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Abstract. The protocol of privacy-preserving clustering with distributed EM mixture modeling
was proposed. However, it is not completely secure in the situation that something more than just
the model parameters are revealed. Specially, when the dataset is horizontally partitioned into just
two parts, this reveals extra information. The aim of this work is firstly to develop a more general
protocol which allows the number of participating parties to be arbitrary and more secure. Secondly,
we propose a better method for the case in which the dataset is horizontally partitioned into only
two parts. This method allows computing covariance matrices and final results without revealing the
private information and the clustering centers.

Tóm tắt. Mô.t số giao thú.c da’m ba’o t́ınh riêng tu. trong bài toán phân cu.m dũ. liê.u du.. a trên thuâ.t
toán EM dã du.o.. c dè̂ xuất trong cô.ng dồng nghiên cú.u. Tuy nhiên, các giao thú.c này không hoàn
toàn da’m ba’o t́ınh riêng tu., v̀ı trong mô.t số t̀ınh huống mô.t vài tham số cu’a mô h̀ınh có thê’ bi. lô. ,
dă.c biê.t khi tâ.p dũ. liê.u chı’ du.o.. c phân thành hai phà̂n theo chiè̂u ngang. Bài báo này gió.i thiê.u hai
dóng góp ch́ınh trong mô.t phu.o.ng pháp mó.i gia’i bài toán trên. Mô.t là giao thú.c mó.i cho phép mô.t
số lu.o.. ng tùy ý các thành viên tham gia vào viê.c phân cu.m dũ. liê.u và da’m ba’o tốt ho.n t́ınh riêng tu.

cho dũ. liê.u cu’a các thành viên. Hai là lò.i gia’i tốt ho.n trong tru.̀o.ng ho.. p tâ.p dũ. liê.u chı’ du.o.. c phân
thành hai phà̂n theo chiè̂u ngang. Phu.o.ng pháp này cho phép t́ınh toán các ma trâ.n hiê.p phu.o.ng
sai và các kết qua’ cuối vó.i viê.c da’m ba’o không làm lô. các thông tin riêng tu. cũng nhu. dối tu.o.. ng
trung tâm cu’a mỗi cu.m dũ. liê.u.

1. INTRODUCTION

The growth of Internet has been creating a lot of opportunities for cooperative computa-

tion, in which cooperative data mining is an emerging area. It allows organizations to be able

to cooperate with each others to obtain the mining result on their joint datasets. However,

privacy concerns prevent organizations from revealing their private databases for various le-

gal and commercial reasons. Therefore, the challenge is whether we can obtain the results

of mining while still preserving the data secrecy. Privacy preserving data mining (PPDM)

techniques have been proposed to address this kind of problem [18].

Clustering is one of the most popular techniques of data mining. The task is to group sim-

ilar objects in a given data set into clusters with a goal of minimizing an objective function [7].

Expectation-maximization (EM) is an important clustering technique, which uses an iterative
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method including two steps, expectation (E) step, which computes an expectation of the log

likelihood by using the estimated parameters in M step, and maximization (M) step, which

computes the parameters that maximize the expected log likelihood of data set [2], [14]. EM

is widely used in many applications such as customer behaviour analysis, targeted marketing,

and so on.

To our knowledge, there has been only one secure method for EM-based mixture model

clustering from horizontally distributed sources so far [1], [12]. The basic idea of this method

is that in each iteration, each party creates a local model from its data objects and computes

global information from the previous iteration, then it securely merges its local model with

the other’s ones to generate the global model. This provides sufficient information to compute

the global information needed for the next iteration. Once this process converges, each party

can determine the clusters for its objects. However, this method is not completely secure in

the situation that something more than just the model parameters are revealed. Specially,

when the dataset is horizontally partitioned into just two parts, because the global model is

a sum of local models, in case only two parties, which often happens in practice, each party

could compute other party’s local model by subtracting its local model from the global model.

This work is firstly to develop a privacy preserving EM-based mixture model clustering

protocol for the multi-party partitioned data model. Unlike the existing protocol, our pro-

tocol allows the number of participating parties to be arbitrary, moreover it does not reveal

numerators and denominators in calculating the parameters, therefore, the parties cannot

learn extra information of the others. Secondly, we propose a better method for the case

in which the dataset is horizontally partitioned into only two parts. This method requires

protecting privacy of intermediate global information in particular the intermediate candidate

cluster centers without loss of accuracy. To address this problem, we decompose the problem

into subsecure computation works, such as the covariance matrices, means and the posterior

probabilities computation.

The rest of this paper is organized as follows. In section 2, we briefly discuss related

background, such as the EM algorithm and the security model. In section 3, we present the

privacy preserving EM-based clustering protocol for the multi-party model. In section 4, we

present the privacy preserving EM-based clustering protocol for the two-party model without

disclosing cluster centers. In these sections, using the standard method of evaluating the

protocols in PPDM studied in [3, 19], we provide an analysis of privacy and the estimation

method of communication cost to prove (evaluate) the validity of our proposed methods.

Finally, section 6 concludes our work.
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2. BACKGROUND

A. EM-based mixture model clustering

In this section, we review the EM algorithm for Gaussian Mixture model. More details on

the EM algorithm and mixture models can be found in [2] and [14].

Let D be a data set that has m objects {x1, ..., xm} described by d attributes. Denote

xj = (xj [1], xj [2], ..., xj [d]) the attribute vector of xj . Assume that there exist k classes in

the data set D, each follows some Gaussian distribution. The parameters of the class i are

ψi = {µi,Σi, πi}, in which µi = (µi[1], ..., µi[d]) is the center of the Gaussian distribution,

Σi is the covariance matrix of the distribution and πi is the probability of the class i. The

normal density function of class i can be represented by

f(x;ψi) =
|Σ−1

i |1/2

(2π)d/2
exp(−1

2
(x− µi)TΣ−1

i (x− µi)).

Thus, given the unknown parameters set ψ = {ψ1, .., ψk}, the normal mixture model is

f(x;ψ) =
k∑

i=1

πif(x;ψi).

The likelihood of the set data D is represented by

L(D;ψ) =
m∏

j=1

f(xj ;ψ).

The maximum likelihood principle means that the estimators that maximize the data

likelihood are consistent estimators of the true parameters. The maximizing the likelihood of

the set D is usually transformed to an equal maximization problem on the following variable,

called log likelihood.

log(L(D;ψ)) = −1
2
log(2π)− 1

2

k∑

i=1

m∑

j=1

zij(log|Σi|

+
1
2
(xj − µi)TΣ−1

i (xj − µi)),

where zij is the posterior probability of xj from class i, it can be calculated by

zij =
f(xj ;ψi)πi∑k
l=1 f(xj ;ψl)πl

. (1)

The EM algorithm is to estimate the parameters set ψ. To estimate ψ, it starts with

a randomly chosen initial parameter configuration ψ0. Then, it keeps invoking iterations to

recompute ψt+1 based on ψt. Every iteration consists of two steps:
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E-step: Compute the expected value of zij .

M-step: Update the parameters ψt+1 using the following equations

µ
(t+1)
i =

∑m
j=1 z

(t)
ij xj

∑m
j=1 z

(t)
ij

, (2)

Σ(t+1)
i =

∑m
j=1 z

(t)
ij (xj − µ

(t+1)
i )(xj − µ

(t+1)
i )T

∑m
j=1 z

(t)
ij

, (3)

π
(t+1)
i =

∑m
j=1 z

(t)
ij

m
. (4)

The algorithm stops when |log(L(ψ(t+1)) − log(L(ψ(t))| < ε, where ε is a preselected

threshold.

B. The security model

The privacy preservation of the proposed protocols based on the semi-honest security

model. In this model, each party participating in the protocol has to follow the rules using its

correct input, and it cannot use what it sees during execution of the protocol to compromise

the security. This model is reasonable for many real situations, because the parties who want

to mine data for their mutual benefit will follow the protocol to get correct results. The

definition of secure two party computation in the semi-honest model is stated in [5]. Here is

a summary of the definition.

Let x1 and x2 be inputs of two parties and Π be a two-party protocol for computing a

function f : (x1, x2) → (y1, y2). The view of the ith party (i ∈ {1, 2}) after having participated

in protocol Π, denoted by V iewΠ
i (x1, x2) is (xi, ri, mi1, ..., mik), which is the input xi, all

messages (mi1, ..., mik) received by the ith party while executing the protocol and ri are

random bits generated by the ith party. We say that Π privately computes f if there exist

probabilistic polynomial-time algorithms Si (i ∈ {1, 2}), such that

{Si(xi, yi)}{x1,x2}
c≡ {V iewΠ

i (x1, x2)}{x1,x2},

where c denotes computational indistinguishability. Basically, the definition states that a

computation is secure if the view of each party during the execution of the protocol can be

effectively simulated by the input and the output of the party. Therefore, in order to prove

security of the protocol, we have to show that there exists a simulator for each party i that

satisfies the above equation.

In this paper, we also use the composition theorem for the semi-honest model that its

discussion and the proof can be found in [5]. The composition theorem states that if a protocol

can be decomposed into several sub-protocols, then security of the protocol will be proved if

we can show that the subprotocols are secure.
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Composition theorem. Suppose that g is privately reducible to f and that there exists a
protocol for privately computing f. Then there exists a protocol for privately computing g.

3. PRIVACY PRESERVING CLUSTERING

FOR THE MULTI-PARTY DISTRIBUTED DATA

Assume that the data setD includingm objects {x1, ..., xm} is horizontally partitioned into

n parties, where each party l has a data set Dl including ml objects, where m1 + ...+mn = m.

Assume that the parties want to cluster the joint data set without revealing anything except

for the final results. So, each party could learn the cluster to which each of their data objects

belongs, but they learn nothing else. We are assuming that clustering on the joint data set of

the n parties is more desirable than clustering on the n data sets individually.

As already pointed out in section 2, the goal of the cluster algorithm is to compute zij . To

obtain zij , each party needs to know the covariance matrix Σi, the vector of means µi and πi

in each iteration of the algorithm. We rewrite the equations for computing these parameters

as follows:

µ
(t+1)
i =

∑n
l=1Ail∑n
l=1 Cil

, (5)

Σ(t+1)
i =

∑n
l=1Bil∑n
l=1 Cil

, (6)

π
(t+1)
i =

∑n
l=1 Cil∑n
l=1ml

, (7)

where

Ail =
∑

xj∈Dl

z
(t)
ijlxj , (8)

Bil =
∑

xj∈Dl

z
(t)
ijl (xj − µ

(t+1)
i )(xj − µ

(t+1)
i )T , (9)

Cil =
∑

xj∈Dl

z
(t)
ijl , (10)

and zijl is the posterior probability of xj from class i, where xj ∈ Dl. Denote by {zijl} the

set of all zijl values.

Clearly, Ail, Bil,Cil values can be computed locally at each site. Therefore, a method

proposed in [1] and [12] for preserving privacy clustering is that, each party locally compute

the parameters Ail, Bil and Cil. The global parameters are given by the sum of the local

parameters. The secure sum protocol is used to secure compute the global parameters. Thus,

the required µi, Σi and πi parameters can simply be computed by dividing the appropriate
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global sums. After obtaining the global parameters µi, Σi and πi, zijl can be computed locally

by equation (1).

However, the given protocol is not completely secure, it reveals the sum result of numerator

and denominator, this will reveal a bit extra information. For example, at least one party

knows the number of object in each class and this party can guess the upper bound and the

lower bound values of attributes of remaining parties if the number of participating parties

is small. Specially, with just two parties, each party can get exactly the local parameters of

the remaining parties. Thus, the problem is to calculate and share µi, Σi and πi parameters

without knowing the shared numerator and shared denominator.

To solve this problem, we can use the following secure logarithm approximate method

together with secure sum computation method. M.Kantarcioglu and J.Vaidya [10] use this

idea for secure probability computation. For example, consider computing µi, assuming that

A =
∑n

l=1Ail and C =
∑n

l=1 Cil are in the range [0...M ].

• In the first step, party 1 chooses two random numbers R1 and R2 in [0...M ], and then

sends R1 +Ai1 mod M and R2 + C1 mod M to party 2.

• Starting from party 2, each party l receives the results R1 +
∑l−1

j=1Aij mod M and

R2 +
∑l−1

j=1 Cij mod M from party l − 1, adds Ail, Cil to these results and passes to

the next party. This process stops at party n, it receives A + R1 mod M and C + R2

mod M .

• Party 1 and party n use the secure approximate ln(x) protocol given in [13], party 1
obtains u1 and v1, party n obtains un and vn, where u1 + un = αln(A + R1 − R1

mod M) mod M , and v1 + vn = αln(C + R2 − R2 mod M) mod M , where α is a

public constant used to make all elements integer.

• Party n computes sn = vn − un mod M and sends it to party 1.

• Party 1 computes s1 = sn + v1 − u1 mod M.

• Finally, all parties can calculate µi = exp(s1/α).

We call this method be secure multi-party division. Using this method we can present the

privacy preserving EM clustering for multi-party distributed data as in Protocol 1.

Analysis of privacy: In protocol 1, communication only occurs at steps 6, 8 and 12. At

step 6 and 8 it uses the secure multi-party division method to compute and share the global

information without disclosing private information. At step 12, computing and sharing the log

likelihood difference value do not disclose private information, then applying. Composition

theorem, we can conclude that protocol 1 is secure. Indeed, we now check whether the revealed

values at the above steps can be used to deduce any information on individual data items.
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Protocol 1 Privacy preserving clustering for multi-party distributed data
Input: There are n parties, each party l has the data set Dl (l = 1, ..., n)
Output: Each party knows the cluster to which each of their data objects belongs
1: For each l ∈ {1, ..., n}, party l randomly initializes zijl to 0 or 1 ( i = 1...k, j = 1...ml).
2: t:=0
3: while δ < ε do
4: for i = 1...k do
5: For each l ∈ {1, ..., n}, party l computes Ail and Cil by equations (8) and (10),

respectively.
6: All parties jointly compute µ

(t+1)
i and π

(t+1)
i by the secure multi-party division

method. All parties obtain µ(t+1)
i and π(t+1)

i .
7: For each l ∈ {1, ..., n}, party l uses the result at the previous step to locally compute

Bil by equation (9).
8: All parties jointly compute Σ(t+1)

i by the secure multi-party division method. All
parties obtain Σ(t+1)

i .
9: For each l ∈ {1, ..., n}, party l locally computes zijl by equation (1)

10: end for
11: t = t + 1
12: The parties jointly compute the log likelihood difference δ = |log(L(ψ(t+1)) −

log(L(ψ(t))|
13: end while

At step 6 and 8, the parties 2, ...n only involve in the secure sum protocol, thus, each party

cannot infer anything except the result. Between two parties 1 and n have communication

that are involved in the secure approximate logarithm protocol, party 1 (resp. party n) only

received the message u1 and v1 (un and vn) that are uniformly distributed in [0...M ]. The

messages are easily simulated by choosing uniformly a number in [0,...M ] [13]. In short, each

party l only knows the global shares µ
(t+1)
i , Σ(t+1)

i and π
(t+1)
i . They do not know any private

information. These shares are distilled from many data items, so deductions on these values

are not possible.

At step 12, the parties compute the log likelihood difference value (δ), we have

log(L(ψ(t)) =
k∑

l=1

E
(t)
l ,

where,

E
(t)
l =

∑

xj∈Dl

k∑

i=1

log(πif(xi;ψ(t))).

Therefore, to obtain δ, each party l needs to share its log likelihoods E
(t)
l and E

(t+1)
l .

Clearly, disclosing the local log likelihood does not make privacy breaches, because it is distilled

from many data items.
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Communication cost: The communication cost of this protocol at an iteration is dominated

by secure sum computation and calculating logarithm. Therefore, total number of bits trans-

ferred will be O(tk(n+ rlog(|M |))) bit, where r is the order of Taylor series given in [13]. So,

this depends on choosing r.

4. PRIVACY PRESERVING CLUSTERING

WITHOUT DISCLOSING CLUSTER CENTERS

The problem of protocol 1 is that it discloses cluster centers. Therefore, in case with only

two parties, we should note that sharing Σk to each party does not make privacy breaches [11],

but sharing means might allow parties to learn some information of each other. For example,

each party can guess the upper bound and lower bound values of an attribute of the other

party. Moreover, if the global means and the number of objects of each party are together

disclosed, the parties can deduce the local means and the local covariance matrices at each site,

and then the probability that a data point belonging to a specified interval can be calculated

at each site. Another problem is, protocol 1 is based on secure logarithm approximating, so

its accuracy depends on the value of parameter r, to ensure that approximate algorithm has

an rational accuracy, we need to choose a high value for the parameter r to result in a high

communication cost. Therefore, this section presents a better method for the case in which

the dataset is horizontally partitioned into only two parts. Our method is more secure, which

allows each party to obtain the final result without sharing means.

A. Protocol

We decompose the privacy preserving EM-based clustering problem into three following

subproblems:

1) Secure mean computation: Party 1 has a pair (Ai1, Ci1) and party 2 has a pair

(Ai2, Ci2). They need to jointly compute µi = (Ai1 + Ai2)/(Ci1 + Ci2) that party 1 ob-

tains µi1 without other information, party 2 obtains µi2 without other information, where

µi1 + µi2 = (Ai1 +Ai2)/(Ci1 + Ci2). In other words, we need to implement secure computa-

tion for the following functionality (we propose the secure mean computation protocol for this

problem in the next section):

((Ai1, Ci1), (Ai2, Ci2)) 7−→ (µi1, µi2)|µi1 + µi2 =
Ai1 +Ai2

Ci1 + Ci2
.

2) Secure covariance matrix computation: Party 1 (resp. party 2) has the data set D1,

the vector µi1 and the set {zij1} (resp. D2, µi2 and {zij2}). They need to jointly compute Σi

as shown in equation (3), thus both parties obtain Σi without disclosing the local values. In

other words, we need to implement secure computation for the following functionality:

((D1, µi1, {zij1}), (D2, µi2, {zij2})) 7−→ (Σi,Σi).
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We consider computing an element of Σi, recall that the Σi matrix has d rows and d columns

and each element Σi(p, q) of Σi (p ∈ {1, ..., d}, q ∈ {1, ..., d}), computed by formula:

Σi(p, q) =

∑m
j=1 zij(xj [p]− µi[p])(xj[q]− µi[q])∑m

j=1 zij

The numerator of Σi(p, q) can be presented as the scalar product of two vectors U =
(a1, b1, c1, d1, e1, 1) and V = (1, e2, d2, c2, b2, a2), where, for each l ∈ {1, 2}

al=
∑

xj∈Dl

zijl(xj [p] − µil[p])(xj[q]− µil[q]) + µil[p]µil[q],

bl=−
∑

xj∈Dl

zijl(xj [p]− µil[p]),

cl=−
∑

xj∈Dl

zijl(xj [q] − µil[q]),

dl=µil[p],

el=µil[q].

It should be noted that U can be computed by party 1 alone and V can be computed by party

2 alone. Therefore, in order to compute Σi(p, q). Firstly, two parties privately compute the

numerator using the scalar product protocol in [6], party 1 obtains u and party 2 obtains v,

where u+v = U•V . Secondly, they can use Protocol 3 to compute Σi(p, q) = (u+v)/(Ci1+Ci2)

3) Secure posterior probability computation: party 1 (resp. party 2) has µi1 (resp.

µi2). Both party share πi and Σi. One party (assume party 1) having an object xj wants to

compute zij1 (the posterior probability of xj from class i), it can cooperate with party 2 to

compute zij1, thus party 1 obtains zij1, party 2 obtains nothing. In other words, we need to

implement a secure computation for the following functionality:

((Σi, πi, µi1, xj), (Σi, πi, µi2)) 7−→ (zij1, φ).

To obtain zij , party 1 needs to obtain Tj = (xj − µi)TΣ−1
i (xj − µi) and then we can
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compute zij by equation (1). Denote

α1[q] =
d∑

p=1

(xj [p]− µi1[p])Σi(p, q),

β1[q] = −
d∑

p=1

µi2[p]Σi(p, q),

α2[q] = xj [q] − µi1[q]),

β2[q] = −µi2[q],

α =
d∑

q=1

α1[q]α2[q],

β =
d∑

q=1

β1[q]β2[q]

.We can rewrite the equation of Tj as a scalar product of two following vectors:

X = (α, α1[1], ... α1[d], α2[1], ... α2[d], 1),

Y = (1, β2[1], ..., β2[d], β1[1], ..., β1[d], β),

where, X can be computed by party 1 alone; Y can be computed by party 2 alone. Therefore,

the parties can compute the dot products X • Y using the scalar product protocol in [6].

Party 1 obtains Tj without disclosing private information and then he can compute zij as

equation (1).

Based on the above addressed problems, the protocol is formally described in Protocol 2.

Analysis of privacy: In protocol 2, only interaction occurs at steps 6, 7, 8, 9 and 12. At

each step, it uses the secure scalar product and protocol 3 to compute and share the global

information, we should note that where there already exist many scalar product protocols that

are correct and secure [6], [19]. During the execution of this protocol, the parties participating

in the protocol are not able to learn anything other than the final result. Therefore, assume

that the used protocol 3 is secure (the security of this protocol is proved in the next section).

Then applying the composition theorem, we can conclude that protocol 2 is secure. Indeed,

we now check whether the revealed values at the above steps can be used to deduce any

information on individual data items.

At step 6, each party l only obtains the random values µil, they do not know any other

information including µi, so deduction on these values is not possible.

The Σi matrix and the πi value are shared at step 7 and 8, respectively, by themself, they

do not reveal private information, because they are distilled from many data values at sites.

At step 9, each party l obtains its zijl without sharing with the other party. At step 12, the
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Protocol 2 Privacy preserving EM-based clustering without disclosing cluster centers

Input: Party 1 and party 2 have sets D1 and D2, respectively
Output: Each party knows the cluster to which each of their data objects belongs
1: For each l ∈ {1, 2}, party l randomly initializes zijl to 0 or 1 (i = 1...k, j = 1...ml).
2: t:=0
3: while δ < ε do
4: for i = 1...k do
5: For each l ∈ {1, 2}, party l computes Ail and Cil by using equations (8) and (10).
6: Two parties jointly compute µ(t+1)

i by the secure mean computation method (Pro-
tocol 3). Each party l obtains µ(t+1)

il .
7: Two parties jointly compute Σ(t+1)

i by the secure covariance matrix computation
method.

8: Two parties jointly compute π(t+1)
i by Protocol 3.

9: For each l ∈ {1, 2}, party l cooperates with the other party to compute zijl by the
secure posterior probability computation method. Party l obtains zijl, the other
party obtains nothing.

10: end for
11: t = t + 1
12: Two parties jointly compute the log likelihood difference δ = |log(L(ψ(t+1)) −

log(L(ψ(t))|
13: end while

parties compute the log likelihood difference value, and to obtain this value, each party l has

to share its log likelihood with the other party. As analyzed in the previous section, disclosing

the local log likelihood does not make privacy breaches.

The communication analysis: We give an analysis of the communication cost of the pro-

tocol at its one iteration. The total cost is dependent on the number of iterations required to

converge, which is dependent on the data. We should note that the communication cost of the

scalar product protocol is O(tn) bit (see in [6]), where n is the size of input vectors and the

communication cost of the oblivious polynomial evaluation protocol is O(tk) exponentiations

or O(tk|F |) [16], where k is the degree of the input polynomial and |F | is the size of the field

used and depends on the range of the variables in calculation.

Assume that the communication cost for problems 1, 2 and 3 are P1, P2 and P3, respec-

tively. To address problem 1, protocol 3 calls the oblivious polynomial evaluation protocol

three times (with the degree 1 polynomials), so P1 = O(t). To address problem 2, it calls

the scalar product protocol d2 times with the size of input vectors 6, P2 = O(td2). Similarly,

P3 = O(t).
In one iteration of the Protocol 2, the communication occurs at steps 6, 7, 8 , 9. Then, its

communication cost is P = 2P1 + P2 +mP3. Finally, we have P = O(t) +O(td2) +mO(t) =
O(t(d2 +m)). In fact, d is a small constant, thus P = O(tm), this is quite reasonable.
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B. Secure mean computation protocol

In this section, we propose a protocol for the secure mean computation problem based

on the oblivious polynomial evaluation. The problem of the oblivious polynomial evaluation

was first considered in [15]. As with oblivious transfer, this problem involves a sender and a

receiver. The senders input is a polynomial Q of degree k over some finite field F and the

receivers input is an element z ∈ F (the degree k of Q is public). The protocol is such that the

receiver obtains Q(z) without learning anything else about the polynomial Q, and the sender

learns nothing. An efficient solution to this problem was presented in [16]. Protocol 3 defines

the secure mean sharing protocol.

Protocol 3 Secure mean sharing
Input: Assume that two parties Alice and Bob have (n, x) and (m, y), respectively.
Output: Alice obtains r1, Bob obtains r2
1: Alice uniformly chooses an element p from F and defines the linear polynomial

Q1(z) = pz + pn.

2: Alice and Bob engage in a private evaluation of Q1, in which Bob obtains

b1 = Q1(m) = pm+ pn.

3: Bob chooses a random element q ∈ F and defines the linear polynomial

Q2(z) = yz − (pm+ pn)q.

4: Alice and Bob engage in a private evaluation of Q2, in which Alice obtains

a1 = Q2(p) = py − (pn+ pm)q.

5: Alice chooses a random element r ∈ F and defines the linear polynomial

Q3(z) = −rz + py + px− (pn+ pm)q.

6: Alice and Bob engage in a private evaluation of Q3, in which Bob obtains

b2 = Q3(pn+ pm) = −r(pn + pm) + py + px− (pn+ pm)q.

7: Alice has r1 = r and Bob computes

r2 =
b2
b1

+ q = −r +
x+ y

n+m
.

So, the respective outputs of Alice and Bob are r1 and r2, giving us that

r1 + r2 =
x+ y

n+m
.
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Analysis of privacy: We can easily prove that Protocol 3 constitutes a private protocol

for computing the mean value as stated. Indeed, we can show that each party’s view of the

protocol can be simulated based on its input and its output.

During execution of the protocol, Alice only sees the message a1 = py − (pn + pm)q,
where q uniformly selected from F , and y, n and m are constants. Assume that p′ ∈ F (6= p),
a′1=p

′y − (p′n + p′m)q, we have a1 and a′1 be the uniform distribution on a specified set,

the probability that Alice see some values during the execution is 1/|F |. Therefore, the two

ensembles a1 and a′1 are statistically indistinguishable. In other words, the simulator for

Alice will be a uniform number generator. Similarly, Bob sees the messages pm + pn and

−r(pn + pm) + py + px− (pn + pm)q, these two messages are independent because p and r

are independently chosen by Alice, moreover they have the uniform distribution on a specified

set and thus they can be simulated by uniform number generators.

5. CONCLUSION

We have presented the expectation maximization mixture model clustering method for

distributed data that preserves privacy for data of participating parties. Firstly, privacy pre-

serving EM-based clustering method for multi-party distributed data proposed. Unlike the

existing method, our method does not reveal sum results of numerator and denominator in

the secure computation for the parameters of EM algorithm, therefore, the proposed method

is more secure and it allows the number of participating parties to be arbitrary. Secondly, we

propose the better method for the case in which the dataset is horizontally partitioned into

only two parts, this method allows computing covariance matrices and final results without

revealing the private information and the means. To solve this one, we have presented a proto-

col based on the oblivious polynomial evaluation and the secure scalar product for addressing

some problems, such as the means, covariance matrix and posterior probability computation.

The approach of paper allows two or many parties to cooperatively conduct clustering on their

joint data sets without disclosing each party’s private data to the other.
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