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FINITE-DIMENSIONAL CHU SPACE, FUZZY SPACE AND THE GAME
INVARIANCE THEOREM

NGUYEN NHUY, VU THI HONG THANH

Abstract. By constructing the notion “(n+1)-fuzzy functor”, it is shown that the (n+1)-fuzzy category
introduced in [3] is an equivalent system. Moreover, the game invariance theorem is proved in this note.

Tém tét. Ching t5i duwa ra mdt 16p cdc him ti hiép bién, dwoe goi 1a “(n+1) - ham ti fuzzy”, tir pham trh
céc n- tip hop vdo pham tra céc (n+1)-khdng gian fuzzy; chira réng (n+1)-pham tri fuzzy 12 mot hé thdng
twong dwong va ching minh ring pham trit cdc (n+1)-khéng gian fuzzy va pham tri cic (n+1)-khong gian
Chu hoin toan day dd 1i ding ciu véi nhau. Cudi cling, khi dwa ra céc khéi niém vé chu&n, trung binh va
d5 léch tidu chu@n, chiing t5i chi ra ring cic dai lwong nay 1a bit bién trd choi.

1. INTRODUCTION

This work is motivated by recent attempt to model information flow in distributed system of
Bariwise and Seligman in 1977 as well as the work of V.R. Pratt in computer science in which a
general algebraic scheme, known as Chu space, is systematically used. In this paper we continue
to study the finite-dimensional Chu space introduced in [3]. This paper is organized as follows. In
section we recall the notion of finite-dimensional Chu space in general settings, and define some
numerical data which used in section 4. In section 3 we introduce a new class of covariant functors,
called the “(n+1)-fuzzy functors”, from the n-set category into the category of (n+1) - fuzzy spaces.
We show that the (n+1) - fuzzy category is an equivalent system and prove that the two categories of
(n+1) - fuzzy spaces and of fully complete (n+1)- Chu spaces are isomorphic. In section 4 we define
some statistical data as norm, mean, standard deviation of a game space. These data are proved to
be game invariance. '

2. FINITE-DIMENSIONAL CHU SPACES

By a (n+m) - Chu space we mean the set C= (X1 X X2 X ... X Xp; f; A1 X Az X ... X Ap,), where
X;,A; (i =1,...,n;5 = 1,...,m) are arbitrary sets and f : X; X ... X Xp X A1 X ... X A, —[0,1] is 2
map, called the probability function of ]

fC = (X1 X Xox...X Xp; f; A1 X A2 X ... X Ap,) and D = (Vi % ¥ % . X V0;9; By X Ba % .. X B )
are (n+m)- Chu spa.ce’s,fthen a (n+m)- Chu morphism @ : C > Disa (n+m) - tuple of maps
® = (p1,02,) @n;¥1, Y2, .-, ¥m), With ¢; : X; — Y; for i = 1,...,n and ¢; : B; — A; for
9 =1,...,m such that the diagram below commutes: -

Il oo lpgm )
e, X x [T, B, — S M, Y x [T, B;
A ;."=1¢,-)l lg (1)
e X % H}"=1 A; [0,1]

where IHn X 1Hm B, denote identity maps. That is
i=1""

j=1
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2 (IH:;I X H %) =4go (H ©i, 11_['" Bj);
=1 i=1 A=t

or equivalently,

f(H z; X H thalby)) = g(H oi(z:) x H b;) for H z; € H X; and H b € H B;. (2)
i=1 g=1 J=i =1 i=1 7=1 7=1

1=1

Ifq):(‘Pl;~--,¢n§¢1a---,¢m)! (X1 .XXn;f;A]_X...XAm)—iﬁ:(le_“XYn;g;le
... X Bp,) is a (n+m) - Chu morphism, then the (n+m)- Chu space ([]", Xi; f Xa g; [17, B;), where

(f xo 9) = 1H:‘_ H'l/)J =go Hgonll—lm

is called the cross product of C and D over P, denoted by C X @ D.
For [, z; € []'_, X; we define the following notation:

1. The number || H1 Vot = sup {F(IT0oy = < IT2, a5) : 12, a5 € TT7%, Aj} is called the
upper value of ]} ,
2. The number H H@ yZille = inf {F(ITZ, =0 x [I72, a5) : [T72, a5 € TI72, A;} is called the

lower value of [, z;.
3. The number || [T7_, z:|| = 3 (|| [Tio, zill* + || TT;=, =:l+) is called the value of []}_, =:.
4. The number d([]—, z;) = || [T, zill* = I TT;=, =: ||« is called the deviation of [}, z;.

For (n+m) - Chu spaces ¢ = (X1X..xXp; f; A1 X...X 4,,,) and D = (YiX...xYy; g; By X...X By,)
let M(C, D) denote the set of all (n+m)- Chu morphisms from C into D. If M(C, D) # 8, then we
say that C’ is dommated by D and denote C < D. We say that c and D are equwalent denoted
by C w~ D if C < Dand D < C' C and D are connected if either G < D or D < &. A class of
(n+m)-Chu spaces G is called a connected system if any two members of § are connected. If Cw~D
for every C D G, then we say that § is an equwalent system. A connected | system is called a closed
system if § is closed under cross products. That is, C x¢ D € § for any C, DegGandde M(C, D).
A complete system is a closed equlvalent syst;em

Let C = (X3 X s X Xn; f; Ay % Ap) and D= (Y1 x ... x Yo; 9By X ... X B, ) be (n+m)-
Chu spaces, we say bhat C and D are zsomorphzc denoted by C D if C and D are isomorphic
objects in the category C of (n+m)-Chu spaces. It is easy to see that a (n+m)-Chu morphism
0= (01, O} W1y oo Vi) 2 (K X oo X Xy f3fs e X App) = (Y1 X o X Yy 95 B X oa X B} 18
an isomorphism if and only if ¢; : X; — Y; forv =1,...,n and ¢; : B, — A; for 7 = 1,...,m are
one-to-one and onto.

If®= (o1, On;¥1,..-,¥m) is a (n+m) - monomorphism, then we say that C = (X1 X ... X
Xn; f; AL X ... X Ap,) 1s a subspace of D = (Y1 X...xY,; g; B1 X...x Bp,), denoted by C C D. It is easy
to see that a (n+m) - Chu morphism ® = (©1,..., ©n; ¥1, .o, ¥m) : (X1 X ... X Xy f1 AL XX Apy) —
(Y1 X ... x Yy; 9; By X ... X Bp,) is a mornomorphism iff ¢; : X; — Y; for 2 = 1,..., n are one-to-one
and ¢, : B; — A; for 7 = 1,..., m are onto.

3. FUZZY SPACE AND FUZZY FUNCTOR

Recall that by a fuzzy subset of a set X = [[;_, Xi, we mean a fuction f : X — [0,1], see [3].
Observe that if A is a subset of X, then the characteristic function X 4 of A is a fuzzy subset of X.
So by identifying A with X4 we can say that any subset of X is a fuzzy subset of X. A fuzzy subset
of X is also simply called a fuzzy set.

Let S denote the category of sets. For a given set X = [[I-, Xi, let X* = [0,1]* denote
collection of all fuzzy sets of X.
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For anymapa: X = X; X Xo X ... X X,, = Y =Y; x Yz x ... x Y,, we define the conjugate
a*:Y* = X* of o by the formula

a*(a)(z) = a(a(z))
for every z€ X and a € Y'*.

It is easy to see that
(Ba)* =a"B* foreverya: X - Y and B:Y — Z.
For any set A C X* we define f4 : X; X X2 x ... x X, Xx A —[0,1] by
fa(zi,...,Zn,a) = a(zy, ..., z,) for (z1,...,2Zn,a) € X1 X Xz X ... x X, X A.

Clearly that C = (X; X X3 X ... X X,,; fa; A) is a (n+1) - Chu space. This space is called a (n+1) -
pre-fuzzy space on X = X; x X3 x ... X Xp,. In the case A = (X; X X3 X ... X X,,)*, the (n+1)-Chu
space F(X) = (X1 X X3 X ... X Xp,; fx+; X*) is uniquely determined by X = X; x X3 x ... x X,,, and
is called (n+1)- fuzzy space associated with X, or shortly a (n+1) - fuzzy space.

The category of (n+1) - -pre-fuzzy spaces with (n+1)- Chu morphisms is called the (n+1)- pre-
fuzzy category, denoted by Fp. The (n+1)- fuzzy category, denoted by 7, is the subcategory of Fp
consisting of fuzzy spaces.

Observe that a (n+1) - Chu morphism @ : C = (X} x X3 X ... X Xp; fa; 4) — D = (Y1 x Y2 x
...xXYy; fp; B) in the (n+1) - pre-fuzzy category is a collection of maps ® = (1, p2, ..., ©n; ), where

n n n n n n n
Hsoi:HXi—*HYi with (H%‘)(HGS:')ZHP{(%{)EHK,
t=1 =1 i=1 =1 i=1 i=1 =1

and ¢ : B — A satisfy the condition

t/z(b)(H zi) = b(H oi(z;)) for (z1,...,zn,b) € X X B.

i=1
It is easy to see that, in general (n+1)- Chu spaces are not connected. Forturnately it is not the
case in the (n+1)-fuzzy category. In fact, we have the following theorem.

Theorem 1. The (n+1)- fuzzy category F is an equivalent system.

Proof. Let X = X; x Xox...x X,,, Y = Y, xYyx...xY,,, we need to show that M(F(X), F(Y)) # 0 for

any (n+1) - fuzzy spaces F(X) = (X1 x XoX...X Xp; fx+; X*) and F(Y) = (Y1 x Yo x..x Yy; fy«; Y*).
Let o : X — Y be any map (in the set category). Define a* : Y* — X* by a*(y*)(z1,...,2n) =

v*(a(z1, ..., zn)) for (z1,...,2,) € X3 X X2 X ... x X, and y* € Y*.

We have & &7
a*(y*) (21,0, Zn) = fx+ (71, s Zny @ (y"))

= y* (a(z1, <s3%0))
= fr+(a(z1,..,2a), ¥7).
Therefore the diagram bellow commutes

(dylv')
H:r'l:lXi xY* —— L, Yix Y~

x| b

H?:l X‘. X X* [0’ 1]

Ix+
Thus, ® = (a,a*) € M(F(X), F(Y)) and the theorem is proved.
" By n-set we mean the cartesian product X = X; X ... X X,. We will show that F(X) =

(X1 x ... x X; fx+; X*) i1s a covariant functor from the n-set category § into the (n+1)-fuzzy
category 7 and then F will be called a (n+1) - fuzzy functor.
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In fact, let o : [[7_, X; — [[_, Y; be a map. Define F(a): F(X) = F(Y) by F(a) = (a,a*),
where a* : Y* — X* is the conjugate of a.

We observe that
F(fa) = (e, (B2)") = (B, a"B*) = F(B) F ()
for any o : [, X; = [I—, Yi and B: [[_, ¥ — [I7_, Z. Therefore F' preserves the composition.
Theorem 2. The two categories ¥ and Cr are 1somophic.

Proof. The functor F' defined in the proof of Theorem 2 in (3] is an isomorphism between the (n+1)-
fuzzy category 7 and the category Cr of fully complete (n+1)- Chu spaces.

From Theorem 1 and Theorem 2 we get:

Corollary 1. The category Cr of all fully complete (n+1) - Chu spaces 1s an equivalent system.

Remark 1. Since any subset of a set X is a fuzzy set, we can consider the family A = 2X c
X* consisting of all subsets of X = X; X ... x X,. The resulting (n+1)- pre-fuzzy space D(X) =
(T, Xi; f2x;2%) will be called the (n+1) - Crisp space associated with X, and the category D of all
crisp spaces is called the crisp category.

We will show that
Proposition 1. Every (n+1)- Crisp space is bieztensional.

Proof. By Proposition 7 in [3], every (n+1) - pre-fuzzy space is separated, therefore we need to claim
that it is extensional.

Assume n n n n
0= ][ o~ [Twl= swp{lf(I] 20:0) - f(J] s )l - 0 € 2%},
=1 i=1 i=1 f==d
then a([]i—, z:) = o([1", vi) for every a € 2X. From that it follows [, z; = [[/—, v, since if it is
not the case, setting a = X{Hn 53 € 2% we get a(I]\—, z:) = 1, but a([I", w) =0.
i=1""
The crisp category D is a subcategory of . We observe that

Proposition 2. The map D defined in Remark 1 1s a covariant functor from the n - set category §
into the (n+1)-crisp category D.

Proof. Let o : [T, X; — [I;—, Y: be a map. Then the morphism

=1

D(a) : D(X) = (] Xi; fox;2%) - D(Y) = (H Yi; far; 2Y)

is defined by D(a) = (o, '), where a~!(D) € 2X for every D € 2Y.
We will show that the following diagram commutes

- Y (a,l,y) - v
[ Xix 2" —— [, Yax2
A )| L7
[T, X x 2% = &
2

In fact, by definition of fyx and f,v, we need to claim that

n

a—l(b)(n %) = b(a(H z;)) for every b € 2¥.

=1 =1
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Since a~!(b) and b are two characteristic functions of the set a~'(b) in the space 2X and 2Y, re-
spectively, they admit only two values 0 or 1. If o= (b)([]i, z:) = 1, then []i—, z: € a~*(b) which
implies o(J];_, z;) € b, hence b(az) = 1. If o= }(b)([]7_, z:) = O, then []_, z; ¢ a~!(b) which
implies az(I_L_1 z;) ¢ b, hence b(c([]7, z:)) = 0.

Thus, in both cases we have
1) ([ 2:) = b([] 22)) for ] = € [] x:.
i=1 i=1 i=1 i=1
Therefore the proposition is proved.

4. GAME SPACE AND THE GAME INVARIANCE THEOREM

Given a set A = [[7_, A;, by a game space over A = [[_; A;, we mean a (n+m)- Chu space
G = 4 P8 X,-;f'H;" 1 Aj), where:

1. J[;=, Xi is a cartesian product of finite sets, called the team game. If [\, z; € [[\o, X;,
then []_, z; is called the players of the game space o

2. HJ L A; is a cartesian product of any sets, called the field game. If [[7_, a; € []]=, A;, then
H] 1 @; is called a position in the field game H

3. f(IT, =, H 1 @;) is called the winning probabzlzty of the players []\_; :z:, while they are in
the position [[7_, a; in the field game.

Observe that if G = (I Xi; f; H;’;l A;) is a game space, then the upper value || []", z:[|*
measures the 11skill” of [[\_, z; in the best situation and the lower value || ]\, z;||. measures the
“skill” of the set []'_, z; in the worst situation.

Dually, for a state [[7-, a; € [[]=, A; the upper value || [T}, a;||* describes the quality of the
position [[7_, a; in hands of the best players and the lower value || []]~, a;||. describes the quality
of the position H;n:1 a; if the worst players are staying there.

Since the set []7_, X; of a game space G = (IT72, Xi; f3 117~ A;) is finite, we can define the

following statistical data for a game space:

1. The number |G| = \/Znu s[>, % | TIr-, 2 is called the norm of G .
i=1"" i=1""

2. The number D(G) = \/EH:;x e x,|4(IT;=, z:)]? is called the standard deviation of G.

3. The number M(é) = mnl—}(llznn Lme[[, x | TTi=, =:|l, where |[]i_, X;| denotes the
$ml s i=
cardinality of H?:l X;, is called the mean of G .

Now given a set H;"zl Aj, we define the game category over the field H;-"zl A;, denoted G4 as
follows:

1. The objects of G4 are game spaces over Hm Aj.

2. f S = (ITi=, Xi; £ I17=, 4;) and T = ( Y,,g,H L Aj) are two game spaces over
H;'n=1 Aj, then a morphism & = (gol, T 1Hm ) S — T, where ; : X; — Y;, for i=1,...,n are
maps satisfying the condition:

f(H H <9(H§01 :z:‘)XHa])

for [T,z €[}y Xi and [T~ a; €[]/, A

Consequently morphisms in the game category G are (n+m)- Chu upper-morphisms.
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The existence of a (n+m) - morphism @ : S — T in the game category over the field H;’;l A; im-
plies that for any set of players [[I_, z; of the team [, X;, there exists a set of players [T, ei(=:)
of the team []}_; ¥; such that at any situation H;nzl a; in the game field H;"zl Aj, the set of players
H? 1 Pi(zi) have better chance to win than the set of players H" z; at the same situations Hm
It follows that the team []_, ¥; have some advantages over the team []7_, X; in the field []'~

We have

Lemma 1. If§ = (H?=1Xi)5f3HT:1 A;) 1s a subset ofé = (.. ¥); g,H;.n:1 A;), then |]§||
IGl-

J

]—1

IA

Proof. Since the game space S = ey Xo); f;H;»n:1 A;) is a subset of the the game space G =

(Hies ¥2)503 H;."zl Aj), there is a monorphism ® = (o1, ..., ©n; ¥1, ..., Ym) : S — G with ¢; : X; —
Y; for i = 1,...,n are one-to-one and 1, : A; — A; are identical maps for j = 1,...,m, so that

F(IT 2 x T1 @) < o[ ] ei(ee) x [T @)
i=1 =1 1=1 F=1
for [Ti_, z: € [1}=, Xi and [[]-, a; € [T}, A;. We have

“HIiH* SUP{f(HIiXHa, HaJEHA}

< sup {g(Hw z;) H H HAJ'}
= sup {g(] ] v x H ): [T e eIl 4
i1 j=1 j=1 j=1

= I TLwl

” HziH* = inf {f H ; X H a;) H ay e_];[AJ'}
<1nf{gH z,XHa, Ha,EHA}
SO0 | O O
= 1L wl.

So

n n
ITL =l < UTT will
1=1 =01

On the other hand, since ¢; are one-to-one for 1 = 1,...,n, |[Tim; Xi| < [T[iZ, Yil.
Therefore

n n
b T =012 < > ITT w2
M, =€l x: =t M, well, v =t
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Consequently N »
IS < G-

Remark 2. With the same assumption in the Lemma 1, we will show that M(S") < M(é) is in general
not true.

In fact, suppose that for a given set H?:l X;, let H?:l Y, = H?:l X; U {H:;l Z?}, where
ITi-, =2 ¢ [I7—, X:. We put
n

o(TT v x [T as) = £F(I] = x [] &) [T s = [ =
i=1 F=1. =1 J=1 =1

and

n m m m
g(H ¥ x H a;) = 0 for every H a; € H Aj.
i=1 3= g=1 =1

Then || [T, 22| = 0 and § = ([T, X;; f; [17=; A;) is a subset of the G =, Y;g; 17—, 4;)-
Let @ = (o1, -+, ©n, IHm A3 S — G, be a morphism from S into G. Then
A

l—nI Ha, —gﬁ ﬁ foreverny,EHX
1=1 =1 1=1 F=1
We have . . . . .
| TL =0 = I TT wetaa)ll = I [T will and | TT Xl < I TL %1
=1 e P | =1 1=1
Hence

1 n

n —
. x; =1
i=1"" i=1""

1 n n .
S ZH XI_“E““HQ[II%H)

1 n
= =7 > Il
1 n
> T Z || H uill
IH{:I },‘l " ‘GH ’
= M(G).

It shows that, in this case, S is a subset of G but M(S ) > M(G’)

Theorem 38 (The game invariance theorem). The numbers ]]G’H M(G) and D(G’) are invariance in
the game category over the field A. That is, if S and G are isomorphic, then ]]SH HGH M(S) =
M(G) and D(8) = D(&).

Proof. From Lemma 1 it follows ||S|| = ||G|. For every [[", z: € [[i-, X, since S and G are
isomorphic, there exists unique [T;_; v = [[i; wi(z:) € [}=, ¥i, such that f([T}, z: x [[)=, a;) =

g(ITizy wi(=z:) x IT52, a5) = g(ITz, v x TT7L, @5)-
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We have
ITL =" = I T] ee(aali* = I TL well* and || [T z:lle = I TT @)l = 11 ] well--
=1 =1 $=1 t=1 §=1 =1

It implies that || TI;Z; =il = [ITTi=y @i (=)l = I T well-

Thus i "
M(S): IH?:lXil ) Zn “];[111”
o x.EH'_=1 X; *
1 n
= m( ) > I TT i (=)

; " s =1
i=1 J:‘EI_I-'=1 X

1 n
= mr > ITT w1
Hi—l Kl n n '
- mweElllL v =t

= M(G).

The similar argument proves the equality D(S) = D(G).
The theorem is proved.
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