wl — )k O
K 2Az (Az)2 7
L k123
05 = Oy -

It is easy to verify that the coefficients of the equations (15), (16), (17) satisfy the following
conditions o, < 0,8% > 0,7v% <0v 3% = |a& |+ vE|+96, d =105 <0,8) > 0,74 <
0 and 87 > |ag| + 4| +d;0% < 0,87 > 0,75 <0 and 35 > [a3| + |vi| + 0. (18)
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b. Central difference scheme

The equation (3) is differenced as follows

k+1/3 k+1/3 k+1/3 k+1/3 k+1/3
Qk+1/20k+1/3 :ak+1/2 Cm+1,n,j T Mm—1n,j . k+1/'2 Cm+1,n,j - 2Cm,n,j + Cmfl,n,j
! ! 2Ax g (Az)?
L2
mmn,j ~k+1/3
+ 3 Cm,n,j
k+2/3 k+2/3 k+2/3 k+2/3 k+2/3
Qk+1/20k+2/3 :ak+1/2 Cm,n+1,j “Ymanlj k12 Cm,n+1,j — 2Cm7n7j + ijnfljj
2 2 2Ay m,n,j (Ay)2
L2
mmn,j ~k+2/3
+ 3 Cmanaj
k+1 k+1 k+1 k+1 k+1
Qk+1/20k+1 :ak+1/2 Cm,n,j+1 T Ymmn,j—1 _ k+1/2 Cm,n,j+1 - 2Cm,n,j + Cm,n,jfl
3 3 2Az 1] (Az)?
L2
m7n7j k+1
+ 3 Cmanaj
QFFL2CR = QF POk TP ek TP ek,
Putting (19), (20), (21), (22) in (8), (9), (10), we have:
z ~k+1/3 z ~k+1/3 z ~kH1/3
Oémcmflanaj + /6m0m7n,j + ’ymCm+17n7] o 6m7
N . 7'9((11)7]:;1/]-2 7'91/5;%-2
where of, = — A — Ba)?
P 27’91/5;%-2 T@Uf;%?
6m - + <A$)2 + 3 ’
. 7'9((11)5:;1/]-2 7'91/5;%-2
Tm T TR (Az)2
x k+1/2 k o o k+1/2 1k
O = T T Oy = T(L = O)QT2CE 5
k+2/3 k+2/3 k+2/3
QU+ BICHE O = o,
0(@s)mn OV
where o, = — Tl )
2Ay (Ay)?
v _ 1 2 91/5;%-2 70 5;%-2
4 — + 21, + RS ;
(Ay)? 3

113

(19)

(20)

(21)

(22)

(24)
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6( >k+1/2 O/

’yy — min,J _ mn.j
! 24y (Ay)?
_ kt1/3
67yl o Cm,n,j .
Oéjcmjjn,jfl + 5;70”1;7]- + ’V;Cmfn,jﬂ — (5;77 (25)
k+1/2 k+1/2
where of = _7’9( >m7”7j _ 0 mn,j
! 2Az (Az)2

- Mk+1/2 EPSCRVE
/6]2 — 1 + m,n,jy + m,n,jy ’

(Az)? 3
k+1/2 k+1/2
J 2Az (Az)?
k+2/3
07 = Connj -
To prove the condition (18), it is necessary to choose
k k k
2v 2v 2
Az < min <—> i Ay < min <—> i Az < min <_,u> (26)
manajak |a1 | m,n,j manajak |a2| m,n,j manajak |a3| m,n,j

The equations (23), (24), (25) approximate (1) or (2) or (3) with the order O(72 + h?) if
0 = 1/2 and with the one O(r + h?) if 6 #£ 1/2.
Remark:

If the coefficients o, v, 1 depend on C, then the equations (1) or (2) or (3) is nonlinear. For
solve this equations, it is necessary to linearise the one, so difference equation can approximate
(1) or (2) or (3) with the order O(r + k) or O(T + h?).

The boundary condition is approximated as follows

a) If the boundary condition is a given function ¢, we take

qm 7n7j <)qu7n7] ’ Cmaqnﬂ SOmaqn 7]7 Cm7n7qj <pm7n7qj ’

(27)
where ¢, is equals to 0 or M, ¢, is equals to 0 or N, g; is equals to 0 or J, and p is equals to
E+1/3;k+2/3;k+ 1.

b) If the boundary conditions are as follows

aC aC
_— p— M _— p— d _— p— 2
onls an‘zH Oand 22|, —atia=0

then the following approximations will be used

Cling = Ol +0(A%); CFy 5 = Oy, + O(A2?);
Criog = Chay 1 OAY); O vy = CF vr 1+ O(AY); (28)
2 & 1 2
/4 _ /4 . P _ m,n, .
Cm,n,J - Cm,n,Jfl + O<AZ >’ C1171,71,0 - 14+ aAz + O<AZ )’
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From (18) we obtain that the equations (15), (16), (17), (23), (24), (25) have unique

solution. These equations can be solved by the double sweep method

k+1 3 = k+1 3 z
k+2/3 k+2/3

Cmn,] 7Ly0mn 1,7 +Ky (30>
k+1 zk+1 z

CEIL — LCR K, (31)

where
—0y 6 ’YlKhLl . .
;= : Aoy - (i=m,n,j).

BitviLlis' " BitviLlin
with ¢; = ¢% or ¢ or ¢; and ¢ may be L, K, «, 8,7, 0.
Numerical error of the double sweep methods (29), (30), (31) with the coefficients satisfying
(18) is not accumulated (see [8]).
The coefficients Lps, Kpy, Ly, Ky, Ly, Kj and the values ngllj/?’, Cfio%é?’, CkHO are
defined by the boundary conditions.

3. STABILITY OF DIFFERENCE SCHEMES (see [5,9])

Let GG be the rectangular cylinder.

Theorem 1. The difference scheme (8) - (10) with respect to time and (11) - (14) with
respect to space with the boundary conditions (27), (28) is unconditionally stable if 0 = 1, and

1s stable if 6 # 1 and
1

(1—=0)(AZ+ X5+ 25’

|CL1| 2 o k+1/2 |CL2| 2 o k+1/2
h A% — =i e .)\yi e .
where 2 <Am+(Agc)2+3 P A Ay+(Ay)2+3 ;

T <

Y k,m,n, ], (32)

m?”?] m?”?]

k+1/2 k+1/2
3

27\ Az + (Az)2

m?”?]

Proof. Suppose that at the step #,/3, we have

k+1/3
™m0,10,J0

Ck+1/3‘

= sup sup sup ‘ i
2.

1<m<M—1 1<n<N-1 1<<I—1

From the equation (15) or (23) ue have

‘am00k+1/3 + By C k+1/3 i 7m00k+1/3

mo—1,n0,70 mQ,n0,Jo mo-+1,m0,j0

— 0)QC} +rfl

m0,10,J0

‘ mo,n0,j0 0,10,J0 | *

SO
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k+1/3 k+1/3 k+1/3
O i 4 Brng ORIV O

‘ ™m0~ mg—1,n0 mo,n0,J0 mo+1,m0,50

k+1/3 k+1/3 k+1/3
> |Bimol - ‘Cmo,noajo — [ty - ‘CmO*lanOJO — Yol - ‘CMO+1,HO,J'0
k+1/3
> (Bl = otms | = [Ymal) | Cont s
s sk, . Y
From (33), (34) and ¢ > 1 it follows that
k+1/3 k k k
‘ mo,no,jo| ‘Cmofﬂoﬂb - 7—(1 - 0>QCMO,HO,J'0 +7 ‘fmo,no,jo : (35>
Differencing QFFY/2 e get
k+1/2 k k
Qk+1/20k ([ + || / Cm07n07j0 — Cmo*l,noajo
1 m0,10,J0 2 ] Ax
mQ,n0,30
k+1/2 k k
+ ) |a1| / Cm0+1,n07j0 B Cmo,noajo
2 , Ax
mQ,n0,30
k k k
N k+1/2 Cm0+1,n0,j0 - 2Cm0,n0,j0 + Cmofl,no,jo
™m0,10,J0 (Az)2
_Nxk x 1k x 1k
7>\10m0717n07j0 + AQCMO,HOJO + >‘3Cm0+1,n07j07
here, A? o tlaf v e <0
where = — :
r o 2Ax (Az)? , ’
mo,1n0,30
k+1/2
|as| 2u o
A= —+ + = > 0;
2 <Am (Az)? 3 :
mQ,n0,30
. |(11|—(11 N v k+1/2 “0
5 2Ax (Az)? , ’
mQ,n0,30
and
T T T 2
s Mgl D (36)
Similarly, we obtain
k+1/2 ~k Ny ik Yk Yok
Q2 CMO,noajo - AlCmOJlO*LjO + >‘2CMO,n07j0 + ASCMO,n0+17j07 <37>
o
where AY < 0; 0 <0 and A = |\Y| +|A\§| + 3
k+1/2 ~k _ Nzovk z vk z vk
QS CMO,noajo - AlCMO,noajO*l + AQCmOJlOJO + >‘3CMO,HOJ'0+17 <38>

where A2 < 0; A2 <0 and A3 = | N3] + | N3] + %
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Therefore,

k _ kt+1/2 vk
CMO 10,J0 ( Q)Q CMO 10,J0

= 1 =7(1=0)(A5 + A+ MN)]CFE oy + (L= O [IAT|Ch
+|A31CE +NY|CE

mo—1,n0,j0

e
mo+1,n0,j0 mg,m0—1,j0 + |>‘ | mo,not1,jo

+ |>\Z| mg,n0,jo—1 + |>\§| mg,mo ]0+1:| . (39>

If 6 =1, from (35) we have
Toas /3

mo,no ]O| = | mo,no Jo| Jr7—|f7§%0,no,j0|‘ <40>

For 0 # 1, and 7 satisfy condition (32) we obtain that

1—7(1=0)(AT+ A5+ )235) > 0. (41)

Combining (36) - (39) and (41) yields

C momogo — T(L = )QkH/QCfmo noiol € [1 —7(1=0)(A5 + A5+ A3)+

T(1 = ) (M| + (N3] + [A]] + [A5] + (M| + A3 |)} sup sup  sup |Cp il =
1<m<M—1 1<n<N—1 1< <I—1
kt1/2
(1=7(1=0)0,,0 i) SUP sup sup | mn]| <
1<m<M—1 1<n<N—1 1< <I—1
sup sup sup | mn]| (42)
1<m<M—1 1<n<N -1 1<I-1 ’
From (35), (40) and (42) we have
k+1/3
sup sup sup |C, ;
1<m<M—1 1<n<N—-1 1<I -1 ”
< sup sup sup ‘C’f;n ;| tmsup  sup sup sup ‘ fj@,n,j" (43)
1<m<M—1 1<n<N -1 1< <I -1 k 1<m<M—1 1<n<N—1 1< < -1
Similarly, (16), (17) or (24), (25) it follows that
k+2/3 k+1/3
sup sup sup ‘Cmtlé ‘ < sup sup sup ‘Cmtlé ‘, (44)
1<m<M—1 1<n<N-1 1T -1 m 1<m<M—1 1<n<N -1 1T -1 ’
k+2/3
sup sup sup ‘Ckﬂ ]‘ < sup sup sup ‘Cmtlé ‘ (45)

1<m<M -1 1<n<N -1 1<T -1 1<m<M -1 1<n<N -1 1<T -1

Combining (43), (44), (45) gives that
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sup sup sup ‘Cffjé j‘ <
1<m<M—1 1<n<N-1 1< -1 m

sup sup sup ‘Cffln j + 7 sup sup sup sup ‘ ffln j‘ <
1<m<M—1 1<ng<N -1 1T 1 Y B 1<m<M -1 1<ng<N-1 1T 1 Y

sup sup sup ‘021 n j‘ + T(k: + 1)sup sup sup sup ‘ f,ﬁ n j‘ <
1<m<M—1 1<ng<N -1 1T 1 Y B 1<m<M -1 1<ng<N-1 1T 1 Y

sup sup sup ‘021 n j‘ + T'sup sup sup sup ‘ f,ﬁ ngl o (46)

0<m<M 0<ngN 05T Y Eo1<m<M—1 1<ngN-1 1T -1 ’

where T' = K.7 is given.
At the boundaries

i) If the boundary condition is a given function ¢(z,y, z,t), then we have

k+1
sup  sup |Cg'l | <sup sup  sup [@(%q,,, Yns 25, )|
0<n<N 0<j<J k 0<n<N 0<j<J
where ¢, may be 0 or M.
Similarly
" sup  sup  |CEUL I <sup osup sup  p(@m, g, 7, )]
0<m<M 0<j<J k o<m<M 0<j<J
k+1
sup sup Cm,n,qj <sup  sup sup ‘¢<$m7 Yny 255 tk)‘ )
0<m<M 0<n<N k 0<m<M 0<n<N

where ¢, is equal to 0 or IV and g¢; is equal to 0 or J.

oC
ii) If the boundary condition is o 0, by (28) we get
n

E+1l vkl E+1 okl R N R 5| k1 vkl
Cong = Cling O Ot = Or—1ng5 Omog = Oty O Cng = Cinn-1p0
Ck+1
Okl okl LA n S myn,l 41
myn,J myn,J—1'" ~m,n,0 (1 4 OZAZ) m,n,1*

The values CFTL Okl cktl okl are taken by C*T! at the nearest node of

4m,qn 7j7 qm 1,45 m,qn,q;° qmyqn,q;
the interior grid points.

It is easy to verify that

sup  sup ‘Cg;b‘ < sup sup sup ‘Cffj; il
0<n< N 0G<J m 1<m<M—1 1<n<N-1 1<I-1 ”

sup  sup ‘Cﬁ}”‘ < sup sup sup ‘Cffjé nE
0<n<N oy<J " 1<m<M—1 1<n<N-1 1<I-1 m

sup sup ‘Cfqul j‘ < sup sup sup ‘Cffjé il
o<m<M 0T T 1<m<M—1 1<n<N-1 1<I—1 m
k41 k41

sup sup ‘ g | S sup sup sup ‘Cmm, j‘ .

0<m<M  0<ngN 1<mEM—1 1<n<N-1 1<<I—1
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Let us define norms by

Ck+1

m?”?]

Ck+1

m?”?]

‘: sSup sup sup ‘

| ¢ ||=  sup sup  sup ‘
0<m<M  0<n<N  0<G<]

2

7n7] ‘ ?

| €% ||=sup sup sup |C¥,

I/l=swp  suwp  sup swp|gk L (54)
ko 1<m<M—1 1<n<N—1 1<) —1
| ¢ ll= max{sup sup sup ‘golgnj ,SuUp sup sup ‘golf\/[nj ,SuUp sup sup ‘gofjloj ,
k n ] 20, k n ] 20, k m ] 2,
sup sup sup‘gpfﬁ1 N,j|»Sup sup sup ‘gofflno ,Sup sup sup ‘gpfﬁln J‘ }
k m ] 2 2 k m n bae ] k m n bae ]
From (46) and (54) it follows that
sup sup sup ‘Cff;ij‘ <IN +T sl (55)
I<m<M—1 1<h<N—1 1<G<I—1
On the other hand, by (47) - (55) we have
sup sup ‘C;:lnj‘ <
n ] 20,
max{sup sup sup ‘golq“mn il sup sup sup ‘Cffj; ]H <
k n 3 Y 1I<m<M—1 1<n<N-1 1<i<I -1 ”
max{ || ¢ |, | O +T [ /1 }- (56)
Similarly, il 0
sup sup ‘Cm,qn,j Smax{| ¢ [, [ C° | +T || £ I} (57)
moj
sup sup ‘Cﬁé,qj <max{|| ¢ [, [1C | +7 [ £ 13- (58)
m n
Therefore,
| C* ||= sup sup sup ‘Cfflnj‘ = max{ sup sup sup ‘C’f;nj ,
m 3 o 1<m<M—1 1<n<N-1 1<<I-1 Y

k
sup sup ‘ o
n J

,Sup sup ‘C]f@ D }, (59)
m ] ’ 2

where ¢, is equal to 0 or to M, ¢, is equal to 0 or to N, ¢; is equal to 0 or to J.
Substituting (55) - (58) in (59) yields that

k
,Sup sup ‘ Crm, .
m n

FC* < max{[| CO N +T || £ 1T 13-

Therefore

[xei N Nel EVAFAER Y B

i.e, the above mentioned difference scheme is unconditionally stable if §# = 1 and stable
with the condition (32) if 6 # 1.
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Theorem 2. The difference scheme (8) - (10) in time and (19) - (22) in space with boundary
conditions (27), (28) is stable with condition (26) if 6 = 1, and if 0 # 1, it is stable with

condition (26) and
1

< ~ ~ ~Z2\ 7
(1 —0)(05 + X5 +X5)

= 2_’/+f kH/Q-Xy— 2_’/+f k+1/2.77 2_“+Z k+1/2.
2= \(ae)? ' 3 2T\ (Ay)? 3 2T\ (A2 3 ’

m?”?] m?”?] m?”?]

v k,m,n,j (60)

where

The proof is as analogous as one of Theorem 1.

4. THE NONNEGATIVE PROPERTY OF NUMERICAL SOLUTION (see [9])

Let the initial and boundary conditions be nonnegative and f > 0.

Theorem 3. The solution of the difference equations (8) - (10) with upwind scheme (11) -
(14) in space and boundary conditions (27), (28) is nonnegative when 0 = 1. In case 0 # 1,

the solution is nonnegative if time step salisfies the condition (32).

Proof. Assume that at the time step ¢ the values C*

m.n,j D€ nonnegative. The equations (15),

(23) are solved by the following double sweep method

ChiE = pr oS K (61)
where
Lz Ay T m Ym m+1

m = K=
B, + V%L%+1 B, + ’VﬁmLm+1

Applying the mathematical induction, we obtain

0< Ly, <land K, 20, (m=1,2,....,. M —1). (62)

Indeed, assume that 0 < Ly, ,; <1and 0 < K[V, 4.
From (15) or (23) we have

x k+1/2 x x
6]:1 = (Ck . —;(1—Q)Qk+1/icjjm7j)+7£m7n7§ — C,’jmk] —7(1-0) [Alg]j%l’n’ﬁ?cﬁ’n’ﬁ
A§Cm+1,n,j + A%Cm,nfl,j + AZQ/Cm,n,] + Ang,nle,j + Afcm,n,jfl + ASCm,n,] + Agcm,n,jJrl] +

TR = L= r(1 = 0) (A + NS+ ADICE, o+ (1 — O)(]AMICE,

manaj manaj 717”7]’
k+1/2
INYICE oy F ISR s INEICE, NI ) Tl fE

m?”?]

+NICh L

7n71 7j 7n7j

If 0 =1 then 67, = Ck .+ 7fo 1 >0,

If 6 # 1 and 7 satisfies the condition (32) then

6;% _ Cfm,n,j _ ,7_<1 . 0)Qk+1/20k ] +7_fk+1/2 2 0.

m,n,7 m,n,j

Moreover,
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Bt v Lir =B — o = Iyl + |l + Iyl = v s 2
0+ ag,| + vl (1= Liia) >l

—nT X €T
B, + V%Lm+1 B, + ’VﬁmLm+1 |04£1|
K® O — ’V%Kﬁmﬂ - O + |’75%|K1f1+1 > 0.

R
From (61), (62) and the nonnegative boundary condition we have

CFHYB _ pa okt 1K™ >0,

m,n,j m~m—1,n,j

Similarly, it is easy to verify that k23 >0, CkTL> 0.

m7n7j m7n7j =
So the numerical solution is nonnegative.
Theorem 4. The solution of the difference equations (8) - (10) with the central difference
scheme (19) - (22) in space and boundary conditions (27), (28) are nonnegative for @ = 1 if
the time step satisfies the condition (26), and for 0 # 1 if it satisfies two conditions (26) and
(60) hold.

The proof is similar to that used for the proof of Theorem 3.

5. NUMERICAL EXPERIMENTS

The above algorithm is applied in solving the following problems.
a) In comparison with analytical solution
The matter propagation equation
oC oC oC

EJru% +’Ua—y+aC—VAC:Qé(r—ro)é(t—to); (63)

Cli—o = 0,C(r) — 0 with |r| = oo, r = (@,y) with the assumption u = const > 0,v =

const > 0,0 = const, v = const, we have the following analytical solution (see [1,4])

C(gc, Y, t) _ mexp{—a(r —7rg,t — to)}7 t e (to, T (64>

07 le [OytO]a

(x — ut)? + (y — vt)?

where, a(r,t) = ol + ot
v
From the above algorithm, we can find C' in a large enough region G contains source point
ro so that at the boundaries 3., we can take C' =0, and w =0, = 0,a = 0.

Consider the following two cases
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i) Diffusion case (uw = 0,v=0)

The input parameters are v = 0.5m?/s, o = 0.01s™1,Q = 100mg/l.s,t9 = 10s,79 =
(100,100,0), Az = Ay = Az = lm, 7 = 1s.

If f=Qd(r —rg)d(t — ty) then the equation for differencing is of the form

@
o¢ +QC = T AzAyAZ’

ot 0, if (r, 1) # (ro, o).

ifr = TOyt = to where r = <$7y70>

The computational results and analytical solutions (64) are given in Fig.1.

mgl

045 q

04

03 Y _1=50s

fl \1/

025 =100s
0.2 J V

o1 W N 1=150s
Q.05

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191

—— analytical solution, - - - computational solution
Fig. 1
Concentration distribution along a ray passing the source point rg and parallel to the axis
Ox, at { = 50s, { = 100s and ¢ = 150s.
ii) Transport and diffusion case

The parameters are taken the same as above, except for u = 0.5m/s,v = 0,79 =

(30,100, 0), 7 = 1.0s. The computational and analytical solutions are give in Fig.2

mgl
045 -

04
0.35 Q 1=50s

03
025

/
/
02 J
]
/
]

@( 1=150s

015
01

1 10 19 2B 37 46 55 &4 73 BZ 91 100109118127 136145154 163 172 181190 199

—— analytical solution - - - computational solution
Fig.2

Concentration distribution along a ray passing the source point rg and parallel to the
direction Oz, at t = 50s,1 = 100s and ¢ = 150s.
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b) Three dimensional matter propogation problems

The matter transport and diffusion in a region with 10000m in length, 10000m wide and
50m in height, the parameters are Az = Ay = 100m, Az = 5m, 7 = 20s,v = 2m?/s, p =
0.05m?/s,u = 0.2m/s,v = w = 0,0 = 0, and the initial condition C(z,%,z,0) = 0. Two
cases of the pollution propagation are considered.

i) Case 1

In G there is a source point rg = (300, 5000,25). The function f = Qé(r —rp), Q@ =
5000g/1s is given.

The numerical results are presented in Fig.3. They are isoconcentration C' lines at the
plane z = 0, after 2 hours.

ii) Case 2

In G there are three source points: 71 = (300, 5000, 25); ro = (900, 5500, 25); 73 = (900, 4500, 25).
At these source points r;, we have f; = Qo(r —r;); ¢ = 1,2,3; @ = 5000g/1s.

The numerical results are presented in Fig.4. They are isoconcentration C' lines at the

plane z = 0, after 2 hours.

35— -
T2 3 % 5 6 7 8 9 1011 12 13 14 15 16 17 18 {9 20 21 22 33 24 25 26 37 28 28 30 123456 78891011121314151617181510212223242526177819303132333435

Fig.3 Fig.4

¢) Environmental pollution problem in Cau river

Let us determine the BODS5 pollution on one part of Cau river, which is 10km long, and starts
200m from Hoang Van Thu paper factory at the upstream side. The BOD5 concentration at
this factory is 200mg/I.

The parameters of problem are v = 0.1m?/s, u = 0.005m?/s,0gops = 4.88 - 107 /s.

The discharge ) in the dry season is 11m?3/s, and @ in the rainy season is 1850m?3/s,
Az =50m, Ay =3m,J = 10,7 = 1s.

The BOD5 concentration at the distance 500m from Hoang Van Thu paper factory on

the downstream side is 0.6mg/!.
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The numerical results are the distribution of isoconcentration lines in the dry season (see

Fig.5) and in the rainy season (see Fig.6).

[1]

rim)p
B0 [
- 54 3 \2 T
i .
bises a1y |2|Jn | .|.z.(|...|...|....|....|....|><(m)
200 -100 0 100 200 300 400 500 500 70D
Fig.5
i) L
120 i—ﬁ/—\
80 |
i - 0.1
L 1
C f | seE oy ._.\.ﬁl.—.._i_‘m...loza._—._.\l?..x(m)
=200 0 500 1000 1500 2000 2500 3000 3500
Fig.6
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