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Tóm tắt. Hà̂u hết các phu.o.ng pháp t́ınh toán tái hiê.n ma.ng sinh ho.c hiê.n nay mó.i chı’ tâ.p trung

t̀ım các tu.o.ng tác giũ.a hai phân tu.’ , trong khi dó ma.ng chuyê’n hóa la. i bao gồm các pha’n ú.ng liên

quan dến tù. 2 dến 6 chất. V̀ı vâ.y mà các phu.o.ng pháp khám phá ma.ng sinh ho.c dang tồn ta. i không

th́ıch ho.. p dê’ tái hiê.n các pha’n ú.ng sinh hóa có nhiè̂u ho.n hai chất tham gia.

Bài báo này gió.i thiê.u mô.t phu.o.ng pháp t́ınh toán tái hiê.n ma.ng các chất chuyê’n hóa tù. dũ. liê.u

do nồng dô./khối lu.o.. ng các chất o.’ các diè̂u kiê.n hoă.c thò.i diê’m khác nhau. Phu.o.ng pháp không chı’

phát hiê.n các tu.o.ng tác giũ.a hai phân tu.’ mà còn phát hiê.n du.o.. c các tu.o.ng tác nhiè̂u ho.n hai phân

tu.’ , dó là các tu.o.ng tác ba chất, tu.o.ng tác bốn chất, v.v. Trong phu.o.ng pháp dè̂ xuất, chúng tôi su.’

du.ng dô. do thông tin phu. thuô.c bâ.c ba dê’ dò t̀ım các tu.o.ng tác da chất. Chúng tôi cung cấp mô.t

cách nh̀ın mó.i vè̂ dô. do thông tin phu. thuô.c bâ.c ba mà th́ıch ho.. p trong viê.c phát hiê.n các tu.o.ng

tác nhiè̂u ho.n hai biến. Hiê.u năng cu’a phu.o.ng pháp dè̂ xuất dã du.o.. c dánh giá trên các dũ. liê.u mô

pho’ng các hê. chuyê’n hóa sinh ho.c. T́ınh ch́ınh xác cu’a phu.o.ng pháp tái hiê.n la.i ma.ng chuyê’n hóa

du.o.. c dánh giá o.’ hai mú.c: các tu.o.ng tác hai chất và các tu.o.ng tác ba chất. Kết qua’ tái hiê.n cu’a

Phu.o.ng pháp dè̂ xuất là rất triê’n vo.ng.

Abstract. All computational methods of biological network reconstruction up to now aim only to

find pairwise interactions. While metabolic networks composed mainly of reactions that often consist

of from 2 to 6 substrates/products, the existing computational methods may not be appropriate to

reconstruct interactions of more than two variables like reactions in the metabolic networks.

In this paper, we develop a computational method for the metabolic network reconstruction

that can uncover not only pairwise interactions but also interactions involving more than two sub-

strates/products such as triple interactions, quartic interactions, etc. In the proposed method we

use the ternary mutual information to capture high order interactions. The key idea is to propose a

novel view on the ternary mutual information that can be appropriately used to reconstruct reactions

involving more than two substrates/products. We have applied the proposed method to synthesized

metabolome data; the reconstruction accuracy has been evaluated at the levels of pairwise and triple

interactions. The performance of the method is promising.

Keywords: Mutual information, entropy, biological network reconstruction.
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1. INTRODUCTION

Thanks to the advancement of high-throughput technologies, we can now measure simul-
taneously the concentrations of thousands of molecular species in a biological system, such
as mRNAs [22] and metabolites [18]. These high-throughput data are snapshots of a biolog-
ical system and are informative to infer what has happened in the system. The analysis of
the high-throughput data to uncover underlying biological mechanisms, e.g. gene regulatory
networks (see [12] for an overview) or metabolic networks [6, 20] is one of the challenges in
systems biology.

Computational reconstruction of gene regulatory networks from transcriptome data has
been deeply investigated by different approaches. These reverse engineering methods fall into
three broad categories: (1) information theory models [24, 5, 19] with a variety of measures of
pairwise mutual information between genes; (2) Bayesian and graphical networks [10, 25] that
maximize a scoring function over some alternative network models to find the best model fitting
the data; (3) differential and difference equations [11, 4] that explain the data by a system
of mathematical equations. All the work on the gene regulatory network reconstruction until
now aims to find only pairwise interactions (concerning with two genes).

Different from gene regulatory networks that mainly concern with pairwise interactions,
metabolic networks are composed mainly of reactions that often consist of from 2 to 6 metabo-
lites (substrates/products). Thus, the metabolic network reconstruction should aim to find
groups of metabolites that each involves in the same reaction. Up to now, there have been
efforts to reconstruct metabolic networks that use methodologies of gene regulatory network
reconstruction [6, 20]. As a consequence, they can only detect pairwise interactions but not
interactions of more than two metabolites.

In this work, we develop a computational method net-reconstruct for the metabolic net-
work reconstruction that can uncover not only pairwise interactions but also interactions
involving more than two substrates/products, for example, triple interactions, quartic inter-
actions, etc. In this method we use the interaction mutual information [9] to capture multiple
interactions. The key idea is to propose a novel view on the interaction mutual information that
can be appropriately use to reconstruct reactions involving more than two substrates/products.

When applying on the synthetic perturbation data of full-random networks (all structures,
kinetic laws and parameter values are randomly generated, [2]) as well as of a semi-random
networks, the human red blood cell metabolism ([14, 20]), our method gave promising results
of interaction subsets that are close to the validated metabolic reactions. The interaction
subsets with highest mutual information found from our method often correspond to metabolic
reactions in the original networks, also many original reactions have been found in the results
of our software. When evaluating accuracy at the level of pairwise interactions, the results of
our method agreed with those of recent research on reconstruction methods.

2. METHODS

2.1. Mutual information between two variables

Mutual information measure is more general than Pearson’s correlation coefficient (PPC)
to capture dependency between two variables. While PPC accounts only for linear or mono-
tonic relationships, the mutual information takes into account all types of dependence. Given
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Figure 2.1. The Venn diagram for mutual information MI(2) of two variables

two random variables X and Y with the joint density function fX,Y and marginal density
functions fX , fY , the mutual information MI(2) of two variables X and Y [8] is defined as
follows:

MI(2)(X, Y ) =

∫ ∫
fX,Y (x, y) log

fX,Y (x, y)

fX(x)fY (y)
dxdy (2.1)

(we use the superscript number 2 to emphasize that the mutual information here is for 2
variables)

If X and Y are independent, the mutual information MI(2)(X, Y ) = 0; if they are perfectly
dependent, MI(2)(X, Y ) approaches infinity.

The mutual information MI(2)(X, Y ) can also be interpreted in terms of information
entropy [8] as

MI(2)(X, Y ) = H(X) + H(Y )−H(X, Y ) (2.2)

= H(X)−H(X |Y ) (2.3)

= H(Y )−H(Y |X) (2.4)

From Eq. 2.3 and Eq. 2.4 we can interpret the meaning of MI(2)(X, Y ) as it measures
the reduction the uncertainty of X due to the knowledge of Y , or vice versa [3]. The above
interpretation of Shannon entropy can be visualized by the Venn diagram in Figure 2.1, where
MI(2)(X, Y ) is the intersection of two entropy circles H(X) and H(Y ), and H(X, Y ) is the
union of two sets H(X) and H(Y ) [3, 13].

2.2. Mutual information for more than two variables

The mutual information MI(2) can detect interactions (edges) between two variables in
a network. However, in most biological networks, each node (variable) may interact (link)
with some others in the same or different mechanisms. Metabolic networks are an example of
such networks, where each metabolite may interact with some others in different reactions. In
this section, we present an extension of MI(2) that allows capturing the interactions of three
variables.

The generalization of mutual information of three variables from that of two variables is
not trivial [3, 13]. One of those generations is interaction mutual information [9] that has
received much attention but with controversial interpretations, defined as follows:

MI(3)(X, Y, Z) = H(X) + H(Y ) + H(Z)−H(X, Y )

−H(Y, Z)−H(X, Z) + H(X, Y, Z) (2.5)

= MI(2)(X, Y )−MI(2)(X, Y |Z) (2.6)
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Figure 2.2. The Venn diagram for mutual information of three variables.

(Note: (1) we use again the superscript 3 to emphasize the mutual information of 3 variables;
(2) some authors used the similar formulas but with the opposite sign.)

From Eq. 2.6, similarly to the interpretation of MI(2), the mutual information MI(3)

common to three variables can be understood as it measures the reduction of MI(2) of two
variables due to the knowledge of the third variable [3]. We can generalize the “reduction"
interpretations of MI(2) (Eq. 2.3) and of MI(3) (Eq. 2.6) as follows. Suppose that H(X)
is the primary mutual information of one variable, we can view that MI(2) is reputedly the
secondary mutual information for two variables (since it is defined as the reduction of the
primary mutual information after introducing a new variable), and MI(3) is as the ternary
mutual information for three variables (also defined as the reduction of the secondary mutual
information after introducing a new variable). Noting that, the extension is not only for the
number of variables (from 2 to 3) but also the physical meaning or interpretation like the
second order derivative and higher order derivatives of functions in calculus.

There have been many interpretations and usages of the ternary MI(3) ([17]). In this work,
we propose a novel interpretation of MI(3) in order to capture interactions of more than two
variables. Indeed, if three variables involve in a mechanism (such as a metabolic reaction),
they are cohesive and thus the information on one variable often relates to the information
on dependence of the other two. Therefore, the secondary mutual information MI(2) of two
variables in general decreases after the introduction of the other variable, and so MI(3) of these
three variables will be a positive number (since MI(3) measures the reduction of MI(2)). The
higher the dependence among three variables, the higher the MI(3) is. This explanation
agrees with the work of [13], in which the authors said that there is a redundance among three
variables if mutual information of these three variables is positive, i.e. MI(3) > 0 (in fact,
in the paper they defined the mutual information for three variables by the same formulas of
MI(3) but with the opposite sign).

Figure 2.2a illustrates the case that three variables involve in the same mechanism, and
thus MI(3) is positive. Figure 2.2b illustrates the case that three variables do not involve in
the same mechanism, but each two of them involves in the same mechanism. In this case,
MI(3) is negative or equal to zero.
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2.3. Using mutual information to detect multiple metabolite interactions

In metabolic networks, if three metabolites participate in a reaction, their concentrations
often change simultaneously (cohesively) when the reaction is active. If they only appear in a
unique reaction, they are completely dependent and MI(3) has usually a high value. If they
appear in several different reactions at the same or different time, they are partially dependent
and MI(3) has usually a lower value. Thus, we can use MI(3) to capture the triple metabolite
interactions.

Naturally, we can think of higher order mutual information to capture the multiple in-
teractions for more than 3 variables, such as MI(4) is a measurement of the reduction of
MI(3) common to three variables after the introduction of the fourth variable. However, the
reduction of MI(3) does not make sense in the metabolic network reconstruction.

In this method we detect such multiple interactions by recursively building them up starting
from the set of triple interactions. If four metabolites X, Y, Z, T involve in the same reaction,
there is a quartic interaction among them, and each of the four triples (X, Y, Z), (Y, Z, T ),
(X, Z, T ) and (X, Y, T ) corresponds to a triple interaction.

2.4. Algorithm

Given a metabolome dataset, we want to reconstruct from it multiple interactions. The
proposed algorithm is similar to the Apriori in [1] to find frequent itemsets. First, we find the
set L2 of pairwise interactions between metabolites by using MI(2) (Subsection 2.1) with a
threshold of minimal pairwise mutual information min threshold2. Second, we join L2 with
itself to build a set of candidates of triple interactions L3, then apply MI(3) (Subsection 2.2) to
keep only triple interactions that MI(3) is greater than a minimal ternary mutual information
min threshold3 (Subsection 2.2). Third, we find the set of quartic interactions L4 and those
of higher order interactions L5, L6, etc. as described in Subsection 2.3. The final result is the
set union L = L2 ∪ L3 ∪ . . .

Table 1 describes in more detail the proposed algorithm to reconstruct metabolic networks
from metabolome data. In this algorithm, we use the procedure “join" that joins a supersubset
Li with itself like the Apriori algorithm: two subsets in Li will be joined to generate a candidate
of Li+1 if they share i-1 variables. We used the k-nearest neighbor statistic-based method
in [16] and MI-libraries provided the authors to estimate MI(2) and MI(3).

2.5. Datasets

Similarly to the gene regulatory network reconstruction, we use in silico generated metabolome
data from random metabolic network models to evaluate the method. It is known that
metabolic networks often consist of three components: stoichiometries (which contain the net-
work structure), kinetic equations, and parameters therein. We used Matlab RMBNToolbox

program developed by [2] to generate fully random metabolic networks with all three compo-
nents randomly generated (kinetic laws are randomly selected from a library of 17 kinds of
kinetic equations), then we used Matlab’s built-in ordinary differential equation solver ode15s

to generate perturbation or time course data from the model.
Usually, ode15s generates time course data points from a metabolic model until reaching

the steady state, after that data is unchanged. This kind of data can be used to infer underlying
networks. However, the use of these data is not always informative in all reconstruction
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Table 1. Algorithm net-reconstruct for inferring metabolic reactions . ∗The procedure
join(Lk, Lk) is completely the same as in the original Apriori algorithm.

Algorithm for inferring metabolic reactions

Input: (1) A matrix XN×T , measurements of N metabolites

in T experiments;
(2) threshold2, threshold3 (for finding L2 and L3)

Output: L = L2 ∪ L3 ∪ . . . (see Subsection 2.4)

1 L1 ← {all metabolites M1, M2, . . . , MN}
2 L2 ← join(L1, L1)

∗

3 forall C ∈ L2

4 if MI(2)(C) < threshold2

5 L2 ← L2 \ C

6 L3 ← join(L2, L2)
7 forall C ∈ L3

8 Ltemp ← {all 2-subsets of C}

9 if ¬(Ltemp ⊆ L2) ∨ (MI(3)(C) < threshold3)

10 L3 ← L3 \ C

11 k ← 3

12 while Lk 6= φ

13 Lk+1 ← join(Lk, Lk)

14 forall C ∈ Lk+1

15 Ltemp ← {all k-subsets of C}
16 if not (Ltemp ⊆ L2)

17 Lk+1 ← Lk+1 \ C

18 Return L = L2 ∪ L3 ∪ . . .∪ Lk+1

Table 2. Stoichiometry of a simple randomly generated metabolic network. An entry (i, j)
of the stoichiometry matrix is 1 or -1 if metabolite Mi appears in the left or right side of

reaction rj, respectively. An entry (i, j) of the interaction matrix is 1 if there exists a reaction
that both i and j participated in.

Stoichiometry Interaction matrix

r1 r2 r3 r4 M1 M2 M3 M4 M5 M6 M7

M1 1 0 1 0 0 0 1 0 1 0 1
M2 0 -1 0 1 0 0 1 1 0 1 1

M3 -1 0 0 -1 1 1 0 0 0 1 1
M4 0 -1 0 0 0 1 0 0 0 1 1
M5 0 0 1 0 1 0 0 0 0 0 1

M6 0 1 0 -1 0 1 1 1 0 0 1
M7 0 1 -1 1 1 1 1 1 1 1 0
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methods, especially when the data contain many unchanged values. People often collect
data at steady state by as many as possible perturbation experiments, and as many kinds
of perturbation experiments as they can. These perturbation data are very informative for
network reconstruction.

In our work, we use both kinds of data. However, with some metabolic models, the time
course data contains constant values, so we use perturbation data only in those cases. The
time course data is easily generated by running ode15s on the metabolic model. With the
perturbation data, the generation is quite complicated. We generate simulated perturbation
metabolome data of metabolic networks following the ways described in [6]. The data points
were collected from different runs for each variability type (biological/environment, enzymatic
variabilities). We slightly modified the function W riteODEFunction in SBMLToolbox [15],
incorporated with random metabolic networks generation RMBNToolbox [2] for different
types of perturbation experiments.

In addition to the datasets prepared by ourselves, we also use available datasets of red
blood cell metabolism in [20]. In the website, they provide both perturbation as well as time
course data.

3. RESULTS AND DISCUSSION

3.1. Reconstruction of multiple interactions

Table 3. A part of a dataset generated from a random metabolic network model. This
dataset will be input to our program.

M1 M2 M3 M4 M5 M6 M7
≈ ≈ ≈ ≈ ≈ ≈ ≈

2.190340 1.445580 4.871360 0.118320 3.023370 0.000293 0.294074
2.208590 1.434610 4.654120 0.116079 2.946740 0.000295 0.286802
1.994790 1.560900 4.659180 0.115525 2.943530 0.000255 0.374311
1.723110 1.694470 5.141490 0.119788 3.113190 0.000218 0.512416
1.767730 1.673290 5.654130 0.124854 3.288450 0.000227 0.488985
2.038860 1.533710 5.888540 0.127822 3.365870 0.000271 0.357428
2.896100 0.939036 5.043200 0.124665 3.064910 0.000533 0.094865
2.837500 0.987277 3.590650 0.107567 2.528740 0.000485 0.105223
2.027790 1.546790 2.987990 0.095363 2.289370 0.000246 0.355421
1.177920 1.855020 4.027860 0.106670 2.714580 0.000154 0.897059
1.266220 1.838360 4.951670 0.116731 3.057540 0.000167 0.825420
1.537640 1.765240 5.669790 0.124358 3.298910 0.000198 0.627115
1.874470 1.621190 6.101030 0.129257 3.435270 0.000245 0.434340
2.668980 1.114570 5.669880 0.128638 3.297110 0.000435 0.146444
2.953670 0.893437 4.112310 0.115540 2.706430 0.000554 0.082897
2.511160 1.234210 2.982650 0.096848 2.300660 0.000354 0.184628
≈ ≈ ≈ ≈ ≈ ≈ ≈

We have developed a computational method net-reconstruct that uncovers multiple metabo-
lite interactions: pairwise interactions, triple interactions, quartic interactions, etc., from
metabolome data. For pairing interactions, like previous network reconstruction methods,
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Table 4. List of multiple interactions found on the simple metabolome data. ∗Those reactions
have been completely reconstructed.

Predicted interaction MI Matched reactions

pairwise interaction MI(2)

1 {M6, M8} 0.409 r3

2 {M1, M8} 0.327 r3

3 {M3, M7} 0.298 r4

4 {M1, M6} 0.217 r3

5 {M5, M7} 0.190 r2

6 {M2, M7} 0.135 r2, r4

7 {M1, M5} 0.095

8 {M5, M8} 0.080 r2

9 {M1, M2} 0.073

10 {M1, M3} 0.050 r∗1
11 {M2, M5} 0.043 r2

triple interaction MI(3)

12 {M1, M6, M8} 0.233 r∗3
13 {M1, M2, M5} 0.088
14 {M2, M5, M7} 0.067 r2

net-reconstruct produces the mutual information matrix representing the confidence of pair-
ing interactions. Moreover, our method can additionally uncover other multiple interactions
that all together contribute to make a progress toward the reconstruction of complete metabolic
networks.

To illustrate the advantages of the method, we carry out an experiment on the perturbation
metabolome data of a randomly generated metabolic network (see Subsection 2.5). Table 2
shows stoichiometry and interaction matrix of a small randomly-generated metabolic network
that consists of 7 metabolites (denoted by M1, M2, ..., M7) and 4 reactions (denoted by
r1, r2, r3, r4). After generating the random network, we use the MATLAB ode15s to generate
perturbation data, which is input to our program. Table 3 shows a apart of the input data.

Applying the proposed method to the above metabolome data (100 perturbation data
points), minimum thresholds threshold2 = 0.04 for pairing mutual information MI(2) and
threshold3 = 0.04 for ternary mutual information MI(3), we obtained multiple interactions
presented in Table 4. We have matched multiple interactions with the four original reactions,
and the matched reactions are presented in the last column. Among eleven pairing interactions,
only two are false positive. Especially, among three triple interactions with the highest MI(3),
two of them are confirmed to be true positive. We also found that two of four original reactions
(r2 and r3, marked with ∗) have been completely reconstructed by the method. The remained
ones have been partially reconstructed in different multiple interactions.

We also applied the proposed method to the in silico metabolome data of red blood cell
metabolism (RBC) published by [20]. The RBC model consists of 39 metabolites and 44
reactions. The datasets can be downloaded at http://menem.com/∼ilya/wiki/index.php/
RBC Metabolic Network. Table 5 shows multiple interactions found by the method on the
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Table 5. List of multiple interactions found on RBC metabolome data. ∗Those reactions
have been completely reconstructed.

Predicted interaction MI Matched reactions

pairwise interaction MI(2)

1 {LAC, NAHD} 4.555303 ldh
2 {G6P, F6P} 4.554703 pgi∗

3 {DHAP, GAP} 4.552503 ald,tpi∗

4 {RU5P, X5P} 4.542912 xu5pe∗

5 {NADPH, GSH} 4.541625 gssgr∗

6 {RU5P, R5P} 4.483696 ru5pi∗

7 {R5P, X5P} 4.474055 tki
8 {PG2, PEP} 4.468436 en∗

9 {PG3, PG2} 4.418211 pgm∗

10 {PG3, PEP} 4.326527
11 {FDP, DHAP} 3.673954 ald
12 {FDP, GAP} 3.671634 ald
13 {AMP, IMP} 3.482159 ampda
14 {F6P, GO6P} 3.297622
15 {G6P, GO6P} 3.297123
16 {DPG23, MGDPG23} 2.948046 cplex(DPG23,MG)
17 {R5P, R1P} 2.865513 prm∗

18 {RU5P, R1P} 2.844739
19 {X5P, R1P} 2.841181
20 {GL6P, KI} 2.776472
21 {GO6P, NADPH} 2.766081 gl6pdh
22 {GO6P, GSH} 2.763634
23 {G6P, R5P} 2.750224
24 {F6P, R5P} 2.750112
25 {G6P, X5P} 2.749533
26 {F6P, X5P} 2.749280 tkii
27 {G6P, RU5P} 2.747932
28 {F6P, RU5P} 2.747910

triple interaction MI(3)

29 {RU5P, R5P, X5P} 4.505767 (ru5pi,tki)
30 {PG3, PG2, PEP} 4.396024 (pgm,en)
31 {FDP, DHAP, GAP} 4.097788 ald∗

32 {G6P, F6P, GO6P} 3.927646
33 {GO6P, NADPH, GSH} 3.860016 (gl6pdh,gssgr)
34 {RU5P, X5P, R1P} 3.690052
35 {G6P, F6P, R5P} 3.647796
36 {G6P, F6P, X5P} 3.647577
37 {G6P, F6P, RU5P} 3.646949
38 {G6P, RU5P, X5P} 3.643090
39 {F6P, RU5P, X5P} 3.642950 (tkii,xu5pe)
40 {RU5P, X5P, R1P} 3.634046
41 {R5P, X5P, R1P} 3.623439 (tki,prm)
42 {G6P, RU5P, X5P} 3.588749
43 {F6P, RU5P, X5P} 3.588471 (tkii,xu5pe)
44 {G6P, R5P, X5P} 3.579587
45 {F6P, R5P, X5P} 3.579301 (tki,tkii)

quartic or higher interaction Total MI(2)

46 {RU5P, R5P, X5P, R1P} 10.254909
47 {G6P, F6P, RU5P, X5P} 10.052438
48 {G6P, RU5P, R5P, X5P} 10.045316
49 {F6P, RU5P, R5P, X5P} 10.045237
50 {G6P, F6P, R5P, X5P} 10.041268
51 {G6P, F6P, RU5P, R5P} 10.040485
52 {G6P, F6P, RU5P, R5P, X5P} 13.692359
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Table 6. Accuracy (AUC) of different methods on different datasets of some metabolic
networks evaluated at pairing interactions. All columns different from two columns on ”ts”

(time series) data are on perturbation data.

Method Random net. with 10 metabolites RBC (39 metabolites and 44 reactions) S.cerevisiae glycolysis
5 react. 10 react. 20 react. chemostat Natural correlated ts pertu. steady state ts

Correlation 0.63 0.77 0.81 0.65 0.66 0.65 0.64 0.89 0.91
Partial Correlation 0.74 0.79 0.87 0.61 0.60 0.61 0.67 0.93 0.95
Graphical Models 0.70 0.79 0.84 0.64 0.65 0.66 0.68 0.93 0.92

Mutual Info. (MI
(2)) 0.62 0.79 0.82 0.64 0.65 0.62 0.65 0.85 0.81

Cond. MI 0.88 0.67 0.82 0.65 0.65 0.63 0.67 0.82 0.83
MI & DPI 0.56 0.71 0.73 0.59 0.60 0.61 0.63 0.79 0.75

data RBC set2 0 0 (1000 data points). Both mutual information MI(2) and MI(3) tend to
increase when the number of data points increased. In this experiment, we used the parameters
threshold2 = 2.7 and threshold3 = 3.5. We found 28 pairing interactions, among them 16 are
confirmed by reactions of the RBC model. Especially, in reconstructed 17 triple interactions,
we confirmed 8 ones concerning with a reaction or two adjacent reactions when checking them
on the list of RBC reactions. For example, {RU5P, R5P, X5P} concern with two adjacent
reactions ru5pi (RU5P, R5P) and tki (R5P, X5P, GAP, F6P), {PG3, PG2, PEP} concern with
pgm (PG3, PG2), en (PG2, PEP), and {FDP, DHAP, GAP} is completely matched with a
reaction ald (FDP, GAP, DHAP), etc. The notation ru5pi (RU5P, R5P) describes that the
reaction ru5pi consists of two metabolites RU5P and R5P.

3.2. On the use of secondary mutual information MI(2) in metabolic network

reconstruction

It is confirmed that the mutual information-based methods (MI(2)) can capture pairing
interactions well as correlation-based methods in gene regulatory reconstruction [23]. We aim
to experimentally verify this characteristics in the case of metabolic network reconstruction.
In our experiments we use the implementation of some methods done by [23], in which there
are two broad categories: correlation-based and mutual information-based methods. The
correlation-based methods include Correlation, Partial Correlation, and Graphical models.
The mutual information-based methods include Mutual Information (Mutual Info.), Condi-
tional Mutual Information (Cond. MI), and Mutual Information and Data Processing Inequal-
ity (MI DPI). Their detail description can be found in [23].

We evaluate the accuracy of these methods on 3 kinds of metabolome datasets. First, we
generate random networks with 10 metabolites and different network complexities (5 reactions,
10 reactions and 20 reactions, see Section 2.5). For each network topology, we run all methods
10 times with the same parameters and the final prediction results are averaged. Second, we use
previously generated RBC datasets [20, 7] to evaluate these six methods. The last metabolome
dataset is randomly generated from the S.cerevisiae glycolysis model [21]. From Table 6, we can
observe that the mutual information-based methods generally achieved comparable accuracy.
Different from reconstruction of gene regulatory networks where the accuracy on time course
data often lower then that on perturbation data, we can see in these experiment results their
accuracies are not considerably different.
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Figure 3.3. ROC of the reconstruction of triple interactions using MI(3) in metabolic net-
works with different complexities.

3.3. On the use of ternary mutual information MI(3) in metabolic network re-

construction

Different from existing reconstruction methods, our method can capture triple interactions
by using ternary mutual information MI(3). As can be seen in Table 4 and Table 5, the
ternary mutual information MI(3) allows us to detect many triple interactions that matched
the real ones in the considered metabolic networks. We aim to experimentally verify that it
can function well for metabolic networks with different complexities. In the experiments, we
consider three random networks having 10 metabolites, but the first one has 5 reactions, the
second has 10 reactions and the third has 20 reactions. Figure 3.3 shows the receiver operating
characteristic of these three networks. The area under the curve of the three networks are
0.85, 0.82 and 0.77, respectively. As we can see, the reconstruction accuracy decreases when
the complexity of networks increases. Although the third network is much more complicated
than the others, the proposed method’s performance is not significantly different.

From the found triple interactions, we can infer quartic or higher interactions using the
Apriori property (see M ethods). As can be seen in Table 5, the quartic interactions (or higher
ones) can, however, only partially match the original reactions. There are two reasons of why
it is very hard to detect those complete interactions. Firstly, the number of k-subsets from n

metabolites is Ck
n and it increases exponentially when k increase. For example, the number

of triplets in RBC with 39 metabolites is C3
39 = 9139, and the number of quartets is C4

39 =
82251. Secondly, metabolic networks are often complex, i.e. a reaction may consists of some
metabolites, and a metabolite is usually controlled by some reactions. Moreover, reactions
are often active at the same time. However, MI(3) can detect groups of metabolites that are
highly cohesive, i.e. they often concern with a reaction or two adjacent reactions or a set of
closed reactions.

4. CONCLUSIONS

The computational reconstruction of pairwise interactions in networks from high-throughput
profiling data is one of difficult problems in systems biology. Nevertheless, the multivariate
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interaction reconstruction is more difficult. We proposed a novel interpretation of ternary
from the view of interactions of variables and then illustrated that it is a very good measure
to capture the multivariate interactions that involve the same mechanism.

We developed a method based on (secondary and ternary) mutual information to capture
reactions involving two or more than two substrates/products such as pairwise interactions,
triple interactions, quartic interactions, those often involve with the same reaction or close
adjacent reactions. When applying the proposed method to in silico metabolome data, the
reconstruction accuracy is high. We can conclude that secondary and ternary mutual infor-
mation are an interesting measurement relevant for detecting multivariate interactions.
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