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Abstract. This paper proposes a combination of adaptive self-balancing controller and the left and

right turning PD controller for self-balancing two-wheel electric scooter (eScooter). An adaptive self-

balancing controller is synthesized by the backstepping approach and the Lyapunov stability theory.

The proposed adaptive controller allows the design of a feedback control that stabilizes self-balancing

control of eScooter in the presence of uncertainty and perturbation. Additionally, the sensor signals

are treated by Kalman filters and the CAN networks are applied to communication among modules

of eScooter. Simulation and experiment results are shown to analyze and validate the performance

of proposed controller.

Keywords. Adaptive backstepping control, Kalman filter, self-balancing two-wheel robot, CAN

networks, embedded system.

1. INTRODUCTION

In control theory, the backstepping control is a technique developed in 1990 by Petar V.Kokotovic

and others [5,6,9] for designing stable control applied to a special class of nonlinear dynamic systems.

Backstepping control method, based on the Lyapunov design approach, is efficiently applied when

higher derivative appearance in presence of uncertainty and perturbation. The key idea of adap-

tive backstepping technique is to drive the error equation to zero by designing Lyapunov stability

approach, by using the recursive structure to seek the controlled function. Hence the adaptive back-

stepping method induces a feedback control rule that ensures to efficiently control the nonlinearity

of the plant.

The eScooter based on inverted pendulum model is a highly nonlinear system with uncertain

parameters, which is very difficult to control with six variable state parameters. The eScooter is

composed of two coaxial wheels which are mounted parallel to each other and are operated by two

brushless DC electric motors (BLDC motors). Accelerometer and gyro sensor permit to determine the

pitch angle. In addition, potentiometer is used to measure the yawn angle of eScooter. Furthermore,

CAN networks are applied to communicate between control module and display module implemented

on the eScooter. By this way it can carry the human load up to 85 Kg. The main characteristic of

proposed eScooter is self-balancing capability. This feature helps the eScooter always in equilibrium,

despite eScooter equipped only one axis with two wheels. The driver commands an eScooter to go

forward by shifting their body forward on the platform, and go backward by shifting their body
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backward, respectively. Furthermore, in order to turn, the driver needs to guide the handlebar to the

left or the right.

Up to now, some research results published on the world about a self-balancing two-wheel robot (a

small and compact robot model, can’t transport people) focused on the following issues. The modeling

and identification of a self-balancing two-wheel robot is investigated in [4, 7, 10, 11, 14]. The control

problem of a self-balancing two-wheel robot, based on the linear control methods, is presented in [7,11].

Nonlinear intelligent control of a self-balancing two-wheel robot is introduced in [8,14]. Backstepping

control method of a self-balancing two-wheel robot is investigated in [1, 3, 12–15]. Kalman filter

applied to the filter of the sensor noise is introduced in [2]. The main drawback of these researches

is focused only in a small and compact self-balancing robot model which can’t transport people. To

overcome this drawback, this paper introduces the adaptive backstepping control to design a novel

controller for eScooter which can transport people up to 85 kg.

The paper is organized as follows: Section 2 describes the mathematical model of proposed

eSooter. Section 3 introduces the proposed controller design and then presents simulation results.

Section 4 introduces the hardware set up, particularly focused in the sensor selection, the associated

algorithms and the communicating CAN networks. The verification of the proposed controller applied

to real-time eSooter implementation is experimented. Finally, conclusion is presented in Section 5.

2. MATHEMATICAL MODEL OF ESCOOTER

In this section, Newton method is applied to determining the mathematical model of eScooter, [7,11].

Figure 1 shows the coordinate system of eScooter.

Figure 1: Coordinate system of the eScooter

For the left wheel of eScooter (same as the right wheel)

MW ẍW L =HT L −HL (1)

MW ÿW L =VT L −VL −MW g (2)
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JW L θ̈W L =CL −HT L R (3)

xW L = θW L R (4)

JW L =
1

2
MW L R 2 (5)

δ=
xW L − xW R

D
(6)

For the body of eScooter

MB ẍB =HL +HR (7)

MB ÿB =VL +VR −MB g +
CL +CR

L
sinθB (8)

JB θ̈B = (VL +VR )L sinθB − (HL +HR )L cosθB − (CL +CR ) (9)

xB = L sinθB +
xW L + xW R

2
(10)

yB =−L (1− cosθB ) (11)

JB =
1

3
MB L 2 (12)

θ = θB = θW = θW L = θW R (13)

xW M =
xW L + xW R

2
(14)

Jδδ̈=
D

2
(HL −HR ) (15)

where HT L , HT R , HL , HR , VT L , VT R , VL , VR represents reaction forces between the different free

bodies. The symbols and definitions of all eScooter’s parameters are tabulated in Table 1.

Symbol Value [Unit] Parameter

θ [rad] Pitch angle
δ [rad] Yaw angle
Mw 7[kg] Mass of wheel
MB [kg] Mass of body
R 0.2[m] Radius of wheel
L [m] Distance between the z axis and the gravity center of eScooter
D 0.6[m] Distance between the contact patches of the wheels
g 9.8[m/s2] Gravity constant
CL , CR [N.m] Input torques of the right and left wheels
HT L , HT R [N] Friction between the ground and the right and left wheels
HL , HR [N] Reaction forces impact on the right and left wheels
JT L , JT R [N.m] Inertial moment of the rotating masses with respect to the z axis
θW L , θW R [rad] Pitch angle of the right and left wheels
JB [N.m] Inertial moment of the chassis with respect to the z axis

Table 1: Parameters of eScooter are used in simulation and experiment
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Substituting (7), (8) and (13) into (9), results in

JB θ̈ =MB

�

ÿB sinθ − ẍB cosθ
�

+MB g L sinθ − (CL +CR )
�

1+ sin2θ
�

(16)

From (10), (11) and (14), we infer

ÿB sinθ − ẍB cosθ =−L θ̈ − ẍW M cosθ (17)

Substituting (17) and (12) into (16), yields

4

3
M B L 2θ̈ +MB L cosθ ẍW M =MB g L sinθ −

�

1+ sin2θ
�

Cθ (18)

where Cθ =CL +CR . From (1), we infer

MW (ẍW L + ẍW R ) =− (HL +HR )+ (HT L +HT R ) (19)

Substituting (3) and (7) into (19), results in

MW (ẍW L + ẍW R ) =−MB ẍB +
CL +CR −

�

JW L θ̈W L + JW R θ̈W R

�

R

or 2MW ẍW M =−MB ẍB +
Cθ
R
−2

JW θ̈

R

(20)

From (10) and (14), we derive

ẍB = θ̈ L cosθ − θ̇ L cosθ + ẍW L (21)

Substituting (21) and (5) into (20), yields

(MB L cosθ +MW R ) θ̈ + (2MW +MB ) ẍW M = θ̇
2MB L sinθ +

Cθ
R

(22)

Solving the system of equations (18) and (22), results in

Aθ̈ = B1θ̇
2+C1Cθ (23)

AẍW M = B2θ̇
2−C2Cθ (24)

On the other hand, from (1), (3) and (4) we have

HL =
CL

R
− ẍW L

�

MW +
JW L

R 2

�

(25)

From (6), we get

δ̈=
ẍW L − ẍW R

D
(26)

From (25) and (26), we have

HL −HR =
CL −CR

R
−D δ̈

�

MW +
JW

R 2

�

(27)
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Substituting (27) into (15), yields

�

Jδ +
1

2
D 2

�

MW +
JW

R 2

��

δ̈=
1

2
D

CL −CR

2
(28)

and,

JW =
1

2
MW R 2 a nd Jδ =

1

3
MB

�

D

2

�2

=
1

12
MB D 2. (29)

Substituting (29) into (28), results in

δ̈=C3Cδ (30)

In summary, the state-space equations of eScooter are described in (23), (24) and (30). Where,



































Cθ =CL +CR

Cδ =CL −CR

C 2=
0.75 (MW R +MB L cosθ )

�

1+ sin2θ
�

MB L 2
+

1

R

C 3=
6

(9MW +MB )R D

and










































A =2MW +MB −
0.75 (MW R +MB L cosθ )cosθ

L

B 1=
0.75g (2MW +MB )sinθ

L
−

0.75MB L sinθ cosθ

L
θ̇ 2

C 1=− (
0.75

�

1+ sin2θ
�

(2MW +MB )

MB L 2
+

0.75 cosθ

R L
)

B 2=
−0.75g (MW R +MB L cosθ )sinθ

L
+MB L sinθ θ̇ 2

3. PROPOSED CONTROLLER DESIGN

The proposed controller for eScooter system is combined an adaptive self-balancing controller with the

left and right turning PD controller. The self-balancing controller based on the adaptive backstepping

method is used for controlling eScooter in equilibrium with pitch angle θ = 0o . The PD controller

is used for controlling eScooter in turning left and right.

3.1. Left and Right Turning Controller

The general structure of the left turn and right turn PD controller is depicted in Figure 2.

Figure 2: The turning left and right PD controller for eScooter

The main features of the left turn and right turn controller are described as follows
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• The reference signal δref = 0

• The PD controller is depicted as Gc (s ) = Kp +Kd s

Using (30), the tranfer function of eScooter is determined

Gyawn (s ) =
δ (s )

Cδ (s )
=

1

s 2
C3 (31)

The transfer function describes the overall system

Goverall (s ) =
(Kp +Kd s )C3

s 2+Kd C3s +Kp C3
(32)

For closed-loop system stability, it needs

s 2+Kd C3s +Kp C3 = s 2+2εωn s +ω2
n (33)

where ε is the damping ratio and ωn represents the natural frequency.

From (33), we derive Kp =
ω2

n
C3

and Kd =
2εωn

C3
. Thus, we obtain the control signal input function Cδ

which is designed as follows

Cδ =−(Kpδ(t ) +Kd δ̇(t )) (34)

3.2. Adaptive Self-balancing Controller

The general structure of the self-balancing controller based on adaptive backstepping method is

depicted in Figure 3.

Figure 3: The self-balancing controller for eScooter

First the state variables of the system are defined as:x1 = θ , x2 = θ̇ . From equation (23), the system’s

state space equations can be rewritten in the following form:

�

ẋ1 = x2 (a )
g (x 1)ẋ2 =Cθ −h (x1, x2) (b )

(35)

where

�

g (x1) =
A

C 1 < 0
h (x1, x2) =− B 1

C 1
. The error equation is defined as:

e1 = x1r e f − x1 (36)

where θref is the referential value of signal θ , which is equal zero for proposed eScooter.

Case 1: Assume that the functions g (x1)andh (x1, x2) are determined. Using the integral backstep-

ping technique to design a self-balancing controller as follows:
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Step 1: A virtual control equation α is designed such is that lim
t→∞

e1 (t ) = 0 . Virtual control equation

is defined as:

α= k1e1+ c1z1+ x ′′ (37)

With k1, c1 are positive constants and z1 =
∫ e

1
(τ)dτ is the integral function. By using this equation

we can ensure that tracking error converge to zero.

The first Lyapunov function is declared and defined as:

V1 =
c1

2
z 2

1 +
1

2
e 2

1 (38)

Take the derivation of V1, yields:

V̇1 = c1z1 ż1+ e1ė1 = e1(c1z1+ ė1) (39)

Step 2: Using (35b), we design input valueCθ such is that lim
t→∞

(α−x2) = 0. The second error equation

is defined as:

e2 =α− x2 (40)

Rewrite equation (35b) in the form of:

ẋ1 =α− e2 = k1e1+ c1z1+ ẋ1r e f − e2 (41)

From equation (36), it can deduce that:

ė1 = ẋ1r e f − ẋ1 =−k1e1− c1z1+ e2 (42)

By using derivative of e2 to ensure the desired dynamic feature for the velocity tracking error:

g ė2 =g α̇− g ẋ2

=g
�

k1ė1+ c1e1+ ẍ1r e f

�

− (Cθ −h (x1, x2))

=g (
�

c1−k1
2
�

e1−k1c1z1+k1e2+ ẍ1r e f )− (Cθ −h (x1, x2))

(43)

Substituting (42) into (40), results in:

V̇1 = e1 (c1z1−k1e1− c1z1+ e2) =−k1e1
2+ e1e2 (44)

Continually, the second Lyapunov function is declared and defined as:

V2 =V1+
1

2
e 2

2 (45)

From the derivative of V2, we obtain:

V̇2 = V̇1+ e2ė2 =−k1e1
2+ e1e2+ e2ė2 (46)

For making V̇2, we choose ė2 as follows:

ė2 =−k2e2− e1 with k2 ≥ 0 (47)

Then:

g ė2 =−g k2e2− g e1 (48)
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Substituting (48) into (46), yields:

V̇2 =−k1e1
2−k2e2

2 < 0 (49)

Finally the control signal input function Cθ is determined as:

Cθ = g
��

1+ c1−k1
2
�

e1−k1c1z1+ (k1+k2)e2+ ẍ1r e f

�

+h (50)

By defining:






ε =
�

1+ c1−k1
2
�

e1−k1c1z1+ (k1+k2)e2+ ẍ1r e f

τ=
h

g

Then, the equation (50) is rewritten as

Cθ = g (ε+τ)s (51)

Case 2: In fact, we can not determine the functions g (x1) and h (x1, x2) because these functions

depend on uncertain parameters of eScooter such as: Distance between the z axis and the gravity

center of eScooter (L), Mass of body (MB ). Thus the functions óg (x1)and óh (x1, x2) are estimated to

design a adaptive self-balancing controller. Now, the control signal of adaptive backstepping technique

is determined as follows:

Cθa = óg (ε+ óτ) (52)

In this case, the second error value e2 is determined:

ė2 =
�

c1−k1
2
�

e1−k1c1z1+k1e2+ ẍ1r e f −
1

g
(Cθa −h

=ε− (e1+k2e2)−
1

g
(Cθa −h )

(53)

On other hand, we have:

1

g
(Cθa −h ) =

1

g
(Cθ −h )+

1

g
(Cθa −Cθ ) =

1

g

�

g (ε+τ)−h
�

+
1

g
(óg (ε+ óτ)− g (ε+τ))

=ε+
1

g
(ε
�

óg − g
�

+ óg óτ− gτ)
(54)

By define

�

g̃ = g − óg
τ̃=τ− óτ then

1

g
(Cθa −h ) =ε+

1

g
(ε
�

óg − g
�

+ óg óτ− g (τ̃+ óτ))

=ε−
g̃

g
ε−

g̃

g
óτ− τ̃= ε−

g̃

g
(ε+ óτ)− τ̃

(55)

Substituting (55) into (53), yields:

ė2 =ε− (e1+k2e2)− (ε−
g̃

g
(ε+ óτ)− τ̃) =− (e1+k2e2)+

g̃

g
(ε+ óτ)+ τ̃ (56)
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Now the adaptive rules can be constructed by using Lyapunov energy function V3 which is defined

as:

V3 =V2+
1

2k3
g̃ 2+

1

2k4
τ̃2 (57)

From the derivation of V3, we obtain:

V̇3 =V̇2+
1

k3
g̃˙̃g +

1

k4
τ̃̃̇τ=−k1e1

2+ e1e2+ e2ė2+
1

k3
g̃˙̃g +

1

k4
τ̃̃̇τ

=−k1e1
2−k2e2

2+ g̃
�

1

g
(ε+ óτ)e2+

1

k3

˙̃g
�

+ τ̃(e2+
1

k4

˙̃τ)
(58)

where k3, k4 are positive constant values. The adaptive laws are implemented as:

�

˙̃τ=−k4e2
˙̃g =−k3

1
g (ε+ óτ)e2

(59)

Then, the equation (58) is rewritten:

V̇3 =−k1e1
2−k2e2

2 < 0 with ġ =− ó̇g ; τ̇=−ó̇τ (60)

Finally the control signal input function Cθa is determined as:

Cθa = óg (ε+ óτ)with







ó̇τ= k4e2

ó̇g = k5 (ε+ óτ)e2

k4 > 0, k5 < 0
(61)

In summary, the adaptive backstepping controller has been successfully designed. Based on the

equation (61), we see that the control signal input Cθa doesn’t depend on uncertain parameters of

eScooter and perturbation.

3.3. Decoupling the input torque for eScooter

By combining the control signal Cθa (or Cθ ) of self-balancing controller and the control signal Cδ
of left and right turning controller, the input torques are applied to eScooter right and left wheels.

This scheme is shown as Figure 4.

Figure 4: Decoupling of two control signals applied to the two-wheel of eScooter
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3.4. Simulation Results

In this section, we analyse and validate the performance of proposed controller. All of the simulations

were performed by Matlab version 2009a on an Intel Core i3 computer with a clock rate of 2.53GHz

and 2.00GB of RAM. Parameters of eScooter tabulated in Table 1 are used in simulation. The

parameters of adaptive backstepping controller are selected as k1 = 118, k2 = 26.4, c1 = 0.001,

c4 = 0.001,c5 = −0.95 and the parameters of PD controller are selected as ε = 1,ωn = 10. Figure 5

illustrates the block diagram of the proposed controller for eScooter.

Figure 5: Block diagram of proposed controller for eScooter

Figure 6: The performance of proposed controller for eScooter

Figure 6 shows the simulation result of eScooter with tilt angle and yaw angle responses, input

torque applied to right and left wheel (CL and CR ), the convergence of unknown óg (x1) and óh (x1, x2)
parameters. Based on Figure 4, input torque CL and CR are determined and saturated to suitable

for characteristics of BLDC motor. We see that eScooter is efficiently controlled through rider’s tilt

angle and rider’s yaw angle.
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Based on these results, the proposed combination of the adaptive backstepping control based on

Lyapunov theory and the PD control effectively shows robustness in the presence of uncertainty

parameters and disturbances for tracking problems.

4. EXPERIMENTAL RESULTS

4.1. Hardware Configuration

Figure 7: Photograph of eScooter

Figure 8: Block diagram of the eScooter architecture

The investigated eScooter is made of

two coaxial wheels which are mounted

parallel to each other and are driven

by two BLDC motors. Figure 7 shows

the experimental photograph of eS-

cooter. Figure 8 illustrates the block

diagram of the eScooter control archi-

tecture.

Sensors are equipped with ac-

celerometer and gyro for measuring

the pitch angle value and poten-

tiometer for measuring the yaw angle.

These signals are read by ADC part

of master module. Master module is

implemented on an embedded dsPIC

board. All sensor signals are filtered

by Kalman filter and then provided for

the proposed controller.

The controller output signals are

sent to the slave modules via CAN net-

works. Slave modules 1, 2 and 3 are

implemented on an embedded dsPIC

board. Where, slave module 1 and

2 control the left and right wheel of

eScooter, respectively. Slave module

3 (HMI) displays the eScooter speed

through LCD graphic screen.

CAN networks is applied to com-

munication between master module

with slave modules as illustrates in

Figure 9. Due to advantages such as:

transfer speed up to 1MB, high relia-

bility and good flexibility. CAN net-

works helps us control the eScooter hi-

erarchy and meets the requirements of

real-time operation of eScooter.
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Figure 9: CAN networks architecture in eScooter

4.2. Experimental Results

After embedding the signals processing and control algorithm into eScooter’s hardware, a very good

performance is obtained not only in backward and forward movement but also in left turn and right

turn operations as well. Figure 10 shows that the tilt angle response oscillates around the equilibrium

0o value from 0 to 1.8s when the eScooter has no effect of the outside force. And then, the tilt angle

response is swaying only about 0.7s and then returns stable around the equilibrium 00 value when the

eScooter has effect from outside force. Finally, Fig.11 represents the good tilt angle response when

eScooter runs backward and runs forward.

Figure 10: The eScooter tilt angle response during receiving effect from outside force
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Figure 11: The tilt angle response of eScooter in backward and forward operations

5. CONCLUSIONS

In this paper, the proposed controller combining the adaptive self-balancing backstepping controller

and the left and right turning PD controller is applied to the eScooter system. The eScooter terms

such as modeling, signal processing, hardware configuration and control scheme are under discussion.

Simulation and experimental results prove that the eScooter can be in stable operation and good

performance.
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