
Journal of Computer Science and Cybernetics, V.31, N.3 (2015), 231–243

DOI: 10.15625/1813-9663/31/3/5296

SCHEDULING ALGORITHM FOR USER REQUIREMENTS ON
CLOUD COMPUTING BASE ON DEADLINE AND BUDGET

CONSTRAINTS

NGUYEN HOANG HA† AND NGUYEN THANH BINH‡

Hue University of Sciences, Vietnam, †nhha76@gmail.com, ‡ntbinh.tt@gmail.com

Abstract. The goal of the SaaS provider is the most profitable; the user’s goal is to meet

requirements as quickly as possible but still within budget and deadline. In this paper, a heuristic

ACO (Ant Colony Optimization) is used to propose an algorithm to admission control, then building

a scheduling algorithm based on the overlapping time between requests. The goal of both algorithms

is to minimize the total execution time of the system, satisfying QoS constraints for all requirements

and provide the greatest returned profit for SaaS providers. These two algorithms are set up and

run a complete test on CloudSim, the experimental results are compared with sequential and EDF

(Earliest Deadline First) algorithms.

Keywords. Admission control, scheduling algorithms, constraint QoS, resource allocation

1. INTRODUCTION

Cloud computing is a distributed computing model for large scale; it provides services to users by

employing resources (hardware, software, storage resources, etc.) via internet. Users may employ

the various resources through their requirements and pay as they use. When users send requests

together with the constraints as to arrival time, deadline, budget, workload, etc. to SaaS vendors,

SaaS providers use PaaS to admission control, then conduct scheduling requirements as Figure 1.

PaaS provider searches for suitable resources on IaaS to logical mapping to user requirements.

Generally, the admission control and scheduling request with parameters such as arrival time,

deadline, budget, workload, and penalty rate, etc. is an NP-complete problem [1]. Therefore, to

give an optimal solution one must often do exhaustive search while complexity is exponential, so this

method can’t be applied. To overcome this disadvantage people often use heuristic methods to offer

a near optimal solution as ACO method [2, 3], techniques optimized fuzzy bees [4], greedy method

EDF [5,6], . . .

In cloud computing environment, users rent through internet services and pay a fee for use.

Therefore, the scheduling algorithm based on constraint QoS (Quality of Service) is often used. In

this case, the user’s parameters such as time, users’ service fees, providers’ service fees, reliability,

etc., are given priority when scheduling. J. Deng and colleagues [7] made scheduling model for the

requirements on the cloud computing environment with the goal of bringing the highest profit for

the service provider but looking in detail at the two participating elements of budget and deadline

requirements. The study [8, 9] focuses on the scheduling requirements for power savings on data

center. The recent study by N. Ramkumar [10] of schedule in real-time requirements used for priority

queues mapped into resource requirements but focused to solve scheduling tasks quickly satisfy most

c© 2015 Vietnam Academy of Science & Technology

http://dx.doi.org/10.15625/1813-9663/31/3/5296
mailto:nhha76@gmail.com
mailto:ntbinh.tt@gmail.com

232 SCHEDULING ALGORITHM FOR USER REQUIREMENTS ON CLOUD COMPUTING ...

of the requirements deadline regardless of cost and its budget. S. Irugurala and K. S. Chatrapati [11]

make scheduling algorithm with the objective to bring the highest return for SaaS providers but

considering between the two types of costs: the cost of initializing virtual machine (VM) and the fee

of virtual machine which are used to select resources. In this paper, the virtual machines on the data

center are used to map the requirements aiming at making real-time implementation of the system

minimal but still meeting deadlines and budgets requirements. An ACACO algorithm is proposed

with the goal of making real-time implementation of the system to the least in order to satisfy user

and combining with this algorithms for proposing MACO algorithm to bring big profits to SaaS

providers.

The article includes: building system model [section 2], building algorithm, introducing two

ACACO and MACO algorithms then simulating, evaluating between the algorithms [section 3] and

conclusions [section 4].

2. SYSTEM MODEL

Figure 1: General model of components in cloud computing

Systems in cloud computing en-

vironment consist of components:

User, SaaS providers, PaaS and

IaaS. Users send requests to

use the attached software to

their QoS requirements to the

SaaS provider. PaaS providers

use component admission control

here to analyze the QoS parame-

ters and to decide acceptance or

rejection of the request based on

the user’s abilities, the availabil-

ity and cost of virtual machines.

If the request is accepted, the

scheduling component is respon-

sible for locating the resources for

the user’s requirements such as

Figure 1.

2.1. User model

Users send N service requests {t1, t2, ..., tN} to SaaS vendors, each request ti(ai, di, bi, αi, wi, ini,
out i) includes the following constraints:

- ai: Arrival time of request.

- Deadline di: Longest time users need to wait for the results.

- Budget bi: The maximum cost users will pay for the services.

- Penalty rate αi: A ratio of compensation to the user if the SaaS vendor does not provide timely.

- Workload wi: How many MI (million instruction) are required to meet the requirements.

NGUYEN HOANG HA AND NGUYEN THANH BINH 233

- Size of input and output file: ini and out i

2.2. SaaS providers model

SaaS providers lease resources from the IaaS provider and its leasing software as services for users.

The goal of SaaS provider is how to minimize the cost of using resources from the IaaS providers to

bring the highest profit to them.

2.3. IaaS provider model

In cloud computing environment with Y IaaS provider {x 1, x2, ..., xY }, each IaaS provider provides

M virtual machines {vm1, vm2, ..., vmm} for SaaS providers and is responsible for coordinating the

VMs which runs on the their physical resources, each virtual machine vmjx(tjx, pjx, sjx,Dtpjx,Dtsjx)
of the vendor x attributes includes:

- Initialization time tjx: How long it takes to deploy one virtual machine.

- Price pjx: Pricing depends on per hour that SaaS vendors must pay for IaaS providers using

VMs

- sjx: Processor speed of virtual machines (MIPS)

- Dtpjx: The price SaaS vendors must pay to transport data from resource provider to user’s

computer.

- Dtsjx: Data transporting speed depends on network performance.

2.4. PaaS provider model

All IaaS’s resouce providers are not related to one another, can be executed in parallel and are

represented by R. We set schedule for N requests independently not to follow any particular order

of priority (non-preemptive) on Y providers. The requirements are denoted npmtn. The aim is to

find the minimum total completed time for requirements but still satisfying deadline and budget of

the requirements, it means that Tmin must be found. So the model is R | npmtn | Tmin
Let Tijx is the time to process the request i on the virtual machine j of resource providers x.

Then time Tijx is determined as follows:

Tijx = CTijx +DTijx + TIijx + βijx (1)

Therein:

- CT ijx: Time to process the requests depends on the workload wi of the request i and the

speed sjx of virtual machines j on provider x:

CTijx =
wi
sjx

(2)

- DT ijx: Time to transfer data including time to send data to and retrieve data from resource

providers depend on the size of the input file size ini and output file size out i of the request

i, data transfer speed Dtsjx of virtual machinesj on provider x:

DTijx =
ini + outi
Dtsjx

(3)

234 SCHEDULING ALGORITHM FOR USER REQUIREMENTS ON CLOUD COMPUTING ...

- TI ijx: Virtual machine initialization time is given.

- βij : exceeded time deadline of the request i on virtual machine j of provider x.

Call Cijx the cost of executing the request i on the virtual machine j of the resource provider x.

Mean while Cijx costs include costs:

- The cost of executing request CPijx depends on the price of pjx, sjx speed of virtual machine

j of resource provider x and workload wi:

CPijx = pjx∗
wi
sjx

(4)

- The cost of data transmission CTDijx includes the cost of sending data to and retrieve data

from resource providers depend on the size of the input file ini and output file outi of the request

i, data transfer speeds Dtsjx and prices to transfer data Dtpjx from the virtual machine j of

the resource provider x to user computers:

CTDijx = Dtpjx∗
ini + outi
Dtsjx

(5)

- Costs initialized CI ijx virtual machine depends on the initialization time tijx and price pijx
of the virtual machine j and the resource providers x:

CIijx = tijx∗pijx (6)

- Costs of the SaaS provider must be returned to the users if not meeting the deadline (CRijx),

depending on the penalty rate (αi) and exceeded time deadline βijx:

CRijx = αi∗βijx (7)

The goal of the paper is to construct algorithms to find the virtual machine in the data center

to minimize the time of completion, such as:

Min
i = 1..N

 Y∑
x=1

M∑
j=1

(CTijx +DTijx + TIijx + βijx)

 (8)

- For the profit of SaaS provider, the cost of request i must satisfy the requirements of its budget

that is:

CPijx + CTDijx + CIijx + CRijx < bi, i = 1 . . .M, j = 1 . . .M, x = 1 . . . Y (9)

- To satisfy the constraints of user, the execution time of request i must meet the deadline itself.

CTijx +DTijx + TIijx + βijx ≤ di, i = 1 . . .M, j = 1 . . .M, x = 1 . . . Y (10)

Thus, to achieve the proposed goals (8), it must satisfy two constraints (9) and (10).

NGUYEN HOANG HA AND NGUYEN THANH BINH 235

3. CONSTRUCTION OF ALGORITHM

The ACO algorithm is used to make a scheduling algorithm with the objective of making the total

completion time to the minimum but still meet the budget and deadline of the requirements. To apply

the ACO algorithm, one must determine the minimum information function F , heuristic information

ηi, pheromone update and probability P [2, 12].

3.1. Minima function F and heuristic information ηi

Minima function F and heuristic information ηi are used to find the best IaaS provider, depending

on the time taken (Tjx) on the virtual machine j of resource provider x as follows:

F = Max(Tjx), j = 1 . . .M, x = 1 . . . Y (11)

ηi =
1

Tjx
, i = 1 . . . N, j = 1 . . .M, x = 1 . . . Y (12)

Use ηi to find virtual machine j of the resource provider x in having highest priority because the

smaller the time Tjx the higher the information ηi of the request i. The minima function F is used

to calculate probability for the request i; selecting the virtual machine of provider x.

3.2. Pheromone update

Every ant starts from the resource provider IaaS and requests resources randomly. All ants are

maintained in a list, whenever they choose the request on the next resource provider, they will be

saved to the list. At each iteration of the ants, find the minima function and pheromone update as

follows:

τijx = ρτijx + ∆τijx (13)

Therein:

- ∆τijx = 1−ρ
Fk

: with Fk is a minima function of the ant k, the smaller Fk the higher pheromone

it gets.

- τijx: pheromone rate of request i on the virtual machine j of resource provider x.

- ∆τijx: added to the pheromone.

- ρ is the evaporation rate determined in the range (0, 1).

3.3. Request probability

The scheduling algorithms are required to maintain two sets. A set of processing requirements and

other approaching are unhandled. The algorithm is automatically started when all the requests have

been executed, which would moved into the scheduling component. According to [13] first request is

done and it selects providers randomly. The next request will be processing and it selects the next

provider with the probability:

Pijx =
τijxηijx∑Y

x=1

∑M
j=1 τijxηijx

(14)

Therein:

236 SCHEDULING ALGORITHM FOR USER REQUIREMENTS ON CLOUD COMPUTING ...

- ηijx: heuristic information, τ ijx pheromone rate left when moving.

- Pijx is the probability to request i on the virtual machine j of resource provider x depending

on a combination of heuristic and pheromone rate left when moving, basing on the formula

(14) Pijx which has been identified:

Pijx =

(
ρτijx + 1−ρ

Fk

)
. 1
CTijx+DTijx+TIijx+βijx∑Y

x=1

∑M
j=1

(
ρτijx + 1−ρ

Fk

)
. 1
CTijx+DTijx+TIijx+βijx

(15)

3.4. Optimizing cost

Each virtual machine of IaaS providers is hired for hours and SaaS vendors must pay a fixed fee for

the rental hours, if they do not use all their one-hour of hiring time, they also have to pay for a whole

hour. This promotes a demand for effective positioning of costs for requests. Each vendor x can

accept multiple requests, the advantage of validity period of the lease within one hour of request is

taken in the same vendor to provide the highest return for SaaS providers.

The period of validity within an hired hour is called as the advance time of both requests and

defines the set Ti including every request of the same provider with request ti and put the advantage

on request ti. All these requests can share the same virtual machine.

Ti = {tl|dl ≥ diandal < di} (16)

After identifying set Ti, the overlapping time will be calculated. tiljx is defined as the effective

time to calculate the request tl after completing the request of ti on virtual machine j of resource

provider x. The value of tijlx depends on the speed of virtual machines, arrival time, deadline, and

workload of ti and tl. tiljx is calculated as follows:

tiljx =


min (D − Uil, dl − al) ifal − ai ≥ wi

sjx

min (D − Uil, dl − al) ifal − ai ≥ wi
sjx

dl − (ai + Uil) ifal − ai < wi
sjx

anddl − ai < D

(17)

Therein Uil = wi
sjx

+ max (al − di, 0), sjx the speed of virtual machine is mapped to request ti

3.5. ACACO algorithm

Input:

- Creation of pheromone evaporation value initial of ρ is 0.05; the value of pheromone deposit is

0.01; Number of ant (k) is used in the proposed algorithm is 10.

- T = {t1, t2, . . . , tN}: The set of user requests sent in, each request ti is a 7 tuple <
ai, di, bi, pi, wi, ini, outi >

- X = {x1, x2, . . . , xY }, VMx = {vm1x, vm2x, . . . , vmMx}: set of IaaS providers and the vir-

tual machines of provider, every virtual machine vmjx is a 5 tuple vmjx(tjx, pjx, sjx, Dtpjx,Dtsjx).

-S = {}: the set of accepted requests to schedule.

Output:

The scheduling list S contains all approved requests by SaaS provider, each request i is mapped

to the virtual machine j of provider x.

NGUYEN HOANG HA AND NGUYEN THANH BINH 237

Description algorithm (Algorithms 1).

Algorithm 1 Function ACACO() and Function ADMISSION CONTROL(ti ∈ T,X,VMx)

1: function ACACO()

2: for Each ti in T do

3: si= ADMISSION CONTROL (ti,X,VM x);

4: if (si==Reject) then

5: Inform the users that the request has been rejected.

6: else

7: S = S+{s i};
8: end if

9: end for

10: Return S

11: end function

1: function ADMISSION CONTROL(ti ∈ T,X,VMx)

2: ST={}
3: for each ant k do

4: for each provider x in X do

5: Calculating heuristic information for request ti on virtual machines vmjx

ηijx =
1

CTijx +DTijx + TIijx + βijx

6: Find the value of current pheromone: τ ijx
7: Pheromone update: τijx = ρτijx + 1−ρ

Fk

8: Calculate the probability for request ti mapped into virtual machine vmjx:

Pijx =

(
ρτijx + 1−ρ

Fk

)
. 1
CTijx+DTijx+TIijx+βijx∑Y

x=1

∑M
j=1

(
ρτijx + 1−ρ

Fk

)
. 1
CTijx+DTijx+TIijx+βijx

9: From the probability on virtual machines vmjx, find the virtual machine which

has the highest probability, but the cost ≤ bi and processing time ≤ di if found

then save the request ti, virtual machine vmjx in the list ST

10: end for

11: end for

12: if ti is not found in the list ST then

13: Return Reject

14: else

15: Find the best solution of si by analyzing the ants in scheduling list of ST.

16: Return si
17: end if

18: end function

238 SCHEDULING ALGORITHM FOR USER REQUIREMENTS ON CLOUD COMPUTING ...

Correctness of the algorithm

- T. Stutzle and M. Dorigo [12] proved the convergence of the ACO algorithms which ensure the

convergence of proposed algorithm ACACO.

- In the cloud computing environment there is available data center, each data center has servers,

each server creates multiple virtual machines. So the set of input data X and VM x is fully

determined.

- The formation of two sets T and S certainly has limit because of the requests to schedule by

batch and follows a periodic basis; two sets of requirements not yet scheduled are used, this

set requests scheduling then other request keeps accepting the unscheduled request and store

in queue, when this request done in scheduling then the system would process scheduling for

the next in queue and keep iterating.

- ACACO algorithm maps the request i into the virtual machine j of provider x (vmjx) base

on the probability of Pijx:

Pijx =

(
ρτijx + 1−ρ

Fk

)
. 1
CTijx+DTijx+TIijx+βijx∑Y

x=1

∑M
j=1

(
ρτijx + 1−ρ

Fk

)
. 1
CTijx+DTijx+TIijx+βijx

Therefore, whenever the time Tijx lessens then the minima function Fk and heuristic information

ηi are larger, this leads to the pheromone and the probability of selecting the virtual machine vmjx

getting higher. So, when mapped request gets into the high speed virtual machine, that makes the

total time of the system decrease to the exact goal at formula (8).

3.6. MACO algorithm

Input:

ST = {}: contains a set of scheduled requirements.

UST = ACACO(): set the request has been accepted by the SaaS provider.

Output: An optimal schedule to map the request to virtual machine.

Description algorithm (Algorithm 2).

Correctness of the algorithm

The resource rental period is D-minute, therefore ti completes its task on itself with the lesser time

than D-minute, but to pay the fee of D-minute. MACO algorithm takes advantage of this effective

time interval to process the next request, which makes the implementation costs of the entire system

reduced, according to the objectives of SaaS providers.

3.7. Evaluation of algorithm complexity

- ACACO algorithm uses the ants to browse M virtual machine on Y provider to find resources.

Thus, the complexity of algorithm is O(k*M*Y) where k is the number of ant, in the proposed

algorithm, the fixed number of ant is 10, therefore k is considered as the constant.

NGUYEN HOANG HA AND NGUYEN THANH BINH 239

Algorithm 2 Function MACO(UST)

1: function MACO(UST)

2: Sort all requests in UST accordingly to the provider, then all requests of the same

provider will be in the same group.

3: for Each provide x in UST do

4: PUSH(ti);// Save t i into the stack, t i is the first request of the provider x

5: ST=ST+{ti}; S = S-{ti};
6: for Each request of ti in the provider x do

7: ti=POP();// Take t i from Stack

8: Find Ti = {tl|dl ≥ di and al < di and tl is in the same group withti}
9: Calculate tiljx for the requests in Ti as in formula (17). tiljx is calculated on the

virtual machine j of the provider x is mapped by the request ti.

tiljx =


min (D − Uil, dl − al) if al − ai ≥ wi

sjx

D − Uil if al − ai < wi
sjx

and dl − ai ≥ D
dl − (ai + Uil) if al − ai < wi

sjx
and dl − ai < D

10: Find max(tiljx), tl has the largest overlapping time as the next request.

11: Base on max(tiljx) to find wl reload all request status of tl

12: PUSH(tl);

13: ST=ST+{tl}; S = S-{tl};
14: end for

15: end for

16: Base on ST to produce the mapped schedule onto the request of resources.

17: end function

- MACO algorithm use Quick Sort algorithm to sort the requests according to the provider, which

then the complexity of Quick Sort algorithm is O(2.N. logN2), N is the number of requests. Then

MACO algorithm browses through Y provider, for each provider browsing through the unscheduled

request in it, for each unscheduled request in each provider, the researchers find the set T and calculate

max(tiljx) to figure out the request of tl. Thus, the complexity of the three-loop is O(Y ∗N2). The

output of the ACACO algorithm is the input of the MACO algorithm, so the complexity of MACO

algorithm is O(2.N. logN2 +Y ∗ N2). This complexity is still maintaining the polynomial time for

the proposed algorithm.

3.8. Simulation and evaluation of algorithms.

The algorithms are installed in the Java language simulation (NetBean 7.1.1, JDK 6), CloudSim tools

package [14] with the following parameters: Use 4 Datacenter, 10 physical hosts, 100 virtual machines

and the number of requests change from 1000 to 5000. The parameters of users and resource providers

are identified below:

240 SCHEDULING ALGORITHM FOR USER REQUIREMENTS ON CLOUD COMPUTING ...

3.8.1. On the user side

The inherited Cloudlet class is to create the users’ requests and parameters: arrival time, workload,

budget, penalty rate and deadlines. These parameters are defined as follows: The time to be taken at

random from 1 to 500, the deadline is generated randomly between (dl,du) minutes and the different

values of dl and du are limited from 10 to 1500, deadline must be greater than arrival time. Workload

is taken at random from 8*104 MI to 105MI, based on the workload the required budget is estimated,

the remaining parameters are taken as implicit in CloudSim.

3.8.2. On the resource provider’s side.

The researchers simulate upon four resources providers; each resource provider has a number of

virtual machines, costs, speed, and different bandwidth. In simulation installation, the Vm class of

CloudSim is inherited to create a virtual machines with the parameters of speed and cost are defined

as follows: speed is taken at random from 103 to 5*103 MIPS corresponding with the costs which

are real numbers taken at random from 0.001 to 0.01, other parameters of the virtual machine as a

virtual machine initialization time, bandwidth, etc. took default values of CloudSim.

3.8.3. Simulation Results

A. Analyze the total cost and execution time (makespan) as fixed requirements

Figures 2 and 3 show the total cost and the processing time of four algorithms EDF, ACACO, MACO

and sequential using 100 virtual machines and 1000 requests. The values of simulation are the results

of 5 tests and the average results are obtained.

Figure 2: Total time of EDF, ACACO, sequen-
tial and MACO algorithm with fixed requests

Figure 3: Total cost of EDF, ACACO, Sequen-
tial and MACO algorithm with fixed requests

Simulation results show that the total execution time of algorithms MACO and ACACO are al-

most as same as sequential algorithms, but the cost of MACO is always lower than EDF, ACACO, and

sequential algorithms. Because the ACACO algorithm is responsible for admission control, accepting

its satisfied deadline and budget requests, so after the ACACO algorithm has done processing, the

accepted requests are got with less time consuming, this requesting set is the input data of MACO

scheduling algorithm. MACO scheduling algorithm continues taking advantage of the advanced time

NGUYEN HOANG HA AND NGUYEN THANH BINH 241

interval of requests onto IaaS resource provider, which lead to the total of processing fee reduction

as Figure 3.

Sequential algorithm does not consider the overlapping period between requests, but uses exhaus-

tive algorithm to find the resource, so there will be many cases that the request can’t use all the rental

time, this will make the cost of the sequential algorithm increase and take a huge amount of time to

make a schedule. As EDF algorithms only consider the ratio used: U =
∑m

i=1
Ci
Ti
≥ 1 (where Ci is

the execution time and Ti corresponded deadline) [5,6] to map the request to the resource, thus EDF

algorithm only ensures the request to complete before the deadline, but not interested in the budget

of request.

B. Analyze the total of requests that the SaaS provider is penalized

Most of all the EDF algorithm’s requests are non-penalized, because the algorithm selects the re-

sources to complete before the deadline of request, and sequential algorithms, ACACO and MACO

consider additional penalty costs while still having profit for SaaS providers then such requests are

acceptable. Figure 4 shows the total number of requests that providers get fine due fixed requests is

1000.

Figure 4: Total number of requests are fined for
ACACO, Sequential and MACO as fixed
requests

Figure 5: Total number of requests is fined for
ACACO and MACO algorithm as changing
requests

C. Analyze total cost, total execution time and total number of requests that
SaaS providers are fined while maintaining a fixed number of virtual machines
and changing number of requests

This section presents the results of the total cost, total time and total number of requests that are

fined because of changing the number of requests from 1000 to 5000 and also maintaining the fixed

number of virtual machines as 100 of the three algorithms, as shown in Figures 5, 6, and 7.

Sequential algorithm uses the exhaustive algorithm to find the resource, therefore the larger the

requests are, the more time used for scheduling the complexity of algorithm will be exponential, so

the sequential algorithm is not considered in this section.

242 SCHEDULING ALGORITHM FOR USER REQUIREMENTS ON CLOUD COMPUTING ...

Figure 6: The total time of the EDF, MACO
and ACACO algorithm when requests change

Figure 7: The total cost of the EDF, MACO
and ACACO algorithm when requests change

When the number of requests increases, it will have many requests that can’t use all the rental

time, while MACO algorithm would be able to use all of such rental time. This will lead to the total

cost of MACO algorithm is much smaller than EDF and ACACO algorithms, as shown in Figure 7.

However, in some cases when the number of penalized request is larger like the case in Figure 5, then

the provider must pay the higher penalized cost. This will lead to higher total cost, such as of the

3000 requests shown in Figure 7. So, the total cost of both ACACO and MACO algorithms has to

be compared to decide which algorithm is best one.

As shown in Figure 6, when the number of requests gets larger, the total of processing time

will increase, the total processing time of both ACACO and MACO are nearly equal, while EDF

algorithm only considers to use the ratio of U to find resources, not considering in finding the best

resources, so that the total execution time of the EDF is often greater than the total execution time

of ACACO and MACO.

4. CONCLUSION

The article focuses on researching the admission control algorithm and scheduling for users’ requests

with QoS constraints, in each request, the researchers check all factors such as arrive time, cost,

deadline, budget, wordload, rates of penalization, input and output file sizes; each virtual machine

has speed, cost and different bandwidth. This paper proposes an ACACO algorithm to find the

resources with high speed in order to bring the fastest execution time to users. In combining with

ACACO algorithm, the MACO algorithm is proposed to use up all the time that the requests rented

for bringing the most profit to SaaS provider.

According to the analysis and strategically experimental results of the same samples and using

some CloudSim simulations show that ACACO and MACO algorithms have impressive improvement

of cost and time compared to the sequential and EDF algorithm.

REFERENCES

[1] O. Elzeki, M. Reshad, and M. Elsoud, “Improved max-min algorithm in cloud computing,”
International Journal of Computer Applications, vol. 50, no. 12, pp. 22–27, 2012.

NGUYEN HOANG HA AND NGUYEN THANH BINH 243

[2] M. Dorigo and T. Stützle, Ant Colony Optimization. A Bradford Book, The MIT Press,
Cambridge, Massachusetts London, England, 2004.

[3] K. Li, G. Xu, G. Zhao, Y. Dong, and D. Wang, “Cloud task scheduling based on load balancing
ant colony optimization,” in Chinagrid Conference (ChinaGrid), 2011 Sixth Annual. IEEE,
2011, pp. 3–9.

[4] J.-s. Lin and S.-h. Wu, “Fuzzy artificial bee colony system with cooling schedule for the seg-
mentation of medical images by using of spatial information,” Res. J. Appl. Sci. Eng. Technol,
vol. 4, no. 17, pp. 2973–2980, 2012.

[5] A. Burns, R. I. Davis, P. Wang, and F. Zhang, “Partitioned EDF scheduling for multiprocessors
using a C = D task splitting scheme,” Real-Time Systems, vol. 48, no. 1, pp. 3–33, 2012.

[6] L. Kruk, J. Lehoczky, K. Ramanan, S. Shreve et al., “Heavy traffic analysis for EDF queues
with reneging,” The Annals of Applied Probability, vol. 21, no. 2, pp. 484–545, 2011.

[7] J. Deng, Y. Zhao, and H. Yuan, “A service revenue-oriented task scheduling model of cloud
computing,” Journal of Information and Computational Science, vol. 10, no. 10, pp. 3153–3161,
2013.

[8] M. Mao, J. Li, and M. Humphrey, “Cloud auto-scaling with deadline and budget constraints,”
in 11th IEEE/ACM International Conference on Grid Computing (GRID), 2010. IEEE, 2010,
pp. 41–48.

[9] K. H. Kim, A. Beloglazov, and R. Buyya, “Power-aware provisioning of cloud resources for
real-time services,” in Proceedings of the 7th International Workshop on Middleware for Grids,
Clouds and e-Science. ACM, 2009, pp. 1–6.

[10] N. Ramkumar and S. Nivethitha, “Efficient resource utilization algorithm (ERUA) for service
request scheduling in cloud,” International Journal of Engineering and Technology (IJET), vol. 5,
no. 2, pp. 1321–1327, 2013.

[11] S. Irugurala and K. S. Chatrapati, “Various scheduling algorithms for resource allocation in
cloud computing,” The International Journal of Engineering and Science (IJES), vol. 2, pp.
16–24.

[12] T. Stutzle and M. Dorigo, “A short convergence proof for a class of ant colony optimization
algorithms,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 4, pp. 358–365, 2002.

[13] K. Kousalya and P. Balasubramanie, “An enhanced ant algorithm for grid scheduling problem,”
Int J Comput Sci Netw Secur, vol. 8, no. 4, pp. 262–271, 2008.

[14] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simulation of scalable cloud com-
puting environments and the cloudsim toolkit: Challenges and opportunities,” in International
Conference on High Performance Computing & Simulation, HPCS’09. IEEE, 2009, pp. 1–11.

Received on November 11 - 2014
Revised on June 25 - 2015

	INTRODUCTION
	SYSTEM MODEL
	User model
	SaaS providers model
	IaaS provider model
	PaaS provider model

	CONSTRUCTION OF ALGORITHM
	Minima function F and heuristic information i
	Pheromone update
	Request probability
	Optimizing cost
	ACACO algorithm
	MACO algorithm
	Evaluation of algorithm complexity
	Simulation and evaluation of algorithms.
	On the user side
	On the resource provider's side.
	Simulation Results

	CONCLUSION

