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Abstract. Cluster analysis is an unsupervised technique of grouping related objects without

considering their label or class. The objects belonging to the same cluster are relatively more homo-

geneous in comparison with other clusters. The application of cluster analysis is in areas like gene

expression analysis, galaxy formation, natural language processing and image segmentation etc. The

clustering problem can be formulated as a graph cut problem where a suitable objective function

has to be optimized. This study uses different graph cluster formulations based on graph cut and

partitioning problems. A special class of graph clustering algorithm known as spectral clustering

algorithms is used for the study. Two widely used spectral clustering algorithms are applied to ex-

plaining solution to these problems. These algorithms are generally based on the Eigen-decomposition

of Laplacian matrices of either weighted or non-weighted graphs.
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1. INTRODUCTION

This survey presented a framework of spectral clustering, a method which utilizes an eigenvector from

the so-called data similarity matrix. Computing eigenvectors of such matrices could be potentially a

very expensive operation. Thus, faster approximation algorithms for spectral clustering have appeared

in the literature. This survey tries to summarize and experimentally evaluate such approximation

algorithms.

Cluster analysis has been applied to many areas e.g. gene expression analysis [1], natural language

processing [2], galaxy formation [3] and image segmentation [4]. Clustering techniques are divided

into two different categories: hierarchical and partitioning techniques. Hierarchical clustering tech-

niques [5, 6, 7] are used to find structure which can be further divided into substructures and so on

iteratively. This results is a hierarchical structure of groups which are known as dendrograms. Parti-

tioning clustering methods seek to achieve a single partition of data without any other sub-partition.

They are often based on the optimization of an appropriate objective function.

Spectral clustering offers an attractive alternative which clusters data in which eigenvectors of a

similarity/affinity matrix are derived from the original data set. In certain cases, spectral clustering

even becomes the only option. For instance, when different data points are represented using feature

vectors of variable lengths, mixture models or K-means cannot be applied [8], while spectral clustering

can still be employed as long as a pair-wise similarity measure can be defined for the data.
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Spectral clustering methods arise from concepts of spectral graph theory. The main idea is to

construct a weighted graph from the given data set where each node represents a pattern and each

weighted edge simply takes into account the similarity between two patterns. In this framework the

clustering problem is seen as a graph cut problem, which can be handled by means of the spectral

graph theory. The core of this theory is the eigenvalue decomposition of the Laplacian matrix of the

weighted graph obtained from data. It has been observed that there is a close relationship between

the graph cut and the second smallest eigenvalue of the Laplacian [9, 10].

This paper focuses on main spectral clustering algorithms found in research papers for graph

cut and graph partitioning problems. All the spectral graph theory necessary to understand these

algorithms will be presented either before or during their descriptions. Moreover, important basic

graph concepts are presented for those who are not familiar with graph notations and representations.

The survey is subdivided into various sections in which Section 2 presents spectral graph con-

cepts, definitions, and construction of similarity graphs and function related with spectral algorithms

covered in this study. Properties of graph Laplacian matrices important for the comprehension of the

spectral clustering algorithms is presented in Section 3. Section 4 presents the different graph cut

and partitioning problems for which spectral methods can be important in the literature. Section 5

shows experimental comparisons of two spectral clustering algorithms. In the last section conclusions

are drawn.

2. SPECTRAL GRAPH THEORY

Spectral clustering methods [11] for clustering make use of the spectrum of the similarity matrix of

the data. Many algorithms have been proposed in the literature [12, 13], each using the eigenvectors

in somewhat different ways. A comparison of various spectral clustering methods has been recently

proposed by Verma et al. [14].

2.1. Graphs notations

Let X = {x1, x2, ..., xn} be the set of data points or patterns to cluster. Starting from X,a complete,

weighted and undirected graph G = (V,E), is built, where V is a non empty set of n nodes (or

vertices) and E is a set of m edges. Each edge in E can be defined by the pair (vi, vj), where vi
and vj are nodes of G, i.e., elements from V. A subgraph of G is a graph G′, G′ = (V ′, E′), where

V ′ ⊂ V and E′ ⊂ E.
The adjacency matrix of G is a binary matrix, given by A = [aij ]n×n, where aij = 1, if there is

an edge connecting nodes vi, vj and aij = 0, otherwise. Moreover, weights may be associated with

the graph’s edges, resulting in weighted graphs. The edge weights are represented by a non negative

weight matrix W = [wij ]n×n, where wij ≥ 0, wij ∈ R and represents the edge weight between

nodes vi and vj . If wij = 0, this means that the vertices vi and vj are not connected by an edge. If

the edges of a graph have no weight, the graph is known as an unweighted graph. As G is undirected,

wij = wji is required.

In an undirected graph, the degree of a vertex vi ∈ V is defined as dii =
n∑
j=1

aij i.e. the number

of its adjacent edges. In an undirected weighted graph, the degree of a node can also be defined

as dii =
n∑
j=1

wij i.e. the sum of weights of its adjacent edges. The following section shows some

constructions of similarity graphs and functions from datasets.
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2.2. Construction of similarity graph and function

There are cases where data are not originally structured in graphs. In these cases, a similarity graph

can be constructed from these data. There are many popular methods to transform a given set

x1, x2, ..., xn of data points with pair-wise similarities sij or pair-wise distances dij into a graph.

At the time of construction of similarity graphs, the aim is to find out and develop a model for the

local neighborhood relationships between the given data points. For such, an undirected weighted

graph G = (V,E) where each node vi is represented by the ith object from a given dataset is

considered. The edges of G are defined according to a similarity measure between pairs of objects

from this dataset. One of the most frequently used similarity measures is given by the sigmoid

function. The weight matrix W of a similarity graph G from the given dataset can be calculated

by making wij = s(xi, xj) = exp(−d(xi, xj)/(2σ
2
d)) if i 6= j, and 0, otherwise, where d measures

the dissimilarity between patterns and σ controls the rapidity of decay of h. This particular choice

has the property wherein W has only few terms considerably different from 0 and is sparse. The

parameter σ has a high impact on the clustering partition obtained.

The similarity graph resulting from this strategy can be either used as a complete graph or

processed in order to eliminate some of its edges. An alternative for the latter case is the elimination

of the edges of a similarity graph whose weights are lower than a predefined threshold. Further

details and more options for constructing similarity graphs can be found in [15]. Moreover, [16] is a

good source for additional information about the impact of different graph constructions on graph

clustering results. Since spectral clustering algorithms are based on the Eigen-decomposition of graph

Laplacian matrices, these matrices will be discussed in this study.

3. SPECTRAL GRAPH PARTITIONING

The study of spectral graph theory started in Quantum Chemistry, with a theoretic model of non

saturated hydrocarbon molecules [17, 18]. These molecules have chemical linkages with many electron

energy levels. Some of these energy levels can be represented by the eigenvalues of a graph. The

study of eigenvectors and eigenvalues of a square matrix is the essence of the spectral theory. Since

spectral clustering algorithms are based on the Eigen-decomposition of graph Laplacian matrices, so

in this section, the different graph Laplacian and their most significant properties are characterized.

The application of spectral theory to graph clustering problems is usually based on the relaxation

of some graph partitioning problems. Spectral clustering algorithms are commonly based on fast

iterative methods and can be promoted by the use of linear algebra packages, such as the linear

algebra package (LAPACK) [19]. In the following, we show some properties of graph Laplacian

matrices important for the understanding of spectral clustering algorithms presented in Section 4

3.1. Graph Laplacian Matrices and Their Properties

The main tools used for spectral clustering are graph Laplacian matrices. The study of those matrices

is called spectral graph theory [9]. A graph G = (V,E) and its weighted matrix W, such as wij ≥ 0
for i, j = 1, ..., n is considered. Let D = [dij ]n×n, with dij ∈ R, be a diagonal matrix defined by

dii =
n∑
j=1

wij , i.e., dii is the degree of node vi, with i = 1, ..., n. For simplicity reasons, dii will be

referred to here as di. The unnormalized graph Laplacian matrix, defined by L = [lij ]n×n is given

by

LUN = D −W (1)
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If a graph is not weighted, its adjacency matrix A instead of the weight matrix W in Eq. (1) is

given by

LUN = D −A (2)

The eigenvalues and eigenvectors of un-normalized graph Laplacian can be used to define various

properties of graphs. The Laplacian matrix L is also famous as the Kirchhoff matrix, due to its role in

the Matrix-Tree-Theorem [16]. In addition to this description of Laplacian, there are three substitute

graph Laplacians given by the following equations.

Symmetric Laplacian Lsym = D−
1/2LD−

1/2 = I −D−1/2WD−
1/2 (3)

Generalized LG or Random walk Laplacian Lrw = D−1L = I −D−1W (4)

Relaxed Laplacian Lρ = L− ρD (5)

Laplacian matrices are the heart of the majority of the spectral clustering algorithms. For this

reason, some theorems and properties concerning the Laplacian matrix L, considered to be relevant

for the spectral relaxation of graph partitioning problems [15, 20] are presented next.

3.1.1. Properties of un-normalized Laplacian LUN

i. For every vector f ∈ Rn, results in f ′Lf = 1
2

n∑
i,j=1

wij(fi−fj)2 where fi is the ith component

of f.

ii. L is symmetric and positive semi-definite matrix.

iii. The smallest eigenvalue of L is 0, the resultant eigenvector is the constant one vector 1, where

1 is the indicator vector 1 = (1, . . . , 1)t.

iv. L has a non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ ... ≤ λn.

3.1.2. Properties of normalized Laplacian LN and LG

The normalized graph Laplacian LN satisfies the following properties:

i. For every vector f ∈ Rn, results in f ′Lf = 1
2

n∑
i,j=1

wij

(
fi√
di
− fj√

dj

)2

.

ii. λ is an eigenvalue of Lrw with eigenvector u if and only if λ is an eigenvalue of Lsym with

eigenvector w = D1/2u.

iii. λ is an eigenvalue of Lrw with eigenvector u iff λ and u solve the generalized eigen problem

Lu = λDu.

iv. 0 is an eigenvalue of Lrw with the constant one vector 1 as eigenvector. 0 is an eigenvalue of

Lsym with eigenvector D1/2
1.

v. Lsym and Lrw are positive semi-definite and have n non-negative real eigenvalues 0 = λ1 ≤
λ2 ≤ ... ≤ λn.

The spectral decomposition of the Laplacian matrix gives practical information about the properties of

the graph. Spectral approach to clustering has a powerful association with Laplacian eigenmaps [21].
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4. GRAPH CUT AND PARTITIONING POINT OF VIEW

The objective of clustering is to separate points in dissimilar groups based on their similarities. For

initial data given in the form of a similarity graph, the aim is to find a partition of the graph such

that edges between different groups have a low weight and edges in a group have a high weight. In

this case, spectral clustering can be defined as an approximation to graph partitioning problems. A

large number of graph clustering algorithms are based on graph partitioning problems. This study

concerns itself with a particular class of these algorithms, known as spectral clustering algorithms.

Spectral clustering algorithms are mostly based on the solution to graph cut problems. For such, they

use one or more eigenvectors from Laplacian matrices of a graph to be partitioned that are solutions

to the relaxation of some graph cut problems. In this section, how spectral clustering can be used to

derive an approximation for such graph partitioning problems is on trial.

4.1. Minimum cut problem

The first problem to be presented is the k-way minimum cut problem. Given a similarity graph with

adjacency matrix W , the simplest and most direct way to construct a partition of the graph is to

solve the mincut problem. For a given number k of subsets, the mincut approach simply consists of

choosing a partition A1, A2, ..., Ak which minimizes

mincut(A1, A2, ...Ak) =
1

2

k∑
i=1

(Ai, Āi) (6)

It aims at minimizing the sum of weights of the edges whose nodes come from different clusters.

In many tested graphs, the solutions to this problem are partitions with isolated nodes in clusters [3].

This might be a drawback of many applications, such as in VLSI domain [22].

4.2. Minimum ratio cut problem

Another approach to avoid finding partitions with isolated nodes in clusters is to consider equation

(6) divided by the number of elements in each cluster. This formulation was first proposed [23, 24] to

solve the bi-partitioning problem also known as two-way ratio cut problem. Later, this formulation

was generalized by Chan et al. [25] for the k-way ratio cut problem through its connection with

the weighted quadratic placement problem formulated by Hall [26]. The k-way minimum ratio cut

formulation is represented by following equation:

ratiocut(A1, A2, ...Ak) =
1

2

k∑
i=1

W (Ai, Āi)

|Ai|
=

k∑
i=1

cut(Ai, Āi)

|Ai|
· (7)

4.3. Normalized cut problem

The k-way Ncut problem was proposed by Shi and Malik [27, 12] and was derived from the relation

between the normalized association and dissociation measures of a partition.

Ncut(A1, A2, ...Ak) =
1

2

k∑
i=1

W (Ai, Āi)

vol(Ai)
=

k∑
i=1

cut(Ai, Āi)

vol(Ai)
(8)
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In Ncut, the size is measured by the weights of its edges vol(a) while in Ratio cut, the size of a

subset A of a graph is calculated by its number of vertices |Ai| [27, 12]. It is important to note down

that both objective functions take small values if the clusters Ai are not too small. Both objective

functions attempt to make sure that the clusters are balanced, as measured by the number of edge

weights or vertices respectively.

4.4. Min-max cut problem

A distinct cut problem proposed by Ding et al. [28] creates the min–max cut problem for clustering.

The min-max cut formulation aims at minimizing the inter-cluster similarities maximizing the intra-

cluster similarities, as can be seen in equation (9):

MinMaxcut(A1, A2, ...Ak) =
1

2

k∑
i=1

W (Ai, Āi)

W (Ai, Ai)
(9)

5. SPECTRAL CLUSTERING ALGORITHMS

As mentioned earlier, an option to solve graph partitioning problems is to use the spectral graph

theory. A proper relaxation of graph partitioning problems enables the exploration of the eigenvalues

and eigenvectors properties of their Laplacian and adjacency matrices. One positive aspect of these

methods is the possibility of defining upper or lower bounds for the objective function of the graph

partitioning problems. Some promising results of the application of spectral graph theory to data

clustering can be found in computer vision [12, 29], VLSI design [30] and detection of clusters in

protein structures [31].

Spectral clustering algorithms can be classified into two categories: recursive two-way spectral

clustering algorithms and direct k-way spectral clustering algorithms. The first finds the Fiedler

eigenvector of a Laplacian matrix of a graph G and recursively partitions G until a k-way partition

is found and the second uses the largest d ≥ k eigenvectors for partition. This section defines

two extensively used spectral clustering algorithms which uses the different graph laplacian and

eigenvectors to split a data set into different clusters.

5.1. Unnormalized spectral clustering algorithm

The un-normalized spectral clustering algorithm given by Shi and Malik [12] uses the generalized

eigenvectors of laplacian L. The algorithm is composed of these steps:

Step 1. Compute the affinity matrix W ∈ Rn×n defined by Wij = exp
(
−‖xi − xj‖2

/
2σ2
)

if i 6= j

and wij = 0.

Step 2. Construct D to be the diagonal matrix whose (i, i) element is the sum of W’s ith row, and

construct the unnormalized Laplacian matrix L = D −W.

Step 3. Perform the eigenvalue decomposition and compute the eigenvectors of L.

Step 4. Select {E1, E2, ...Ek} first k generalized eigenvectors of the generalized eigen problem Lu =
λDu.

Step 5. Form the matrix X = [E1, E2, ...Ek] ∈ Rn×k by stacking the first k-eigenvectors in columns.
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Step 6. Treating each row of X as a point in Rk, cluster them into k cluster using K-means.

Step 7. Finally assign the original point xi to cluster j if and only if row i of the matrix Y was assigned

to cluster j.

  
(a)                                                         (b) 

                
(c)                   (d) 

                    
(e)                (f) 

 
Figure 1: (a) shows a well separated 2-D data set consisting of well separated 3 clusters (b) the affinity 
matrix shows clear block structure (c)-(e) show that 3 smallest eigenvectors (f) the result of the un-
normalized algorithm  
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Figure 1: (a) shows a well separated 2-D data set consisting of well separated 3 clusters (b) the
affinity matrix shows clear block structure (c)-(e) show that 3 smallest eigenvectors (f) the result of
the un-normalized algorithm
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5.2. Normalized spectral clustering algorithm

The normalized spectral clustering algorithm given by Ng et al. [13] uses a different Laplacian matrix

L than the un-normalized spectral and normalizes the eigenvectors before using k-means to cluster

them into k partitions. For a given set of points S = {x1, x2, ...xn} to be clustered into k subsets,

the algorithm is composed of these steps:

Step 1. Compute the affinity matrix W ∈ Rn×n defined by Wij = exp
(
−‖xi − xj‖2

/
2σ2
)

if i 6= j

and wij = 0.

Step 2. Construct D to be the diagonal matrix whose (i, i) element is the sum of W’s i-th row, and

construct the normalized Laplacian matrix L = D−1/2WD−1/2.

Step 3. Perform the eigenvalue decomposition and find the eigenvectors of L.

Step 4. Select {E1, E2, ...Ek}, k largest eigenvectors of L associated to the largest eigenvalues

{λ1, λ2, ..., λk}.

Step 5. Form the matrix X = [E1, E2, ...Ek] ∈ Rn×k by stacking the eigenvectors in columns.

Step 6. Form the matrix Y from X by renormalizing each of X’s rows to have unit length i.e.Yij = Xij

/(∑
j
X2
ij

)1/2
 .

Step 7. Treating each row of X as a point inRk, cluster them into k cluster using K-means.

Step 8. Finally assign the original point xi to cluster j if and only if row i of the matrix Y was assigned

to cluster j.

As a condition to select σ, Ng et al. recommend to use the value that make sure minimum

distortion when the clustering stage is performed on Y . This algorithm on artificial data sets is

tested. The above steps of the algorithm are applied to the data points in Figure 2(a). Once the

eigen value decomposition of L is computed, the top eigenvectors in Figure 2(c-e) (here obtained with

σ = 1.0) can be seen. And the groups of points are clustered resulting in the Figure 2.

By this algorithm, the eigenvector associated with the largest eigenvalues can be considered as the

best for clustering. It has a computational benefit since the principal eigenvectors can be computed

for sparse matrices competently by using the power iteration technique. Like other spectral clustering

methods one finds a new representation of patterns on the first k eigenvectors of the Laplacian of the

graph.

6. CONCLUSION

In general, there are ‘n’ eigenvalues of similarity matrix of order ‘N’, which is equal to the total

number of nodes in the similarity graph. The increasing ordered set of eigenvalues {λ1, λ2, ..., λn}
is referred to as the spectrum of the graph. Normalized spectral clustering algorithm is used for

partitioning data by using the largest k eigenvectors of the normalized affinity matrix derived from a

dataset. But when the dataset is of complex structure, the affinity matrix constructed by Gaussian

function are unable to reflect the real similarity among data points, then the choice of clustering
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Figure 2: (a) shows a well separated 2-D data set consisting of three clusters (b) the affinity matrix shows 
clear block structure (c)-(e) show that top 3 eigenvectors contain useful information about the natural 
grouping of the data (f) the outcome of the normalized algorithm  
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Figure 2: (a) shows a well separated 2-D data set consisting of three clusters (b) the affinity matrix
shows clear block structure (c)-(e) show that top 3 eigenvectors contain useful information about the
natural grouping of the data (f) the outcome of the normalized algorithm

number and selection of k largest eigenvectors are not always effective. The spectrum of a graph

gives a natural clustering of its nodes {fig 2(b)}. The components of eigenvectors denote the node

participation in the associated cluster, while the corresponding eigenvalue denotes the coherency of

the cluster.
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In this survey, it is found that Eigen-decomposition of a similarity matrix aims at reducing the

dimensionality of the feature space for data representation. One data point can be represented by

each row of an affinity matrix. By doing so N data points are represented in an N -dimensional

feature space. After Eigen-decomposition, if all N eigenvectors are used for data representation,

the problem will be same. Although no information is lost in this representation, still the clustering

process may suffer from the error of dimensionality. Therefore, all spectral clustering algorithms must

perform eigenvector selection to cluster the data points.

In a computational study, some effective results using this approach show how eigenvalues and

eigenvectors can significantly contribute to define the cluster structure.
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