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Abstract. A possible solution to mitigate the wind power fluctuations is integrated energy storage

systems (ESS) to the wind energy conversion systems (WECS). The supercapacitor ESS (SCESS) is

able to smooth out the output power of wind turbine by exchanging bidirectional power between wind

turbine and supercapacitor through power conversion system. The SCESS consists of supercapaci-

tor, serving as a DC power source, and power conversion system comprising a bidirectional DC-DC

converter and a bidirectional DC-AC converter. Although control methods for a DC-AC converter

are almost fully developed, there is not any scientific research for nonlinear control design of DC-DC

converter due to the shortage of its nonlinear model describing power exchange process. This paper

focuses on a SCESS in terms of modeling and control designing aim to manage active power flow

between the grid and the SCESS. A predictive control algorithm for discrete-time bilinear state-space

model of a non-isolated bidirectional DC-DC converter is proposed. This algorithm is supplementary

methods for this converter besides linear or hysteresis control methods in other research. Simulations

validate the effectiveness of the proposed control.

Keywords. Supercapacitor energy storage system (SCESS), bidirectional DC-DC converter, voltage

source inverter, active rectifier, predictive control.

1. INTRODUCTION

Wind power is one of the renewable energy resources that help to lower the global warming trend.

Unlike a traditional centralized generation plant, these new sources may be located anywhere on the

grid. Islands and densely populated areas finding it hard to be interconnected with the national

electric distribution grids rely primarily on Diesel generators as main electric power supply systems

for them [1].

The model system used in this study consists of a wind turbine generator (WTG), a diesel

generator (Genset), a SCESS and a load forming a wind – diesel – SCESS hybrid power system

(WDS – HPS) as shown in Fig 1. Assuming that the power system operates separately and it is

isolated from the national electric distribution grids. The WTG output power Pwind, SCESS output

power PSCESS , the combined power Pwind−SCESS and the diesel generator power Pdiesel flow to

the system load. Because of wind fluctuation, the connection of a wind turbine to a grid (especially

in islands where the grids are weak) could create severe problems to the transmission line designed

for constant power and to power system stability. A possible solution to the problem is the use

of suitable energy storage system (ESS) [2, 3]. This approach employs a power conversion system,
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control, ESS power reference setting, etc. Different types of ESS  such as batteries, supercapacitors, 
flywheels, superconducting magnetic energy storage, etc. are also studied in [2, 4, 5]. Supercapacitors 
represent one of the innovations in the field of electrical energy storage, which is fulfilling the gap 
between capacitor and battery. The SC has large capacitance, excellent instantaneous charge-
discharge performance, higher power density (but lower energy density) and longer life cycle than a 
battery. 

The control of SCESS has been studied by using conventional linear control techniques (see e.g. 
[6-9]). However NBDC exhibits a nonlinear behaviour (as presented in next section). The linear 
control only ensures stability for a certain operation point. This paper proposes a new effective control 
scheme of SCESS in which a nonlinear MPC control strategy for NBDC cooperates with the 
conventional linear PI and Dead-beat controller for 3PVSI in order to achieve rapid response of both 
active and reactive power exchanges. 

The paper is organized as follows: Models of the SCESS is introduced in section 2. In section 3, an 
MPC controller for NBDC whose responses are for keeping the constant DC link voltage is designed. 
The controllers of 3PVSI in charge of active power and unity power factor control designed using 
familiar instantaneous power theory can be found in [10, 11]. The effectiveness of the proposed 
control scheme validated by simulations is shown in section 4. 

2 SYSTEM CONFIGURATION AND MODELING 
 

In this study, the SCESS consists of a three-phase PWM voltage source inverter (3PVSI) connected 
between the grid interconnection point and the supercapacitor connected to DC link through a non-
isolated bidirectional DC-DC converter (NBDC) as shown in Fig 2. The operating principles and 
modeling of 3PVSI can be found in [10, 11]. The following presentation focuses on the NBDC only. 
The NBDC composes of two IGBTs having anti-parallel diode making up a bi-positional switch. In 
such a bidirectional switching power-pole, the positive inductor current represents a charge mode. 
Similarly, the negative inductor current represents a discharge mode. In this approach, instead of 
independently Pulse Width Modulation (PWM) control the power switches (this technique can be 
found in several studies such as [12, 13]), they are controlled complementarily – by means of ,q q (the 
switching signals of ,BK BSS S ).  
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Figure 1: A single-phase diagram of an isolated wind-diesel-energy storage hybrid power
system.

which has ability to provide the positive response of fast-dynamic energy storage for high power

requirement in order to smooth out the output to eliminate rapid power oscillations on the grid.

The main issues of using the ESS to smooth out output power include ESS topology and capacity

requirement, converter control, ESS power reference setting, etc. Different types of ESS such as

batteries, supercapacitors, flywheels, superconducting magnetic energy storage, etc. are also studied

in [2, 4, 5]. Supercapacitors represent one of the innovations in the field of electrical energy storage,

which is fulfilling the gap between capacitor and battery. The SC has large capacitance, excellent

instantaneous charge-discharge performance, higher power density (but lower energy density) and

longer life cycle than a battery.

The control of SCESS has been studied by using conventional linear control techniques (see

e.g. [6–9]). However NBDC exhibits a nonlinear behaviour (as presented in next section). The linear

control only ensures stability for a certain operation point. This paper proposes a new effective

control scheme of SCESS in which a nonlinear MPC control strategy for NBDC cooperates with the

conventional linear PI and Dead-beat controller for 3PVSI in order to achieve rapid response of both

active and reactive power exchanges.

The paper is organized as follows: Models of the SCESS is introduced in Section 2. In Section 3, an

MPC controller for NBDC whose responses are for keeping the constant DC link voltage is designed.

The controllers of 3PVSI in charge of active power and unity power factor control designed using

familiar instantaneous power theory can be found in [10, 11]. The effectiveness of the proposed

control scheme validated by simulations is shown in Section 4.

2. SYSTEM CONFIGURATION AND MODELING

In this study, the SCESS consists of a three-phase PWM voltage source inverter (3PVSI) connected

between the grid interconnection point and the supercapacitor connected to DC link through a non-

isolated bidirectional DC-DC converter (NBDC) as shown in Figure 2. The operating principles and

modeling of 3PVSI can be found in [10,11]. The following presentation focuses on the NBDC only.

The NBDC composes of two IGBTs having anti-parallel diode making up a bi-positional switch.
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In such a bidirectional switching power-pole, the positive inductor current represents a charge mode.

Similarly, the negative inductor current represents a discharge mode. In this approach, instead of

independently Pulse Width Modulation (PWM) control the power switches (this technique can be

found in several studies such as [12,13]), they are controlled complementarily – by means of q, q̄ (the

switching signals of SBK , SBS).{
d̄iL
dt = −RL

L īL + 1
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ūsc
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dūdc
dt = − 1

Cdc
īLu+ īinv

Cdc

(1)

Within any period T , there are two sub-intervals: TON (SBKon, SBSoff);TOFF (SBKoff, SBSon)

(see [11] for more details). The averaged model of NBDC as (1), where u(t)
∆
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duty-cycle. The model (1) is bilinear because of product ūdcu and īLu. In order to apply MPC

(Model Predictive Control) algorithm for NBDC controller, the continuous-time model (1) must be

normalized and then converted to discrete-time model.
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Obviously, it is the discrete – time bilinear state-space model, and the MPC algorithm for the bilinear 
model will be presented in section 3. 

3 CONTROL SCHEME OF THE SCESS 

These converters must be controlled in order to meet the following requirements: tight DC bus voltage 
regulation; can interact with the three-phase AC grid at the point of common coupling; perfect track 
of active and reactive power of its references. In this approach, there are two control structures of 
NBDC and 3PVSI that are shown in Fig 3. The current can be either drawn from or injected into the 
DC-link by the operation mode. It is required to ensure the power balance between the primary power 
source – supercapacitor and the load by regulating the DC link voltage to a fixed value.The DC-link 
voltage can be subjected to transient conditions due to the change of the power exchanged by the 
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Figure 2: The topology of the SCESS.

2.1. Normalization
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Then the averaged dynamic model of the NBDC after normalizing is presented:{
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Discrete-time state space model:
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then the equation (2) is re-written as:

ẋ = (AC + FCu) x + ηC (3)
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In a sample period of time T – execution time of microcontroller, the ich and x3 (corresponding

to iinv, uSC) change very slowly, so ηC can be considered as a constant value. Let it be integral x(t)
from kT to (k + 1)T , so:

x(k + 1) = Φ(k)x(k) + ηC(k)T (4)

In which, the system matrix Φ(k) = e[AC+FCu(k)]T is approximated by the first degree Taylor series.

SettingA = I + AcT , F = FcT .and η = ηCT , the Eq. (4) becomes:

x(k + 1) = Ax(k) + Fx(k)u(k) + η(k) (5)

Obviously, it is the discrete – time bilinear state-space model, and the MPC algorithm for the bilinear

model will be presented in section 3.

3. CONTROL SCHEME OF THE SCESS

These converters must be controlled in order to meet the following requirements: tight DC bus voltage

regulation; can interact with the three-phase AC grid at the point of common coupling; perfect track

of active and reactive power of its references. In this approach, there are two control structures of

NBDC and 3PVSI that are shown in Figure 3. The current can be either drawn from or injected

into the DC-link by the operation mode. It is required to ensure the power balance between the

primary power source – supercapacitor and the load by regulating the DC link voltage to a fixed

value.The DC-link voltage can be subjected to transient conditions due to the change of the power

exchanged by the SCESS. The DC-link voltage control is achieved through the control of NBDC while

the controllers of 3PVSI are responsible for tracking the active and reactive power reference values.

Internal current and voltage loops in both converters are used.

In fact, the reference value of active power is the high frequency fluctuating components of

the demand-generation power mismatch which is given by outer loop control so called “Energy
management Algorithm – EMA”. The researchers aim to examine the performances of the SCESS;

EMA will not be discussed in this paper. Instead, step signal will be used to generate the reference

active power of the SCESS.
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Fig 3: The control structure of the SCESS. 
Figure 3: The control structure of the SCESS.
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3.1. Controller design for NBDC

A proposed MPC for NBDC can keep udc as a command value U∗
ref (x∗2 = 1). The MPC structure

comprises three parts: predictive model, cost function, and optimization algorithm. The discrete-

time bilinear state model (5) of NBDC is utilized directly to build the 2 steps predictive model as

follows:

x̃ =

(
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(
A
A2

)
x(k) +

(
Fx(k) 0

AFx(k) FAx(k) + Fη(k)

)(
u(k)

u(k + 1)

)
+ F2x(k)u(k)u(k + 1) +

(
η(k)

Aη(k) + η(k)

) (6)

The cost function is determined from [14]. In which, the weight factor equal 1
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In which ||b||2ψ = bTψb; xs, us are steady states at each period of time. Begin with (5), given a set

point ys = x2s = 1 for the output, the corresponding steady state values for (xs, us)can be found

by solving the following equations, in which
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then the optimization algorithm used here is “optimization algorithm based on fixed search direc-

tions” [14]. The predictive future states are represented separately to 2 directions u(k) and u(k+1) :

x̃ =

(
x(k + 1)
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)
= K1+V1u(k) = K2+V2u(k + 1), (10)

where, matrices Ki,Vi(i = 1, 2) are given by:

Ki =x̃[u(k + i− 1) = 0];

Vi =x̃[u(k + i− 1) = 1]−Ki
(11)

And the optimal values for each direction as the following:
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,
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2 Q̃ [K2 − x̃s]−Rus(k + 1)
)
.
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The flow chart of MPC algorithm is shown in Fig 4. The while loop in each the period of time will be 
stopped if the relative decrease of the cost function is smaller than specified small positiveλ . The 
smaller value of λ , the better control quality; but it causes the longer time for execution. In this 
paper, 0.002λ = . Because not all the inputs have the same impact on the value of cost function J , 
the advantages of this approach of evaluation is that stop criterion is evaluated only after successively 
optimizing once in every direction ( 1)u k i+ − . 
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The flow chart of MPC algorithm is shown in Figure 4. The while loop in each the period of time

will be stopped if the relative decrease of the cost function is smaller than specified small positive λ.

The smaller value of λ, the better control quality; but it causes the longer time for execution. In this

paper, λ = 0.002. Because not all the inputs have the same impact on the value of cost function J ,

the advantages of this approach of evaluation is that stop criterion is evaluated only after successively

optimizing once in every direction u(k + i− 1).

3.2. Controller design for 3PVSI

Figure 3 shows the control structure of 3PVSI. The power control of the 3PVSI is based on the

instantaneous power theory. Voltage Oriented Control (VOC) is based on the use of a dq frame

rotating at ω speed and oriented such that the d axis is aligned on the grid voltage vector. The

reference current d component i∗Nd is controlled to manage active power exchange while the reference

current q component i∗Nq is in charge of reactive power control and typically to obtain a unity power

factor. In fact, to have the grid current vector in phase with grid voltage, the vector i∗Nq should be

zero. Assuming that the d axis is perfectly aligned with grid voltage eq = 0, the active power and

reactive power will therefore be proportional to iNd and iNq, respectively:

P = 3
2udiNd

Q = −3
2udiNq

(13)

The commands iNd and iNq are realized by an inner-loop current control which plays a decisive role

in the control concept and for its correct realization. Therefore, current controllers were designed

based on the Bead-beat method as described in [10,11,15] to improve the current rapid response.
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4. SIMULATION

4.1. Simulation Parameters

A simulation model is built and parameters are: Udc−ref = 700 V, Cdc = 1000 uF, Ccell = 58 F,

ESRcell = 0.022 Ω, Nseries = 42, Nparallel = 8, CSCESS = 10.75F , ESRSCESS = 0.1155 Ω,

λ = 0.002, Ucell = 15 nV, T = 0.0005 s. Valves are ideal. The numerical simulations are carried out

with Matlab/Simulink/SimPowerSystems and PLECS. The supercapacitor block in SimPowerSystems

is a generic model parameterized to represent most popular types of supercapacitors. The block

employs Stern equation and Tafel equation as in [16].

4.2. Simulation Results

There are two cases of study simulation: the NBDC independently works and cooperates with 3PVSI

in the SCESS.

4.2.1. The NBDC independently working

In this bench, the current iinv which caused by active power exchange via 3PVSI is assumed as

Figure 5. There are two sub-intervals: 0 s - 2 s demonstrates for charging mode (iinv > 0) with

udc−ref = 700 V, 2 s - 4 s demonstrates for discharging mode (iinv < 0) with udc−ref = 800 V.

While the reference DC-link voltage udc−ref is changed and the inverter current varies in step form

as in Figure 5, the DC-link voltage is perfectly regulated as its desired values (Figure 6). Figure 7

shows the value of cost function J from (7). Its decrease to zero proves the effectiveness of proposed

algorithm. Figure 8 illustrates the voltage of supercapacitor usc in each sub-interval.

 

Figure 5: The test signal of current iinv.
 

Figure 6: The DC-link voltage response.

 

Figure 7: The value of cost function J .
 

Figure 8: The voltage of supercapacitor.
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4.2.2. The NBDC cooperates with 3PVSI

One of the key variables in overall system performance is the active power exchange (proportional

to the inductor current of the NBDC and the direct current component of VSI as well) between

SCESS and the grid. Thus, its value has to be tightly controlled. Figure 9 shows the inverter

current iinv response to a step-change active power exchange illustrating the charge mode (Positive

inductor current value) and discharge mode (Negative inductor current value). Figure 10 and

Figure 11 illustrate that: while active power is exchanged (SCESS alternated between charge mode

and discharge mode), the voltage of the DC link is kept constant. Figure 12 explains the dynamic

performances of the supercapacitor during charging and discharging process in terms of energy (state-

of-charge).

 

Figure 9: dq components of current response of
3PVSI.

 

Figure 10: Active Power exchange response of
the SCESS.

 

Figure 11: DC link voltage response.

 

Figure 12: Three phase voltage-current of
SCESS.

In order to show the effectiveness of control structure of SCESS with proposed predictive control

approach in smoothing out the output power of wind turbine, the wind-diesel-SCESS hybrid power

system is established. Figure 13 shows the shape of total power Pwind−SCESS which is much more

stable than the shape of wind power.

In the literature, some control approaches are applied to NBDC for specific applications. However,

these approaches have some drawbacks. For example, a new PI controller design for both two modes

of NBDC in Electrical Vehicle application [17], but it causes high fluctuation around a set point

and long settling time. Another example is sliding mode approach for NBDC in supercapacitor

automotive application [18], in which it’s required buck and boost mode are controlled separately by

two controllers. The proposed MPC algorithm in this paper solves these problems. Figure 14 shows
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Figure 13: Smoothing out active power.

 

Figure 14: DC-link voltage.

that this algorithm brings lower overvoltage around a set point, fasten response time, and especially,

only one controller is used to control both two modes.

5. CONCLUSION

The DC-link voltage can be subjected to transient conditions due to the change of power exchanged

by the SCESS. The objective control of DC-link voltage which ensures the balancing of active power

exchange between the SCESS and the grid is archived. The perfectly tracking performance lets us

confirm that the proposed nonlinear MPC algorithm of non-isolated bidirectional DC-DC converter

creates good condition to integrate the SCESS with a wind power system to mitigate the power

fluctuation.
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