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Abstract. In recent years, methods for mining quantitative databases have been proposed. How-

ever, the processing time is fairly much, which affects the productivity of intelligent systems that

use quantitative databases. This study proposes the multibit segment (MBiS) structure to store and

process tidsets to increase the effeciency of mining frequent weighted utility itemsets (FWUIs) from

quantitative databases. With this structure, the calculation of the intersection of tidsets between

two itemsets becomes more convenient. Based on this structure, the authors define the MBiS-Tree

structure and propose an algorithm for mining FWUIs from quantitative databases. Experimental

results for a number of databases show that the proposed method outperforms existing methods.

Keywords. Dynamic bit vector frequent itemset, frequent weighted utility itemset, multibit seg-

ment, tidset

1. INTRODUCTION

Mining frequent itemsets (FIs) to find relationships among items plays an important role in data

mining, especially for associaiton rules [1] and classification based on association rules [2]. Many

algorithms have been proposed to deal with this issue, such as Apriori [1], FP-Growth [3], Charm [4],

Eclat [5], and dEclat [6]. These approaches use either a horizontal or vertical data format. Apriori and

FP-Growth are two typical algorithms that use the horizontal data format. Eclat [7], which is based

on IT-Tree is a typical algorithm that uses the vertical data format. Mining FIs using the horizontal

data format is time consuming since the data need to be scanned several times and the determination

of FIs is fairly complicated. In contrast, the Eclat approach needs to read the data only once to

build the tidsets of 1-itemsets. In the mining of subsequent itemsets, Eclat needs to only calculate

the intersection of individual tidsets of itemsets. Therefore, mining FIs using the vertical format has

received a lot of attention in recent years. A number of algorithms that use the vertical data format

for mining frequent itemsets have thus been proposed Zaki et al. [5] used a tidlist and stored tidsets in

the form of an array, but this representation of tidsets makes the calculation of tidsets timeconsuming
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and requires a lot of memory. Dong et al. [8] and Song et al. [9] used BitTable to store tidsets,

with each tidset being a row that contains |T| bits, where |T| is the number of transactions. The

bit value is “1” if the transaction ID appears in the tidset; otherwise it is “0”. BitTable significantly

improves the mining time and memory usage, since the bit array reduces memory and the calculation

of the intersection of tidsets is fast due to the usage of the AND bitwise operation. However, BitTable

still contains non-significant “0” bits, so memory usage is not optimized and the calculation is not

improved much. Vo et al. [10] used the dynamic bit vector (DBV), which removes “0” bytes at the

start and end of each tidset. DBV considerably improves calculation time. However, DBV does not

remove “0” bytes in the middle of each tidset.

Quantitative databases, commonly used in real-world applications, have attributes such as the

quantity and profit (price of each item, for example) of each item in the transaction. Besides, people

are interested in the profit of each item rather than their presence in each order the same as binary

databases. For example, in a supermarket, a goods order includes the quantity and profit, and the

sale of a suitcase may occur less frequently than that of fish sauce, but the former gives a much higher

profit per unit sold. Therefore, mining FWUIs from a quantitative database is very practical and has

thus attracted a lot of research interest [11–21].

This paper optimizes DBV by removing all “0” bits, creating a multi-bit segment (MBiS), for min-

ing frequent weighted utility itemsets (FWUIs) from quantitative databases. MBiS has the following

advantages:

(i) It optimizes tidset storage in memory since no “0” bits and the continuous streams of “1” bits

are updated in the reading process of the database;

(ii) The calculation of the intersection of two MBiSs are very fast, since only the beginning and

end indices of each segment of “1” bits need to be updated;

(iii) The effectiveness of the proposed method in mining FWUIs from quantitative databases is

demonstrated using experiments.

The paper is organized as follows: Section 2 is a background and reviews some related work.

Section 3 presents the structure of the proposed MBiS, some definitions, and the algorithm for

calculating the intersection of two MBiS’s. The usage of MBiS in the mining of itemsets from a

quantitative database is presented in Section 4. Section 5 shows the results of applying MBiS to

some databases. Section 6 gives the conclusions and suggestions for future work.

2. BACKGROUND AND RELATED WORK

2.1. Quantitative databases

A quantitative databaseDis composed of tuples 〈T , I , W 〉 where T ={t1, t2,. . . , tm} is a set of

quantitative transactions, I ={i1, i2,. . . , in} is a set of items and W ={w1, w2, . . . , wn} is a set

of weights (profits or benefits) that correspond to the items in set I . Each quantitative transaction

tk has the format tk ={xk1, xk2, . . . , xkn}, where xki denotes the quantity of the i-th item in

transaction tk, k =1 to m.

Example 1. Table 1 shows a quantitative databaseD. The set of items I ={A, B, C, D, E}
and there are a total of six quantitative transactions. The set of weights W ={0.6, 0.1, 0.3,
0.9, 0.2}, as shown in Table 2.

In Table 1, transaction t1 = {1, 1, 0, 4, 1} means that there is one of item A, one of item B, four

of item D, one of item E, and none of item C in the transaction.
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Transaction A B C D E

t1 1 1 0 4 1
t2 0 1 3 0 1
t3 2 1 0 3 2
t4 3 1 1 0 1
t5 1 2 2 1 3
t6 0 1 1 1 0

Table 1: Quantitative database

Item Weight

A 0.6
B 0.1
C 0.3
D 0.9
E 0.2

Table 2: Weights of items in Table 1

Mining FWUIs from a quantitative database requires determining the support of each itemset.

Khan et al. [15] defined two useful quantities namely transaction weighted utility (twu) and weighted

utility support (wus), as:

twu(tk) =

∑
ij∈S(tk)

wj × xkij

|S(tk)|
(1)

where twu(tk) is the transaction weighted utility of transaction tk, wj is the quantity of item ij in

transaction tk, wj is the weight of item ij , and S(tk) is the number of items in transaction tk

Example 2. twu of transactions in database D in example 1:

Tid Formula twu

t1 (0.6 + 0.1 + 0.94 + 0.2)/4 1.13
t2 (0.1 + 0.3 3 + 0.2)/3 0.4
t3 (0.6 2 + 0.1 + 0.9 3+ 0.2 2)/4 1.1
t4 (0.6 3 + 0.1 + 0.3 + 0.2)/3 0.6
t5 (0.6 + 0.1 2 +0.3 2 + 0.9 + 0.2 3)/5 0.58
t6 (0.1+0.3+0.9)/3 0.43

Sum twu 4.24

Table 3: twuvalues of transactions in Table 1

wus is caculated as:

wus(X) =

∑
tkt(X)

twu(tk)∑
tkT

twu(tk)
(2)

Example 3. With item A in database D in example 1, based on the twu values in Table 3,
wus(A) is calculated as follows:

wus(A) =
twu(1) + twu(3) + twu(4) + twu(5)

twu(1) + twu(2) + twu(3) + twu(4) + twu(5) + twu(6)
= 0.803·

An itemset X is frequent if wus(X) ≥ min− wus (min-wus is a value set by users). The
problem of identifying FWUIs from a quantitative database is the problem of identifying the
set of all X ′s such that X ⊆ I and wus(X) ≥ min− wus.

Note that the FIs determined using the criterion of min-wus satisfy the Apriori property,
which means that if X ⊂ Y , then wus(X) ≥ wus(Y )
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2.2. Mining FWUIs from quantitative databases

Erwin et al. [19] proposed an efficient algorithm for utility mining using the pattern growth ap-

proach [12] to overcome the limitations of existing algorithms based on the candidate generate-

and-test approach [22]. The authors introduced a compact data representation named Compressed

Transaction Utility tree (CTU-tree) and a new algorithm named CTU-Mine for mining high utility

itemsets. The CTU-Tree consists of two parts: (i) ItemTable (it contains all high TWUs (hTWUs):

Items are sorted in ascending order of their TWU values. (ii) Compressed Transaction Utility Tree:

It stores all transactions of high TWU items along with the quantities of transactions in a compressed

form. Based on CTU-tree, the authors proposed CTU-Mine algorithm The proposed algorithm not

only uses a pattern growth approach, but also eliminates the expensive second phase of scanning the

database to remove the spurious high utility itemsets.

Khan et al. [15] presented classical and weighted Association Rule Mining The authors then

proposed a framework for weighted utility association rule mining (WUARM). This method uses two

factors (transactional utilities and item weights) for extracting FWUIs, which are used for WUARM

Vo et al. [14] proposed a data structure called MWIT-Tree for mining FWUIs. This tree structure

has many nodes, where each node on the tree has itemset X , t(X) and wus(X) (where t(X) is the

tidset of X). Based on the tree structure and the Eclat algorithm [5], the authors proposed the

MWIT-FWUI algorithm, which scans the database only once, making it more efficient than Apriori-

based methods. However, this algorithm uses a linked-list data structure for storing tidsets, which

increases runtime and memory usage.

Lin et al. [16] proposed a approach for mining FWUIs from transaction deletion in a dynamic

database. The authors presented a fast update high utility itemsets for transaction deletion (FUP-

HUI-DEL) algorithm for handling transaction deletion in decremental mining. The FUP2 (Fast UP-

dated) algorithm [21], which was originally designed for association rules, is adopted in the proposed

FUP-HUI-DEL algorithm to reduce the time required for re-processing the whole updated database.

The two-phase algorithm [20] is applied to the proposed FUP-HUI-DEL algorithm for preserving

the downward closure property to reduce the number of candidates. The proposed approach can be

concluded as follows: (i) Two-phase algorithm is used to preserve the downward closure property for

reducing the number of candidates in high utility mining. (ii) FUP2 is used to reduce the number

of scans of the original database in high utility mining. (iii) The proposed FUP-HUI-DEL algorithm

can easily handle transaction deletion in dynamic databases.

2.3. Methods for mining FIs using vertical database format

Methods for mining itemsets use either a horizontal or vertical data format The horizontal data

format is often used with the Apriori and FP-Growth algorithms. The vertical data format used

with the Eclat algorithm is based on IT-Tree. With the vertical format, the database is scanned only

once [5]. The main disadvantage of the Eclat algorithm is high memory usage for storing the tidset

of itemsets, and the high processing time for determining the intersection of tidsets, particularly for

a large database with millions of transactions.

Zaki et al. [5] proposed the Eclat algorithm, which calculates the support of itemsets based on

tidset, where tidset(X) is the set of all transaction IDs of itemset X in a database and the support

of itemset X is support(X) = |tidset(X)|. The authors also showed the calculation of the tidset

of itemsets from the intersection of tidsets, i.e. tidset(XY ) = tidset(X) ∩ tidset(Y ). Tidsets

are represented in a list format called tidlist. This representation is inefficient when the number of

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Erwin,%20A..QT.&searchWithin=p_Author_Ids:37949082200&newsearch=true
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transactions in a database is large, since a lot of time is required to verify and compare the lists.

Dong et al. [8] and Song et al. [9] used BitTable is a bitlist to store tidsets. When calculating

the intersection of itemsetXand itemset Y to create itemset Z, we have bitlist(Z) = bitlist(X) ∩
bitlist(Y ). The bitwise AND operation is used to calculate the intersection of two bitlists. Bitlists

of X , Y , and Z all have a length of
(
T
8 + 1

)
bytes. The algorithm proposed by Dong et al. [8]

uses BitTable based on the Apriori algorithm [5] to quickly determine the support of an itemset

by computing the number of bits different from 0 in the bitlist of the individual itemset instead of

rescaning the database, as done for Apriori.

Vo et al. [10] proposed DBV which significantly outperforms BitTable in terms of runtime and

memory. For DBV, all “0” bytes at the start and end of each bitlist are removed (no transaction is

recorded in “0” bytes), making the bitlist of items more compact. In addition, Vo et al. proposed a

method that uses an array of constants to quickly calculate the support of an itemset by determining

the number of “1” bits in each byte with a value of 0 to 255.

3. REPRESENTATION OF MULTI-BIT SEGMENTS

3.1. Structure of MBiS

MBiS consists of several segments of continuous “1” bits in a bit vector. Each segment includes two

components:

(i) Start, which is the beginning index of the segment.
(ii) End, which is the end index of the segment.

An example of a bit vector with 96 bits is shown below.

Example 4. Consider the bit vector shown in Table 4, which represents the bits in a bitlist
with 96 elements (12 bytes). The MBiS representation of this bitlist is shown in Table 5.

Bit index 1 2 ··· 15 16 17 ··· 35 36 37 ··· 58 59 60 ··· 80 81 82 ··· 96
Bit value 0 0 0 0 1 1 ··· 1 0 0 ··· 0 1 1 ··· 1 0 0 ··· 0

Table 4: Bit vector with 96 elements

[16, 35] [59, 80]

Segment 1 Segment 2

Table 5: MBiS representation of bit vector in Table 4

In Table 4, the bit vector requires 96 bits (12 bytes), whereas the MBiS representation
requires only 4 bytes to store its two segments, reducing memory usage.

3.2. Definitions

Let MBiS(X) and MBiS(Y ) be MBiS’s of itemset X and itemset Y , respectively for database D.The

following definitions are given.

Definition 1: The MBiS of itemset X is a set of segments with continuous “1” bits described as

follows:

MBiS(X) = {[S1, e1], [S2, e2], . . . , [Sk, ek]},
where ei ≥ si∀i ∈ {1, 2, . . . k}, and Si ≥ ei−1 ∀i ∈ {2, 3, . . . k}.



22 NGUYEN DUY HAM, VO DINH BAY, NGUYEN THI HONG MINH, AND TZUNG-PEI HONG

Example 5. In Table 4, the derived MBiS contains two segments, [16, 35] and [59, 80].

Definition 1. An element i belongs to MBiS(X) (i.e. i ∈MBiS(X)) if there exists a value
j such that Sj ≥ i ≥ ej with Sj , ej is a segment of MBiS(X).

Example 6. With MBiS(X) = {[16, 35], [59, 80]}, it is to say that element 30 belongs to
MBiS(X) because 16 ≥ 30 ≥ 35 ([16, 35] is a segment of MBiS(X)).

Definition 2. The intersection of MBiS(X) and MBiS(Y ) is denoted as MBiS(X) ∩
MBiS(Y ). If ∀i ∈ MBiS(X) ∩MBiS(X), then i ∈ MBiS(X) and i ∈ MBiS(Y ) and
otherwise.

Remark 1. MBiS(X) ∩MBiS(Y ) = MBiS(X ∪ Y ).

Proof. Let Z = X ∪ Y ⇒ if i ∈ MBiS(Z) then i ∈ MBiS(X) and i ∈ MBiS(Y ) ⇒
i ∈ MBiS(X) ∩MBiS(Y ). Otherwise, if i ∈ MBiS(X) ∩MBiS(Y ) then i ∈ MBiS(X)
and i ∈ MBiS(Y ) ⇒ i ∈ MBiS(Z). Therefore, MBiS(X) ∩MBiS(Y ) = MBiS(Z) =
MBiS(X ∪ Y ).

Example 7. For MBiS(X) = {[5, 20], [35, 50]} and MBiS(Y ) = {[15, 25], [40, 60]}, their
intersection is {[15, 20], [40, 50]}.

Definition 3. For itemset X, the index of “1” bits in MBiS(X) is the transaction ID of X
in the database; therefore:

wus(X) =

∑
i∈MBiS(X)

twu(i)

Sum twu
(3)

where Sum twu =
n∑

i=1
twu[i] with n is the number transactions in the database.

Example 8. With item C of database D in example 1, MBiS(C) = {[2], [4, 6]} ⇒ tidset(C) =
{2, 4, 5, 6}; therefore:

wus(C) = (twu(2) + twu(4) + twu(5) + twu(6))/(Sum twu) = 0.475.

3.3. Algorithm for determining intersection of two MBiS’s

The problem of mining FIs using the vertical data format requires the calculation of the bitlist

intersection of two individual itemsets to find the final bitlist of the created itemset. The calculation

of the intersection of two tidsets is the calculation of the intersection of two individual MBiS’s. Since

MBiS contains several segments of continuous “1” bits, it is only needed to determine the intersections

of segments of MBiSs when calculating the intersection. This is performed by calculating the start

and end of each result segment. The algorithm for calculating the intersection of two MBiS’s is

described in Figure 1.

The use of the intersection algorithm is illustrated through the following example.

Example 9. MBiS(X) = {[6, 20], [25, 43], [43, 60]} and MBiS(Y ) = {[22, 40], [48, 66]}. Z =
MBiS(X) ∩ MBiS(Y ) = {[25, 40], [48, 60]}. Segment [25, 43] in MBiS(X) and segment
[20, 40] in MBiS(Y ) are used to create the new segment [25, 40] (max(25, 20) = 25 and
min(43, 40) = 40). Similarly, segment [43, 60] in MBiS(X) and segment [48, 66] in MBiS(Y )
are used to create the new segment [48, 60].
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Algorithm 1. Intersection Algorithm 

Input: 

- MBiS(X) with n1 segments. Segment i starts with Si and ends 
with Ei 

- MBiS(Y) with m1 segments. Segment j starts with Sj and ends 
with Ej 

Output: Z = MBiS(X)∩	MBiS(Y) 

Method name: INTERSECTION(MBiS(X), MBiS(Y)) 
1 
2 
 

3 
4 
 
 
5 
6 
 

7 
8 
9 
10 
11 
12 
13 
14 

INTERSECTION(MBiS(X), MBiS(Y)) 
   Z = ∅; 
   While (i 	≤	n1 && j	≤ m1) 

    Let segment i1 on MBiS(X) and segment j1 on MBiS(Y)   
    be the first intersection segments from segment i on  
    MBiS(X) and segment j on MBiS(Y), respectively; 
    Start = Max(MBiS(X)[i1].start, MBiS(Y)[j1].start); 
    End = Min(MBiS(X)[i1].end, MBiS(Y)[j1].end); 
    Z = Z ∪ {[Start,End]}; 
    if (End = MBiS(X)[i1].end)  
       i = i1	+	1;// move to the next segment on MBiS(X) 
       j = j1; 
    else  
       j = j1	+	1;// move to the next segment on MBiS(Y) 
       i = i1; 

   return Z;//Z is the result of MBiS(X)∩	MBiS(Y) 
Figure 1:  Intersection algorithm. 

 Figure 1: Intersection algorithm.

The complexity of the intersection algorithm in Figure 1 is only

O(n1 + m1), where n1 and m1 are the numbers of segments in MBiS(X) and MByS(Y ),

respectively. To determine the intersection of two itemsets, it is needful only to determine the Max

and Min of the start and end of the intersection segments. Therefore, the runtime of the intersection

algorithm is lower than those of algorithms that use other structures [2, 7, 8, 11].

4. FAST ALGORITHM FOR MINING FWUIs FROM QUANTITATIVE
DATABASES

4.1. MBiS-Tree

A data structure, called MBiS-Tree, is used to mine FWUIs from a quantitative database Each node

on an MBiS-Tree includes three components, namely X , MBiS(X), and wus(X), where:

- X is an itemset

- MBiS(X) is the MBiS of X , and

- wus(X) is the wus ofX.

To connect nodes X and Y to create a new node Y ∪X , X and Y must have the same length

and the same prefix, with length |X|− 1 items, and wus(X ∪Y ) ≥ min− wus where min− wus
is set by users.
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4.2. Mining FWUIs from quantitative database using MBiS-Tree

To mine FWUIs from a quantitative database, wus must be calculated for each itemset using equation

(3) Therefore, it is necessary to determine the tidlist of the itemset. This is equal to determining the

index set of “1” bits in an MBiS. The algorithm for calculating wus is shown in Figure 2.

Algorithm 2. wus Calculation Algorithm 

Input: MBiS(X) 

Output: wus value of itemset X 

Method name: WUS_CALCULATION() 
1 
2 
3 
4 
5 
6 

WUS_CALCULATION(MBiS(X)) 
for all i ∈ MBiS(X) 
   for all j ∈ segment i of MBiS(X) 
      s = s + twu[j]; 
return s/Sum_twu; 

Figure 2: wus calculation algorithm. 

 Figure 2: wus calculation algorithm.

With the MBiS structure, wus is simple to compute. Because the complexity of determining a

transaction IDs of an itemset is O(1), the complexity of WUS CALCULATION is O(k), where k
is the number of transactions of itemset X . On other way, k is thus a total of “1” bits in MBiS(X).

The runtime of WUS CALCULATION(MBiS(X)) thus depends on the number “1” bits in

MBiS(X).

Each level in an MBiS-Tree has a number of equivalence classes. Each equivalence class has the

same parents in the previous level (the equivalence class in the first level, denoted by [∅], contains

all FWUIs). Itemsets X1X2. . . XkXk+1 and X1X2. . . XkXk+2 have the same equivalence class,

denoted by [X1X2. . . Xk]. A k-itemset in an MBiS-Tree is then created from two (k-1)-itemsets

that have the same equivalence class. These k-itemsets are used to create the equivalence class of the

(k+1)-itemsets. An itemset is inserted into an MBiS-Tree if its wus ≥ min− wus, a user-defined

threshold. The itemsets in an MBiS-Tree are thus FWUIs that satisfy the min-wus constraint. This

process is shown in Figure 3.

The input of the MBiS FWUI algorithm is a quantitative database and min-wus. A quantitative

database includes two tables, as in Example 1. First the wus values of 1-itemsets are calculated The

next [∅] is equal to all 1-itemsets whose wus values satisfy min-wus (line 2). On line 3, the MBiS-

Tree is initialized using the empty set. The input of the FWUI Mine function is the equivalence class

P ([P ]) (line 5). On line 6, the itemsets of the equivalence class [P ] that satisfy min-wus are added to

MBiS-Tree. On lines 7 to 10, each li is connected with all lj following li(X = li∪lj , li, lj ∈ [P ]). On

lines 11 and 12, MBiS(X) is determined using the intersection algorithm (Figure 1) and wus(X) is

calculated using the wus calculation algorithm (Figure 2). Line 14 adds node {X,Y, wus(X)}, which

satisfies min-wus, into Pi. On the last line, the FWUI Mine([Pi]) function is called recursively.

The MBiS-FWUI algorithm 3 creates an MBiS-Tree whose elements are FWUIs obtained under

the constraint of min-wus. Below, an example is given to illustrate the proposed idea.

Example 10. Consider database D in Tables 1 and 2 with min-wus = 0.4. Table 6 shows the
MBiS representations of the 1-itemsets belonging to database D in example 1.

For min− wus = 0.4 the MBiS-FWUI algorithm builds an MBiS-Tree, as shown in
Figure 4
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Algorithm 3. MBiS-FWUI Algorithm 

Input: Quantitative database D and min-wus; 
Output: MBiS-Tree containing all FWUIs that satisfy min-wus from D 

Method name: MBiS_FWUI(); 
1 
2 
 

3 
4 
5 
6 
7 
 

8 
9 
10 
11 
12 
13 
14 
15 

MBiS_FWUI()  

[∅] = 〈j∈I| wus(j) ≥ min-wus〉; 
MBiS-Tree = ∅; 
FWUI_Mine([∅]);  
FWUI_Mine([P]) 
       MBiS-Tree = MBiS-Tree ∪ [P]; 
       for all li	∈[P] do  

       [Pi] = ∅; 
       for all lj ∈ [P], with j > i do  
              X  = li ∪ lj; 

                   Y  = INTERSECTION(MBiS(li), MBiS(lj));  
              wus = WUS_CALCULATION(Y); 
              if (wus ≥ min-wus)  
                   [Pi] = [Pi] ∪ {( X, Y, wus(X)}; 
FWUI_Mine([Pi]); 

 

Figure 3: MBiS-FWUI algorithm.

 
Figure 4: MBiS-Tree built for database D. 
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Figure 4: MBiS-Tree built for database D.

Item Tidset MBiS

A 1, 3, 4, 5 {[1], [3, 5]}
B 1, 2, 3, 4, 5, 6 {[1, 6]}
C 2, 4, 5, 6 {[2], [4, 6]}
D 1, 3, 5, 6 {[1], [3], [5, 6]}
E 1, 2, 3, 4, 5 {[1, 5]}

Table 6: MBiS representations of 1-itemsets in Table 1

All 1-itemsets 〈A, B, C, D, E〉 that satisfy the min-wus threshold are added into the MBiS-

Tree. Consider the two items A and B MBiS(A) ∩MBiS(B) = {[1], [3, 5]} ∩ {[1, 6]} and thus

MBiS(AB) = {[1], [3, 5]}. Based on the wus calculation algorithm, there exists wus(AB) =
wus(A) = 0.803 > min− wus. Thus, AB is added into the MBiS-Tree.
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Next consider items A and C. MBiS(A) ∩MBiS(C) = {[1], [3, 5]} ∩ {[1], [4, 6]}, and thus

MBiS(AC) = {[4, 5]}. Because wus(AC) = 0.278 > min− wus, AC is not added into the

MBiS-Tree.

Next consider items A and D. MBiS(A) ∩MBiS(D) = {[1], [3, 5]} ∩ {[1], [3], [5, 6]}, and

thus MBiS(AD) = {[1], [3], [5]}. wus(AD) = 0.662 > min− wus. AD is thus added into the

MBiS-Tree.

Similar to the above cases, the other items are considered to construct the MBiS-Tree in Figure

4. The common FWUI set with min-wus = 0.4 is 〈A, B, C, D, E, AB, AD, AE, BC, BD, BE,

DE, ABD, ABE, ADE, BDE, JABDE〉.

5. EXPERIMENTAL RESULTS

This section compares methods based on MBiS and DBV in terms of mining time and memory

usage for seven databases, namely RETAIL, MBS-POS, SALE FACT 1997, SALE FACT SYNC,

CHESS, ACCIDENTS and CONNECT. SALE FACT 1997 and SALE FACT SYNC are databases

from Microsoft Foodmart2000 for Microsoft SQL2000 (SALE FACT SYNC is the combination of

sales fact 1997, sales fact 1998 and sales fact dec 1998 in Foodmart2000). Table 7 shows the charac-

teristics of the experimental databases. All the experiments were performed with C# on a personal

computer with an Intel Haswell Core i5 1.4-GHZ CPU and 4 GB of RAM running

Microsoft Windows 8.1.

Database Number of items Number of transtractions Remark
BMS-POS 1.657 515.597 Modified
RETAIL 16.470 88.162 Modified
SALE FACT 1997 1.753 20.522
SALE FACT SYN 1.753 58.308
ACCIDENTS 468 340.183 Modified
CONNECT 130 67.557 Modified
CHESS 76 3.196 Modified

Table 7: Characteristics of databases used in experiments

The databases are modified by adding a random value in the range of 1 to 10 for each item

corresponding to its quantity in each transaction, and one more table is created to store the weight

values of items (in the range of 1 to 10).

Figures 5-11 show that MBiS is effective for sparse databases (RETAIL, BMS-POS,

SALE FACT 1997, and SALE FACT SYNC). For example, with min-wus = 0.1, the processing

times for MBiS are 4.7 and 2.73 times lower and memory usage is 5.86 and 1.96 times lower than

those for DBV for RETAIL and BMS-POS databases, respectively. For dense databases (ACCI-

DENTS, CONNECT, and CHESS), DBV is slightly more effecient. For instance, with min-wus =
0.9, the processing times for DBV are 1.18 and 1.34 times lower and memory usage is 1.39 and 1.09

times lower than those for MBiS for CONNECT and CHESS databases, respectively.

For sparse databases (low number of items in each transaction), the number of “1” bits is low and

thus the MBiS has small segments, leading to low runtimes for the intersection and wus calculation

algorithms. In contrast, dense databases include many items in transactions, so the elimination of “0”

bits is not effective because the memory required for segment indices is large, and thus the calculation

is slow.
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Figure 11: Comparison of runtime (left) and memory usage (right) for CHESS database. 

Figures 5-11 show that MBiS is effective for sparse databases (RETAIL, BMS-POS, 
SALE_FACT_1997, and SALE_FACT_SYNC). For example, with min-wus = 0.1, the processing 
times for MBiS are 4.7 and 2.73 times lower and memory usage is 5.86 and 1.96 times lower than 
those for DBV for RETAIL and BMS-POS databases, respectively. For dense databases 
(ACCIDENTS, CONNECT, and CHESS), DBV is slightly more effecient. For instance, with min-wus 
= 0.9, the processing times for DBV are 1.18 and 1.34 times lower and memory usage is 1.39 and 
1.09 times lower than those for MBiS for CONNECT and CHESS databases, respectively.  

For sparse databases (low number of items in each transaction), the number of “1” bits is low, and 
thus the MBiS has small segments, leading to low runtimes for the intersection and wus calculation 
algorithms. In contrast, dense databases include many items in transactions, so the elimination of “0” 
bits is not effective because the memory required for segment indices is large, and thus the calculation 
is slow. 

 
6. CONCLUSION AND FUTURE WORK 

 
This paper proposes an effective approach for storing tidset information when mining FWUIs from 
quatitative databases. MBiS is used to remove all “0” bits; only “1” bits are stored in the bit vector. 
MBiS thus reduces the runtime and memory usage for mining FWUIs from quantitative databases. 
The experimental results for seven databases show that the proposed approach outperforms an 
existing approach in terms of memory usage and runtime. When the min-wus threshold is small, 
MBiS is especially effective. However, the proposed approach is not effective when mining FWUs 
from dense databases. In future work, the authors will further study the problem of mining frequent 
weighted itemsets from weighted and hierarchical databases. 
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6. CONCLUSION AND FUTURE WORK

This paper proposes an effective approach for storing tidset information when mining FWUIs from

quatitative databases. MBiS is used to remove all “0” bits; only “1” bits are stored in the bit vector.

MBiS thus reduces the runtime and memory usage for mining FWUIs from quantitative databases.

The experimental results for seven databases show that the proposed approach outperforms an exist-

ing approach in terms of memory usage and runtime. When the min-wus threshold is small, MBiS is

especially effective. However, the proposed approach is not effective when mining FWUs from dense

databases. In future work, the authors will further study the problem of mining frequent weighted

itemsets from weighted and hierarchical databases.
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