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Tóm tắt. Siêu mã, một loại mã độ dài thay đổi có nhiều tính chất đặc biệt, đã được giới thiệu và
nghiên cứu bởi Đỗ Long Vân và tác giả trong một số bài báo gần đây. Một siêu mã được gọi là nguyên
tố nếu nó không thể phân tích thành tích ghép của hai siêu mã khác. Phân tích nguyên tố đối với
một siêu mã là phân tích nó thành tích ghép của các siêu mã nguyên tố. Trong bài báo này, một
thuật toán phân tích nguyên tố đối với các siêu mã có độ phức tạp tuyến tính đã được đề xuất. Tính
duy nhất của việc phân tích một siêu mã thành một tích ghép duy nhất các siêu mã nguyên tố cũng
được chứng minh.

Từ khóa. Mã, siêu mã, siêu mã nguyên tố, phân tích nguyên tố.

Abstract. Supercode, a particular case of hypercodes, has been introduced and considered by D.
L. Van and the author in previous papers. A supercode is called prime if it cannot be decomposed
as a catenation of two supercodes. The prime decomposition of a supercode L is to decompose L
into prime supercodes. In this paper, a linear-time prime decomposition algorithm for supercodes is
proposed. The uniqueness of the prime decomposition for supercodes is presented.
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1. INTRODUCTION

Theory of length-variable codes has been initiated by M. P. Schützenberger and then
developed by many others. Codes are closely related to formal languages. A code is a language
such that every text encoded by words of the language can be decoded in a unique way
or, in other words, every encoded message admits only one factorization into code-words.
Codes are useful in many application areas such as information processing, data compression,
cryptography, information transmission and so on [9]. For background of the theory of codes
we refer to [1, 9].

Given a class C of codes. A decomposition of a code L in C is a catenation of several
codes L1, L2, . . . , Lk in C such that L = L1.L2 . . . Lk and k ≥ 2. If L cannot be further
decomposed except for L.{λ} or {λ}.L, where λ is the empty word, we say that L is a prime
code in C. A. Mateescu, A. Salomaa, and S. Yu [10, 11] examined prime decompositions for
regular languages and showed that it is decidable whether or not a given regular language has
a decomposition and that, in general, the prime decomposition is not unique. J. Czyzowicz et
al. [3] studied the prime decomposition problem for the class of prefix codes and proved that
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the prime decomposition of a regular prefix code is unique. They also showed the importance
of the prime decomposition for prefix codes in practice. In [6], Y. -S. Han et al. examined the
prime decomposition problem for regular infix codes and showed that the prime decomposition
in this case is not unique. An algorithm for testing the primality of regular infix codes was
proposed. Also, it was shown that the prime decomposition can be computed in polynomial
time. Then, in [7] the authors proved the uniqueness of the prime decomposition for regular
outfix codes. A linear-time algorithm to compute the prime decomposition for regular outfix
codes was presented. In [8], K. V. Hung and D. L. Van proposed a general approach to
the prime decomposition problem. As applications, solutions for the prime decomposition
problem are obtained, in a unified way, for several classes of codes. These classes are all
subclasses of prefix codes and can be defined by binary relations. Algorithms to compute the
prime decomposition for these classes was also given. Recently, W. Wieczorek [16] present
an algorithm for the decomposition of a finite language. The algorithm is based on checking
through some subsets of the states of a minimal acyclic deterministic finite-state automata.
This author also investigate two additional algorithms: the first is based on the use of integer
linear programming, and the second is based on finding cliques in a graph. It appears that
the latter approaches are inappropriate in terms of time consumption. Moreover, the language
decompositions and primality problem are also studied in [2, 4, 5, 12].

In this paper, we study the prime decomposition of supercodes and propose a linear-time
prime decomposition algorithm for supercodes. The uniqueness of the prime decomposition
for supercodes will be establshied. Note that, all supercodes are finite, and the prime decom-
position problem for finite codes is not trivial at all because the primality test for finite codes
is believed to be NP-complete [11]. Our work is motivated by the idea to solve the prime
decomposition problem for regular infix codes [6] and regular outfix codes [7].

2. PRELIMINARIES

Let Σ be a finite alphabet, Σ∗ be the set of all the words over Σ. The empty word is denoted
by λ and Σ+ stands for Σ∗\{λ}. Any subset of Σ∗ is a language over Σ. A language L of Σ+ is
a code over Σ if any word w in L+ has exactly one factorization into words of L. Given a word
u in Σ∗, the number of all the occurrences of letters in u is the length of u, denoted by |u|. A
word u is a subword of a word v, if for some n ≥ 1, u = u1 . . . un, v = x0u1x1 . . . unxn with
u1, . . . , un, x0, . . . , xn ∈ Σ∗. If x0 . . . xn 6= 1, then u is called a proper subword of v. A word u
is called a permutation of a word v, if |u|a = |v|a for all a ∈ Σ, where |u|a denotes the number
of occurrences of a in u. And a word u is called a permu-subword (proper permu-subword) of
a word v, if u is a subword (proper subword, resp.) of a permutation of v.

Definition 1. A language L of Σ+ is a supercode over Σ, if no word in L is a proper permu-
subword of another word in it.

Supercodes, a special kind of hypercodes, were introduced and considered in [13, 14, 15].
They have some interesting properties, especially, all supercodes are finite [13].

Example 1. a) Every uniform code over Σ which is a subset of Σk, k ≥ 1, is a supercode.

b) The language L = {a2b, ab4} over Σ = {a, b} is a supercode because a2b is not a proper
permu-subword of ab4 and vice versa.

c) Consider the language L = {ab2ac, ab5c, ac3bac, ac3b4c} over Σ = {a, b, c}. It is not
difficult to check that no word in L is a proper permu-subword of another word in it. Thus, L
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is a supercode.

d) The L = {abab, a2b3} over Σ = {a, b} is not a supercode because abab is a proper
subword of the permutation abab2 of a2b3.

Lemma 1. If L is a supercode and L = L1.L2 then L1 and L2 are also supercodes.
Proof. Assume that L1 is not a supercode. By definition, there are two distinct words u
and v are in L1 such that u is a proper permu-subword of v. Let w be a word in L2. Since
L = L1.L2, both uw and vw are in L. Obviously, uw is a proper permu-subword of vw. It
contradicts the assumption that L is a supercode. Therefore, if L is a supercode, then L1

should be a supercode. By the same argument, we can show that L2 is also a supercode. �

A finite-state automaton A is specified by a tuple (Q,Σ, δ, s, F ), where Q is a finite set
of states, Σ is an input alphabet, δ ⊆ Q × Σ ×Q is a (finite) set of transitions, s ∈ Q is the
start state and F ⊆ Q is a set of final states. Let |Q| denote the number of states and |δ| the
number of transitions in of A. Then, the size |A| of A is defined as |Q|+ |δ|. If t = (p, a, q) is
a transition, where p, q ∈ Q and a ∈ Σ, then we say that t is an out-transition of p and an in-
transition of q. Also, p is called a source state of q and q a target state of p. Instead of writing
(p, a, q) ∈ δ, we often write also δ(p, a) = q. Then δ is extended to a mapping from Q×Σ∗ to
Q in a normal way. A word w over Σ is accepted by A if there is a labeled path from s to a
state in F , which is called a successful path in A, and which spells out the word w. Thus, the
language recognized by A, denoted by L(A), is the set of the labels of all the successful paths
in A. The languages recognized by finite-state automata are called regular languages. Acyclic
deterministic finite-state automata (ADFAs) are a proper subfamily of DFAs that define finite
languages.

We say that the automaton A is non-returning if the start state of A has no any in-
transitions, and that A is non-exiting if no final state of A has out-transitions. Clearly, if A is
non-exiting then we may always assume that A has only one final state. Moreover, we always
assume that A has only useful states, which means that each state of A must appears on at
least one successful path in A.

In this paper, we restrict ourselves to consider only acyclic deterministic finite-state au-
tomata, which are non-returning and non-exiting, denoted by N-ADFAs, for short.

Lemma 2. For every supercode L there exists an N-ADFA recognizing L.
Proof. Suppose L is a supercode. There is then an acyclic deterministic finite-state automata
A recognizing L,L = L(A). It is easy to see that if the start state of A has an in-transition
then L cannot be a suffix code, and if a final state of A has an out-transition then L cannot
be a prefix code; i.e. L cannot be a supercode. Hence, A must be both non-returning and
non-exiting, i.e. A is an N-ADFA. �

3. A PRIME DECOMPOSITION ALGORITHM

In this section we design a linear-time prime decomposition algorithm for supercodes and
demonstrate the uniqueness of the prime decomposition for supercodes. For this we need some
additional definitions and notations.

Definition 2. A supercode L is a prime supercode if L 6= L1.L2 for any supercodes L1 and
L2.

Example 2. The supercode L = {a2b, ab4} in Example 1, is not prime because L = {a}.{ab, b4},
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where {a} and {ab, b4} are supercodes. Clearly, the supercode {a} is prime.

Definition 3. A state b in an N-ADFA A is called a bridge state of A if the following
conditions hold:

(i) The state b is neither the start state nor a final state;

(ii) Every successful path in A must pass through b.

Thus, if b is a bridge state in the N-ADFAA, then we can partitionA into two subautomata
A1 and A2 such that A1 consists of all the states incomming to b, b including, and A2 consists
of all the states outgoing from b, b including. It is easy to verify that L(A) = L(A1).L(A2)
from the second requirement in Definition 3. Fig. 1 illustrates a partition at a bridge state.

Lemma 3. If a minimal N-ADFA A has a bridge state, where L(A) is a supercode, then
L(A) is not prime.
Proof. Since A has a bridge state b, we can partition A into two subautomata A1 and A2 at
b. Then, by Lemma 1, L(A1) and L(A1) are supercodes and, therefore, L(A) = L(A1).L(A2)
is not prime. �

Lemma 4. If a minimal N-ADFA A does not have any bridge states and L(A) is a supercode,
then L(A) is prime.
Proof. Assume that L = L(A) is not prime. Then, L can be decomposed as L1.L2, where L1

and L2 are supercodes. By Lemma 2, there exist two minimal N-ADFAs A1 and A2 for L1

and L2, respectively. Since A1 and A2 are non-returning and non-exiting, there are only one
start state and one final state for each of them. We catenate A1 and A2 by merging the final
state of A1 and the start state of A2 as a single state b. Then, the catenated automaton is the
minimal N-ADFA for L(A1).L(A2) = L and has a bridge state b, a contradiction. �

Fig.1. An example of partitioning of an N-ADFA at a bridge state b

Theorem 1. A supercode L is prime if and only if the minimal N-ADFA for L does not
have any bridge states.
Proof. It follows immediately from Lemmas 3 and 4. �

Lemma 3 shows that if a minimal N-ADFA A for a supercode L has a bridge state, then
we can decompose L into a catenation of two supercodes using bridge states. In addition, we
have a set B of bridge states for A and decompose A at b, then B \ {b} is the set of bridge
states for the resulting two automata after the decomposition.

Theorem 2. Let A be a minimal N-ADFA for a supercode that has k bridge states, where k ≥
1. Then, L(A) can be decomposed into k+1 prime supercodes, namely, L(A) = L1.L2 . . . Lk+1

and L1, L2, . . . , Lk+1 are prime supercodes.
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Proof. Let (b1, b2, . . . , bk) be the sequence of bridge states from the start state s to the final
state f in A. We prove the statement by induction on k. It is sufficient to show that L(A) =
L′.L′′ such that L′ is accepted by an N-ADFA A′ with k − 1 bridge states and L′′ is a prime
supercode.

We partition A into two subautomata A′ and A′′ at bk. By Lemma 1, L(A′) and L(AA′′)
are supercodes. Since A′′ has no bridge states, L′′ = L(A′′) is prime by Theorem 1. By
definition of bridge states, all paths must pass through (b1, b2, . . . , bk−1) in A′ and, therefore,
A′ has k−1 bridge states. Thus, if A has k bridge states, k ≥ 1, then L(A) can be decomposed
into k + 1 prime supercodes. �

Note that Theorem 2 guarantees the uniqueness of prime decomposition for supercodes.
Furthermore, finding the prime decomposition of a supercode is equivalent to identifying bridge
states of its minimal N-ADFA by Theorems 1 and 2.

Given L, to verify the primality of L it suffices to verify whether A has bridge states or
not. If not, then L is prime and is a prime decomposition of itself. If yes, we partition A at
a bridge state into two subautomata A1 and A2. If both of L(A1) and L(A2) are prime then
L(A1).L(A2) is a prime decomposition of L. Otherwise, the above procedure is repeated for
one among L(A1) and L(A2) or both of them according to the case.

Let B denote the set of bridge states of the given minimal N-ADFA A. Clearly, the number
of states in B is at most m, where m is the number of states in A. Note that every time we
partition A at a bridge state b ∈ B into A1 and A2, then only states in B \ {b} can be the
bridge states of A1 and A2. Therefore, we can determine the primality of L(A) by checking
whether A has bridge states or not and compute a prime decomposition of L(A) using only
these bridge states. Since there are at most m bridge states in an N-ADFA for a supercode,
we can obtain a prime decomposition of L(A) after a finite number times, no more than m,
of partitioning component automata at the bridge states in B.

The following result is due to Y. -S. Han, Y. Wang and D. Wood.

Lemma 5 ([6]). We can compute the set of bridge states for a given N-ADFA A =
(Q,Σ, δ, s, f) in O(|Q|+ |δ|) worst-case time using DFS (depth-first search).

Based on this result we obtain the following theorem.

Theorem 3. Given a minimal N-ADFA A for a supercode:
(i) We can determine the primality of L(A) in O(µ) time;
(ii) We can compute the unique prime decomposition of L(A) in O(µ) time if L(A) is not

prime;
where µ is the size of A.
Proof. By Lemma 5, the set of bridge states in A can be computed in O(µ) worst-case time.
Therefore, if A has no bridge states then L(A) is prime. Otherwise, by Theorem 2, we can
compute the unique prime decomposition of L(A) using bridge states in O(µ) time. �

By virtue of Theorem 2, a prime decomposition algorithm for supercodes can be presented
as follows.

Algorithm PrimeSP
Input: A supercode L.

Output: The prime supercodes L1, L2, . . . , Lk+1 such that L = L1.L2 . . . Lk+1 with k ≥ 0.

1. Building a minimal N-ADFA A = (Q,Σ, δ, s, f) for L.
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2. Finding the sequence (b1, b2, . . . , bk) of bridge states from s to f in A by using DFS
(depth-first search).

3. If A does not have any bridge states, we obtain L. Otherwise, we partition A into
k + 1 subautomata A1,A2, . . . ,Ak+1 at b1, b2, . . . and bk, respectively. Therefore, we obtain
L1 = L(A1), L2 = L(A2), . . . , Lk+1 = L(Ak+1).

Let us give some examples.

Example 3. Consider the supercode L = {a2b, ab4} over Σ = {a, b} in Example 2. The minimal
N-ADFA A for L has 2 bridge states which are b1 and b2 (see Fig. 2). By Algorithm PrimeSP,
L may be decomposed uniquely into 3 prime supercodes, namely L = {a}.{a, b3}.{b}, where
{a}, {a, b3} and {b} are prime supercodes.

Fig.2. The minimal N-ADFA A for L = {a2b, ab4}

Example 4. Consider the supercode L = {ab2ac, ab5c, ac3bac, ac3b4c} over Σ = {a, b, c} in
Example 1. The minimal N-ADFA A for L has 4 bridge states which are b1, b2, b3 and b4 (see
Fig. 3). By Algorithm PrimeSP, L may be decomposed uniquely into 5 prime supercodes,
namely

L = {a}.{b, c3}.{b}.{a, b3}.{c}

where {a}, {b, c3}, {b}, {a, b3} and {c} are prime supercodes.

Fig.3. The minimal N-ADFA A for L = {ab2ac, ab5c, ac3bac, ac3b4c}

4. CONCLUSIONS

This paper deals with factorization of codes, that is, representation of codes as a product
of other codes. The problem is as follows: Let C be a class of code. Is every code of C factorizes
into “prime” codes (that is ones that cannot factorize further in that way) in the same class
C? And if such a factorization exists, is it unique? The problem of this kind is common and
it pervades mathematics.

Motivated by the problem for infix and outfix codes by Yo-Sub Han at el., we have studied
the problem over the so-called supercodes, a subclass of hypercodes. First, we have proved the
“structure” lemma: every factorization of a supercode into codes is a supercode factorization
(Lemma 1). Then we have invoked automata theory settings (minimal automata, key notions,
etc.) of previous authors on which the consideration to characterize prime supercodes and
further decide on the primality issue, shows and computes the unique supercode factorization
of them.
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We have proposed a linear-time prime decomposition algorithm for supercodes (Algorithm
PrimeSP) and also demonstrated the uniqueness of the prime decomposition for supercodes
(Theorem 3).
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