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Tóm tắt. Lập lịch tối ưu cho các công việc chạy trên các máy, trong trường hợp tổng quát, là một
bài toán khó và không có thuật toán thực hiện trong thời gian đa thức. Các giải pháp tối ưu và xấp
xỉ tối ưu chỉ giải quyết cho các trường hợp riêng với các ràng buộc hạn chế. Thuật toán lập lịch trên
1 và 2 máy được công bố ở [4, 16] được xem như những khởi đầu. Trong [16], tác giả giải bài toán
công việc quá hạn có tính đến thời gian chuẩn bị. [4] giải bài toán công việc đến hạn trên trường
hợp hai máy, và có thể mở rộng cho trường hợp 3 máy với một số điều kiện trên công việc. Các tác
giả khác cũng xem xét các bài toán lập lịch ở các trường hợp riêng như trong [5, 8, 17]. Bài báo ứng
dụng mô hình otomat khoảng (Duration Automaton - DA) [1, 2] giải quyết bài toán lập lịch động
cho các công việc với thời gian xử lý không chắc chắn trên máy tính ghép cụm - hệ thống gồm nhiều
máy tính (nốt tính toán) phối hợp làm việc với nhau. Chúng tôi xét cụm máy tính trong hai trường
hợp: các máy giống nhau và khác nhau về cấu hình (tài nguyên của máy tính, một cách hình thức
được quy về cấu hình, thể hiện qua thời gian xử lý công việc). Do không biết trước thời gian hoàn
thành mỗi công việc, các thuật toán tối ưu đã có sẽ không được áp dụng một cách hiệu quả. Thông
qua việc mô hình hóa và sử dụng tiêu chuẩn về thứ tự của otomat khoảng, chúng tôi đề xuất thuật
toán lập lịch và thực nghiệm cho thấy có kết quả tốt về thời gian hoàn thành các công việc so với các
phương pháp truyền thống như FIFO (hàng đợi tự nhiên), hàng đợi công việc với tiêu chuẩn hoàn
thành nhanh trước (tiếp cận tham lam), hoàn thành lâu trước (tiếp cận an toàn) không đồng bộ.

Abstract. Optimal schedule for works running on machines, in a general case, is a hard problem and
there is no complete optimal deterministic algorithm in polynomial time. Optimal and approximated
solutions were issued for some specific cases with constraints. One can find the solutions for the
cases 1 and 2 machines [4, 16] as the initial algorithms. In [16], author solved late works problem
using algorithm with setup times included. [4] solve the due works problem on two machines, and
can be extended for the case of 3 machines with some conditions on works. Other authors looked at
schedule problems in specific cases like [5, 8, 17]. In this paper, we apply duration automata [1, 2]
to solve the schedule problem dynamically for the works with uncertain processing time in a cluster
computer, which is a system consisting of many computers (computing nodes) co-working together.
We solve the schedule problem in a cluster with m machines for two cases: all machines are the
same and different in configurations (machine’s resources are formally considered as a configuration
information, represented by the time need to finish the works). Because of uncertainly processing time,
tranditional algorithms can not be used effectively. By using DA model with DA’s order criterion,
we issue schedule algorithms and practically prove to be better in time consuming compare to FIFO
(natural order), the fastest first (greedy) and the longest first (safety) methods without synchronized
points.

∗This paper was supported by Hanoi University of Science (grant TN-10-05)
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1. INTRODUCTION

Formal tools are usually used to model systems [1, 2, 3, 9, 10]. DA is a traditional automaton
which is augmented with a clock variable and a timed duration constraint on each transition [1, 2].
The labels (or actions) of transitions are separated into three types: input, output, and internal
comparing to internal and external actions of the IO automata [11, 12, 13]. This automaton is
less complex than timed automaton [9] but more flexible in reality comparing to IO automata [11].
We have used DA to model component-based real-time systems, real-time objects modeling, and
embedded systems with timed and untimed specifications [2], priority networks [1]... In this paper,
we use DA to model a cluster computer system where its nodes can be controlled by a master one
(head node) or worked independently, and solve the scheduling problem.

Scheduling works on machines, with many kind of constraints on work’s order, is a difficult
problem and there is no optimal solution in polynomial time. Some special cases had been risen
by [4, 16] and there were good solutions (gready approach) but they are really simple to be widely
used. Recent reseaches have been moved to the application aspect in serveral cases. Authors in [5]
concentrated on the problem of two machines in which works came over the time. There is an improved
issue [7] works on two machines with the availability constraint. In [8], authors solved problem on two
machines with the view of fuzzy-set theory; and author in [17] developed a 3/2−algorithm to solve
the problem in [16] again. In this paper, we look at the problem with the view of DA, and consider
the problem in a different aspect: schedule uncertain processing time works for machines. In special
cases, our problems will turn into the problem in [16, 8, 7] when the processing times are defined. We
also issue criteria which is used to develop algorithms solving these problems.

2. DURATION AUTOMATON

Definition 2.1. A duration automaton is a tuple M = 〈S, Σ,4,∇, q, R, F 〉 where:

• S is a finite set of states. q ∈ S is an initial state. In a general case, q can be a set.

• Σ,4,∇ are internal, input and output alphabet of actions (or labels). We denote the

set of actions of DA by A = Σ ∪4 ∪∇. There is an empty action ε ∈ Σ.

• R ⊆ S × A × domain × S is a set of transitions, where
domain = {[l, u], (l, u], [l, u), (l, u) | l, u ∈ Z

+, l ≤ u}. For each transition e =

(s, a, d, s′) ∈ R, a will be an output action of s and input action of s′ as well. If
s = s′ then e is a ring.

• F ⊆ S is a set of final (or accepted) states.

We denote by S(M), Σ(M), 4(M), ∇(M), R(M), F (M) the corresponding components of M ,
and A(M) = Σ(M)∪4(M)∪∇(M). For s ∈ S(M), Σ(s), 4(s), ∇(s) are the internal, input
and output actions of the state s respectively.

A configuration of M is a couple (s, t), where s ∈ S, t ∈ R
+ which shows that M reaches the

state s and stays there at the time t. So that, initial configuration of M is (q, 0). As the time passes,
the changes of M are of the following forms:
- Time-change: (s, t)

a,σ
−→ (s, t + σ) where σ ∈ R

+, a ∈ Σ(s). Automaton stays at state s and
does its internal actions.
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- State-change: (s, t)
a,σ
−→ (s′, t + σ) where σ ∈ R

+, a ∈ 4(s), using transition (s, a, d, s′) ∈

R(M), t+σ ∈ d. The transition can take place if the time constraint on the arc between s and s′ be
satisfied. We make an extra assumption that internal actions takes no time. It can finish at a small
enough time that can be ignored and we only concentrate on input and output actions.

s0 s1
a,[1,3]

s2
b,[1,5]

s3
a,[3,4]

a,[1,2]

b,[1,3]

Hình 2.1. Example of duration automaton

Definition 2.2. Let M be a DA and p̃ be a sequence (s0, 0), (s1, d1), (s2, d2), . . . (sn, dn),
p̃ = (si, di)i=0..n in short, be a sequence of changes.

- If p̃ satisfies s0 = q is the initial state, and for each 1 ≤ i ≤ n, ∃ei ∈ R : ei = (si−1, ai, di, si)
which makes M move from si−1 to si, then it is called a d-path from s0 to sn in M .

- p̃ is a d-path. If there is a strictly increasing sequence t0 = 0, t1, t2, · · · , tn such that for
all i, 1 ≤ i ≤ n: ti − ti−1 ∈ di then p = (s0, 0), (s1, t1), (s2, t2), . . . (sn, tn), (si, ti+1)i=0..n in

short, is called an t-path of p̃. d-path with t-path and sn ∈ F is called a successful path of
M . w̃ = (a1, d1), (a2, d2), (a3, d3), . . . (an, dn), (ai, di)i=1..n in short, where ai is the action of

the transaction ei of p̃, is a d-word and w = (a1, t1), (a2, t2), (a3, t3), . . . (an, tn), (ai, ti)i=1..n

in short, is called a t-word of p̃.

- A d-word w̃ is acceptable (or d-word of M) if there is at least one t-word w of w̃. We say
w takes M from s0 to sn and w̃ can take M from s0 to sn. Each (ai, di) is called an atom.
The d-word w̃ without t-word is called unacceptable.

- The d-word w̃ is accepted by M if it is a d-word of a successful path. All accepted words
of M is called a d-language of M , denoted by L(M).

Definition 2.3. Given a DA M = 〈S, Σ,4,∇, q, R, F 〉. The projection of M over a real-
time value t is M ′ = 〈S, Σ,4,∇, q, R′, F 〉 where the transitions relationship specified as

R′ = {(s, a, s′)|(s, a, d, s′) ∈ R, t ∈ d}

As the time passes, the projection operator will give an imagination of DA at a time we observe.

Assume M = 〈S, Σ,4,∇, q, R, F 〉 is a DA. We add a global clock x, which runs regularly, auto-
matically and can be reset to the initial state, and a function f defined as: for each e = (s, a, d, s′) ∈

R, f(e) = (s, a, s′, λ, δe) where λ = {x} and δe = (x ∈ d). Let R′ be {f(e) | ∀e ∈ R}. Because f
is an 1-1 function between R and R′, so that T = 〈Σ∪4∪∇, S, q, X, R′, δ, F 〉 for δ = {δe, e ∈ R},
X = {x} is a unique corresponding time automaton accepting the same language as DA. Thus, DA
is a specific class of time automaton [9]. We can use time automaton’s tools to check for every time
properties of DA. As a consequence of [9], we will have the following theorem.

Theorem 2.1. The reachable and emptiness problems of DA is decidable.
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3. CLUSTER SYSTEM MODELING

A computing node (computer) can be modeled with a DA, where states of the node will be the
states of DA, and the changes between states of the node are the arcs of DA. Nodes can have their
own internal actions which are separated from one other physically. That results internal actions of
nodes belong to themselves and they can do the same (shared) action at a time but independently.

Each node can execute a compiled program (called a work ) which is modeled as an atom, which
can not be divided into the smaller one, (id, d) where id is a work identifier, d = [l, u], l < u, l, u ∈

Z
+. l is an estimated amount of time to finish the work, and u is the maximum amount of time that

work must finish. u can be infinitive to show that work can run as long as it needs. The program
should finish at time t inside d and (id, t) is called a transition of a node at time t. When a node is
ready to receive a work, we said that the node is in ready state. If a node is doing a work, the state
will be busy. In case a node can not receive any work, it is in f ailure state and can only be ready
again by doing reset action. This action can be taken place at any time to make the node from any
state to ready state and is not in the action set of any node. Each node has an empty action ε, i. e.
the node stays at the ready state (or does its internal actions) which is supposed can be finished at
any time. empty work has the special form (id, [0,∞)), which means that it takes 0 time to finish.
Practically, we do not have to care much about this action because it can be considered as internal
to that node. The state before the first time in ready is initial at time t0 = 0.

Definition 3.1. Suppose that there is a computing node M . Let x̃ = (id1, d1), (id2, d2), · · · ,
(idn, dn). If there exists an instance x = (id1, t1), (id2, t2), · · · , (idn, tn) which makes M

change from a ready state to a ready state and t1 ∈ d1, t2 − t1 ∈ d2, . . . tn − tn−1 ∈ dn

then x̃ is said to be a word of M . All the word of M is called a language of M and denoted

by L(M)

For two words x̃, ỹ of M , we denote x̃_ỹ as a word generated by appending ỹ after x̃ (connect
operator).

Corollary 3.1. If x̃, ỹ are words of M then x̃_ỹ is also a word of M .

Chứng minh. Assume x̃ and ỹ are words of M but x̃_ỹ is not, so that there is a work (id, d)
in x̃_ỹ which does not bring M from ready state to ready state. (id, d) in x̃_ỹ implies

(id, d) in x̃ or (id, d) in ỹ. It means (id, d) can not bring M from ready state to ready state
in either x̃ or ỹ (conflicts with assumption x̃ and ỹ are words of M).

By corollary 3.1, if x̃ and ỹ are the words which run on M one after another, then we can append
ỹ after x̃ to make a new compound word and run it on M .

Definition 3.2. (W ork relationship) For two works w = (id, [l, u]) and w′ = (id′, [l′, u′]).

• w =
DA

w′ iff (l′ = l) ∧ (u = u′).

• w is smaller than w′ (written as w <
DA

w′ or w′ >
DA

w) iff (
u′ + l′

2
>

u + l

2
) ∨

(
u′ + l′

2
=

u + l

2
∧ l < l′).

• If w =
DA

w′ and w <
DA

w′, we write w ≤
DA

w′ or w′ ≥
DA

w.
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Theorem 3.1. ≤
DA

is a totally ordered in A×domain and ((A×domain),≤
DA

) is a lattice
whenever domain is bounded.

Chứng minh. Given three works x = (idx, [l, u]), y = (idy, [l
′, u′]) and z = (idz, [l

′′, u′′]) of

M .
- Reflexive: x = x because (l = l) ∧ (u = u).
- Antisymmetric: If (x ≤

DA
y) and (y ≤

DA
x) then l′ = l and u = u′, implies that x =

DA
y

- Transitive:

x ≤
DA

y ⇒ (
u′ + l′

2
>

u + l

2
) ∨ (

u′ + l′

2
=

u + l

2
∧ l < l′). We have 4 cases:

y ≤
DA

z ⇒ (
u′′ + l′′

2
>

u′ + l′

2
) ∨ (

u′′ + l′′

2
=

u′ + l′

2
∧ l′ < l′′)

• (
u′ + l′

2
>

u + l

2
) and (

u′′ + l′′

2
>

u′ + l′

2
) ⇒ (

u′′ + l′′

2
>

u + l

2
) ⇒ x ≤

DA
z.

• (
u′ + l′

2
>

u + l

2
) and (

u′′ + l′′

2
=

u′ + l′

2
∧ l′ < l′′) ⇒ (

u′′ + l′′

2
>

u + l

2
) ⇒ x ≤

DA
z.

• (
u′ + l′

2
=

u + l

2
∧ l < l′) and ⇒ (

u′′ + l′′

2
>

u′ + l′

2
) ⇒ (

u′′ + l′′

2
>

u + l

2
) ⇒ x ≤

DA
z.

• (
u′ + l′

2
=

u + l

2
∧ l < l′) and (

u′′ + l′′

2
=

u′ + l′

2
∧ l′ < l′′) ⇒

u + l

2
=

u′′ + l′′

2
∧ l < l′′

⇒ x ≤
DA

z.

Because of domain with points l, u are in Z (bounded), so that in a set of works, we can

find max and min ones. Thus, ( (A × domain),≤
DA

) is a lattice.

Note: If u = l then ≤
DA

and <
DA

becomes traditional order ≤ and <.

Definition 3.3. (W ord comparison) Suppose x̃ = (idi, [lxi
, uxi

])i=1..n and ỹ = (idj, [lyj
, uyj

])j=1..n

are words of a node M . We define:

x̃ =
DA

ỹ ⇔

{
x̃ ∈ L(M) ⇔ ỹ ∈ L(M)

(tlx = tly) ∧ (tux = tuy)

x̃ <
DA

ỹ ⇔





x̃ ∈ L(M) ⇔ ỹ ∈ L(M)

(
tux − tlx

2
<

tuy − tly
2

)

or (
tux − tlx

2
=

tuy − tly
2

) ∧ (tlx < tly)

where tlx =
∑
i

lxi
, tly =

∑
j

lyj
, tux =

∑
i

uxi
, tuy =

∑
j

uyj

When x̃ <
DA

ỹ or x̃ =
DA

ỹ, we have x̃ ≤
DA

ỹ.

Lemma 3.1. The relation ≤
DA

is a totally ordered.

The proof can be done in the same way as in the proof of the theorem 3.1.

Lemma 3.2. If x̃, ỹ, z̃ are words of a node M , ε is an empty word then
- x̃_ỹ =

DA
ỹ_x̃

- x̃_ỹ_z̃ =
DA

(x̃_ỹ)_z̃ =
DA

x̃_(ỹ_z̃)
- x̃_ε =

DA
ε_x̃ =

DA
x̃
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Because we do not consider the priority order of words, lemma 3.2 shows that if x̃ and ỹ are two
words of the node M then we can run x̃ before ỹ or ỹ before x̃. Moreover, we can group some words
together to make a new one.

Lemma 3.3. Suppose x̃, ỹ, z̃ are words of M .
- If x̃ ≤

DA
ỹ and ỹ ≤

DA
z̃ then x̃ ≤

DA
z̃

- If x̃ ≤
DA

ỹ then x̃_z̃ ≤
DA

ỹ_z̃ and z̃_x̃ ≤
DA

z̃_ỹ

A cluster computer system (cluster in short) consists of some computing nodes connected by a
network and worked together with or without the control of a master node. The actions belong to a
group of nodes (share actions) can be synchronized. Formally, the system can be modeled as a parallel
product of DAs. Let M1, M2, · · · , Mn be DAs corresponding to nodes. We call parallel product of
DAs a cluster on M1, M2, · · · , Mn, written as M = M1 × M2 · · ·Mn. A configuration of M is a
tuple C = (c1, c2, · · · cn) where ci, i = 1..n is a configuration of Mi. Configuration C of M is:
- initial if ∃ci, 1 ≤ i ≤ n is the initial configuration of Mi and others are in initial or ready states.
- ready if ∀i, i = 1..n, ci are the ready states of Mi.
- busy if ∃i, 1 ≤ i ≤ n : ci is the busy state, others are not in f ailure states of correlative Mi.
- failure if ∃i, 1 ≤ i ≤ n : ci is the f ailure state of Mi.

Suppose M = M1 × M2 × · · ·Mn is a cluster. Let id ∈ ∪n
i=1

A(Mi) and dom(id) = {i |

id ∈ A(Mi)}. Transition ((s1, t1), . . . , (sn, tn))
id,σ
−→ ((s′1, t

′
1), . . . , (s

′
n, t′n)), where σ ≥ 0 and

id ∈ ∪n
i=1A(Mi)∪{ε} is a transition of M if there is a transition (si, id, di, s

′′
i ) ∈ R(Mi) satisfying

ti + σ ∈ di for any i ∈ dom(id)

(s′i, t
′
i) =





(si, ti + σ) if i 6∈ dom(id)

(s′′i , ti + σ) if i ∈ dom(id) and ∃(si, id, di, s
′′
i )

∈ R(Mi) where ti + σ ∈ di

Definition 3.4. A sequence of transitions leads cluster from a ready state to the other

ready state is called a word of the cluster.

For two words with different length, we can add empty works to the end of the shorter to make
it as long as the longer. So we always can assume that two words have the same length, starting with
not empty works in every comparison.

Definition 3.5. (S chedule) Suppose that there is a set of works X = {(i, [li, ui])i=1..n} and
a cluster M = M1 × M2 × · · · × Mm. A permutation of X : x̃ = (i, [li, ui])i=1..n is called a
schedule for the works and t(x̃) = [tl(x̃), tu(x̃)] is the duration time requirement for x̃ where

tl(x̃) =
n∑

i=1

li, tu(x̃) =
n∑

i=1

ui.

Let Sh = (sh1, sh2, . . . , shm), shi ∈ {0, 1}n where shi[j] = 1 if work j is arranged
to run on node Mi, otherwise shi[j] = 0 is called a works schedule on M and x̃i =

[(j, [lj, uj]) | shi[j] = 1, j = 1..n] is a node schedule. The time needed by a cluster schedule
is the time duration needed to finish all cluster schedule T (Sh) = [Tl, Tu] :

Tl = min
i=1..m

{tl(x̃i)}, Tu = max
i=1..m

{tu(x̃i)}
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Definition 3.6. Suppose that x̃ is a word with length n and m is the number of machines.
The work j of x̃ runs on the machine i takes the constraint dij. Sh = (sh1, sh2, · · · , shm) is

a schedule.
- Sh is a good schedule if:

+
m∑

i=1

shi[j] = 1 for j = 1..n.

+ if shi[j] = 1 then dij = min
k=1..m

dkj (using ≤
DA

order).

- shi is a non zero vector, means that ∃k : shi[k] = 1. Schedule Sh′ = (sh1, · · · , sh′
i, · · · , sh′

j, · · · ,

shm) is conclused by moving a work kth in shi to shj . Sh′ is better than Sh if T (Sh′) <
DA

T (Sh). Sh will be (one of) the best schedules if there is no better one.

4. SCHEDULING ALGORITHMS

4.1. Machines are the same in configuration

• Problem: Assume that there is a set of n works x̃ = (j, [lj, uj]), j = 1..n where lj is at least
time work j can be finihed and uj is the deadline of time that work must finish or being failure since
a node takes that work. Given a time value t, scheduling to finish as many works in x̃ as possible
(late work, maximun time flow) using one node: max

k
P

j=1

tj≤t

k

where tj is the time work j finishes.

Algorithm 1: Late work problem
I nput: m works in the queue x̃.
Output: Done works and consumed time.

1. Sort all works in x̃ increasing by ≤
DA

order.

2. Mark the all works undone and set time = 0.

3. Start from the work (at position) i = 0 in x̃.

4. While (time < t) and (i < m)
+ Do the work i and get consumed time ctime.
+ If (time + ctime ≤ t) then mark the work i is done and try the work i + 1.
+ Otherwise, the work i is failure and break.

5. Return time and done works.

This problem is solved by selecting small works to do first (greedy approach) and minimize
waiting time (total and on average). The algorithm can be expanded for the case m > 1 nodes with
the same configurations by finding first ready node k before delivering the work to k. In that case, we
will have m time variables denoted by time[j], j = 1..m which are used to sum the time consumed
by each node. The condition in while loop (step 4) will change to max(time[]) < t and the condition
in if statement will change to time[j] + ctime ≤ t.

Most of schedulers only use the criterion on maximum time to finish a work. If that amount of
time passes but the work does not finish (because of wrong estimated or some unawared reasons),
that node still returns to ready state and leaves the work undone. That results all the schedule or
the works after a tracked point will have to do again. Our criterion will make the estimate progress
more flexible, accept some wrong estimation in time. Further more, if a job was submitted with open
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access policy, nodes of the cluster can be seen and accessed, we can send works directly to nodes. If
computing nodes are managed by a head node then every access must be allowed. In this case, we
can not see nodes inside and the cluster will be considered as a compound node (represented by head
node); we have to schedule works for one node.

4.2. Machines are different in configurations

• Problem: Assume that there is n works x̃ = (j, [lj, uj]), j = 1..n, where lj is at least time work
j can be finihed and uj is the deadline of time that work must finish or being failure since a node
takes that work. Schedule to finish works in x̃ using m ≥ 2 nodes in a as small time as possible. If
time[i] is the time node i finish all its works in a schedule S then we have to find: min

S
max

i
time[i].

Assume that work j, j = 1..n, running on node i, i = 1..m, takes constraint dij .

Algorithm 2: Scheduling works on m ≥ 2 general nodes
I nput: x̃ is a queue of works, and m computing nodes.
Output: All done works and time consumed the schedule.

1. Enable all nodes. Set consumed times on nodes to 0.

2. Find a good schedule S on x̃ for nodes. x̃i are works for nodes i, i = 1..m (work-queue
i).

3. Sort x̃i, i = 1..m, ascending by ≤
DA

order.

4. For any enabled node i with empty work-queue, re-schedule S as following:
+ Try undone work j (from small to big when running on i), suppose j is in the x̃k with
at least 2 works.
+ If dkj ≤DA

T (x̃k) then move j from x̃k to x̃i.
Otherwise, try an other work.
+ If there is no movable work, disable node i.
+ Repeat re-schedule process until there is no enabled node with empty work-queue.

5. Deliver the works in x̃i to node i if i is ready and update the time consumed by node i

until there is an empty work-queue on enabled node.

6. Repeat step 4 and 5 until all node schedules are empty.

7. Return the maximum consumed time on nodes.

A smaller work will be done first on node that work consumes the smallest time, so that it will
minimum the waiting time of works. In case there is any free node, it can share work from other if
the time the free node needs to finish a share work is smaller than the time the node to be shared
finishs all its works (include the work will be shared). Each time we move a work from one queue
to another, the required time by the schedule for that node will be reduced by the time that work
requires on the to be shared node. When there is no more movement, no more share is needed. This
approach gives the dynamic optimal on both flow and make span time of the schedule.

5. EXPERIMENT

We performed 10 tests on the same input data, and got the average value with the number of
machines are 5, 10, 20, 50, 100 respectively. Initial time l of each work is between 0 and 50, time
upper bound u and actually finish time of each work are different in 4 cases:
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- Case 1 : Time upper bound and finish time are the same, it means l = u = t where t is an actually
finish time.
- Case 2 : Upper limit is initial time plus a random number between 0 and 25 (50% of initial time).
- Case 3 : Upper limit is initial time plus a random number between 0 and 50 (100% of initial time).

5.1. Machines are the same

We compare schedules using <
DA

order with schedule using F IFO, longest first and shortest
first approach. After scheduling, works will be delivered to nodes using Round-Robin method. We
run each test for 10 times on 10000 works. Earning points for each case about time among DA and
FIFO schedule, longest-first, shortest-first as follow. We omit case 1 because it will show the same
result in all schedules. Tables show the time percentage saved using DA approach with <

DA
criteria

comparing to the others.

Case 1: l ∈ [0, 50], u = l ∗ 1.25

Machines DA/Fifo (%) DA/U 1st (%) DA/L 1st (%)

5 0.38 4.7 4.0

10 1.05 1.33 1.12

20 1.86 2.56 1.74

50 5.89 7.64 6.23

100 12.28 14.23 12.28

Case 2: l ∈ [0, 50], u = l ∗ 1.5

Machines DA/Fifo (%) DA/U 1st (%) DA/L 1st (%)

5 0.24 0.27 0.20

10 0.61 0.70 0.60

20 1.55 1.55 1.56

50 4.73 4.31 4.81

100 8.27 8.22 8.19

5.2. Machines are different

We performed 10 tests on 1000 works for 3 cases and get the average. We compare result between
FIFO queue, good schedule and DA schedule with dynamic re-arrangement works. This is the time
consumed in each case.

6. CONCLUSION

We have used DAs to model and define the behavior of cluster systems, languages that accepted
by the system and proposed algorithms to solve scheduling problem for uncertain precessing time
works. In the future, we can develop algorithms to schedule programs with synchronization, shared
actions, develop tools to schedule work for clusters using DA.
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Case 1: l ∈ [0, 50], l = u = t

Machines Fifo schedule Good schedule DA schedule

5 4932.0 1937.0 1819.0

10 2489.0 597.0 544.0

20 1305.0 200.0 172.0

50 558.0 63.0 44.0

100 281.0 35.0 19.0

Case 2: l ∈ [0, 50], u = l ∗ 1.25

Machines Fifo schedule Good schedule DA schedule

5 6597.1 4153.1 2927.3

10 3315.3 1100.2 763.3

20 1680.3 388.1 257.4

50 707.3 93.8 61.1

100 382.5 33.0 20.2

Case 3: l ∈ [0, 50], u = l ∗ 1.5

Machines Fifo schedule Good schedule DA schedule

5 6956.8 5457.0 3443.7

10 3489.7 1469.5 929.4

20 1752.5 549.9 280.4

50 739.3 102.0 64.9

100 408.3 35.0 20.1
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