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THE COMPLEXITY OF SOME FLOW-SHOP SCHEDULES
WITH POSITIVE TASK-TIMES

VU DINH HOA

Abstract. The general flow-shop problem is known to be NP-complete. Solution have also been specified in
several special cases. A j-maximal (j-minimal) flow-shop is a particular kind of flow-shop in which the 7-th
task of any job has the longest (shortest) execution time comparing to another tasks of this job. We prove
in this paper that the problem to find an optimal schedule for three-stage j-maximal (¢-minimal) (z # 2)
flow-shop with positive task time is NP-complete.

Tém tdt. Bii todn lich bi€u t8ng quit vin dwoc biét 13 bai toan NPC. Ngudi ta xét va gidi bai todn niay
trong nhigu 16p dic biét khic nhau. Mt bai todn lich bi€u j-maximal (7-minimal) 13 bai todn lich bidu djc
biét khi thoi gian gia céng & céng doan thir 7 13 16n nh&t (hodc nhd nhit) so véi thoi gian gia cdng & cic
cdng doan khic di véi céng viéc dang tién hanh. Ta chimg minh trong bai.nay li vin d% tim lich biéu tai
wu cho bai todn j-maximal (z-minimal) véi 3 céng doan (z # 2) véi thoi gian gia cong méi céng doan 1a
dwong, vin 13 NPC.

1. INTRODUCTION

Flow-shop (5] consists of m > 1 processors (Py, P,, ..., Py) and n > 1 jobs {Jy, Ja, ..., Jo}. Each
processor P; performs a different task and each job J; has a chain of m tasks. With T;; we denote
the 7-th task of J; on processor P; with execution time ¢;;. Flow-shop with positive task time is one
with ¢;; > 0 for all § and 5. Furthermore, each task Tj; has to be processed on P; and can only be
executed after T;_;; has been finished. A schedule for a flowshop is defined as a sequence of tasks
to be executed by each processor. A schedule is called a permutation schedule if the schedule on each
processor is the same. If we allow a task to be partitioned and done in several time intervals, the
schedule is called preemtive. In the following we only consider nonpreemptive schedules for which a
processor cannot be interrupted in between once it has begun executive of one task. Moreover, we
denote the schedule length or finish time of a schedule ¢ is by f(y).

2. PROBLEM

OFT schedule (optimal finish time schedule) is one which has shortest finish time among all
schedules. We can state the OFT-problems, problems to find an OFT schedule, as a language
decision problem as follows:

FOFT-Problem. Given an m-processor n-job flow-shop and a number T, does there exist a schedule
with length less than or equal to T'?

Johnson (see [4]) showed that the OF T-problem for two processors can be solved in O(n logn)
time and suggested an algorithm for three stages case which only works in certain circumstances.
However, the general FOFT-problem is known to be NP-complete (see [8]). Solution for the general
OFT-problem have been specified for several other special cases. A j-maximal (j-minimal) flow-shop
is a particular kind of flow-shop in which the j-th task of any job has the longest (shortest) execution
time comparing to another tasks of this job.

Chin and Tsai [6] proved that the 2-minimal FOFT-problem remains a NP-complete, even for
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the three-stage case, i. e. for the case m = 3 . On the otherwise, Burn and Rooker [4] shown that
Jonhson’s polynomial algorithm works for the three stages 2-minimal flow-shop with positive task
time.

- Let L stand for the processor with the largest task of each job, S the processor with the smallest
task and M for the remaining processor. Then three-stage flow-shop scheduling of type j-ma.xi.mal
and at the same time i-minimal (¢ # j) fall into six cases: LMS, LSM, MLS, MSL, SML and.
SLM. As we know, Burn and Rooker proved that Johnson’s polynomial algorithm works for the-
2-minimal three-stage flow-shop with positive task-times. Recently, Achugbue and Chin gave an
algorithm with polynomial time for the cases LM S and SML for flow-shop with positive task time.

In the following we will show that the remaining cases M LS and SLM are NP-complete.

3. RESULTS AND PROOFS

First, note that FOFT-problem is in NP (see [11]) 'and PAR (see [6]) is a NP-complete problem
and 3PAR (see [8]) is a strongly NP-complete problem.

n
PAR-problem. Given a multiset S = {a1,az,...,a,} of nonnegative integers a; with Zai = K,

=1
does there exist a subset U of {1,2,...,n} such that 3 a; = %
€U
3n
3PAR-problem. Given a multiset S = {ay,az,...,a3,} of nonnegative integers with Zai =nK

=1
such that 54(— <a; < %, does there ezist a partition of S into n disjoint three subsets of integers such
that each has a sum ezactly equal to K. H

Lemma 1. (Lemma 1 in [1]) The three-stage flow-shop n + 2 jobs:
tr=2(i — V)K, to= (2~ 1)K, tsi=2(+1)K, for 1<i<n+]1,
tint2 = t3n+2 = 0,82 ny2 =5 041,
has the unique optimal permutation schedule (1,2,...,n+2) of finish time (n? +5n + 5)K.
Lemma 2. (Lemma 2 in [1]) The three-stage flow-shop n + 1 jobs:
s . K 2 . K
t1; = (1.2 + 31 + 4)7, to; = (1.2 -+ 3.4 4)?,
has the unique optimal permutation schedule (n + 1,n,n — 1,...,2,1) with the finish time f(p) =
n+1

»» —————~(i2+2i+4) +4+n)K.

K
ts = (" —1+2)5, V1Sisn+l,

o |

Lemma 3. [4] An OFT-schedule for three-stage flow-shop with positive task time may be found among
the permutation schedules.

In the following we will show that the j-maximal (¢-minimal) (i # 2) flow-shop with positive
task time is NP-complete and, specially, that the remaining cases M LS and SLM are NP-complete.

Theorem 1. The FOFT-problem for three-stage 2-mazimal flow-shop with positive task time 1s
NP-complete.

Proof. From the multiset S = {ai,az,...,an} we construct the following three-stage 2-maximal
flow-shop with positive task time and with n + 1 jobs.
K K K .
t1;=—, tai=a;+—, tzg;=—, for 1 <1< n,
’ 4n ’ 4n ' n

K K K (n-2) K K
ting1 = > + yPy tantl = 5 + TK’ t3n+1 = > + yeg



76 VU DINH HOA

n
where Za‘- =: K and T = 2K.

=1
Now we will show that the FOFT-problem for the above flow-shop has a schedule with finish’
time < 2K iff S has a partition U with ) a; = %-.
€U
(a) If S has a partition U with ), a; = £ then there is a schedule  with finish time 2K.
i€U A
One of such schedule ¢ is shown in figure 1. Since

K

§ :tl,-’ +inp1=—+ E t2,i
4n

U U

the n+ 1-th job begins immediately to be processed on the next processor after his task on a processor
has been finished. Thus, the finish time of this schedule is given by the sum:

fle) = Ztli tiint1 tiznt1 it + Zta,i
: i€V i¢U
K K K K K K K K
=W+ G+ D)+ (5 + -2 )+ (5 + )+ (n=U)

4 2 4 2
=2k,
Ty, T1ns1 T.i
iel ch ielU
To,i T2,n+1 [ Tai
ielU 3¢ il
T3,i o J '|'3 43 T3,l
ieU| , i ielU
: ‘
1 1
1 B I
& 2K 5
Figure 1

(b) If ¢ is schedule for our flow-shop with f(¢) < 2K, then § has a partition.

By Lemma 3, we can suppose that ¢ is a permutation schedule. We set

U, := {4 : task T, finish before task T} .41},
U := {+: task Ty, finish after task T1 n41}-

For the case U; # @ we have:

K
2K > —+ E t2i+t2nt1 ti3nt1 t E t3i
in T
1€eU, 1€U,

3K
= — 4o
Z 5 + a,

1€elU;
And therefore £ > 37 a; (also true for U; = ).

1€U;
Similarly, for case U, # 0:
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K
2K > Z tii+ttint1 T2 ngr + Z tai + ™
1€l ' 1€U; n
3K
> —+ a;.
1€U,
And therefore % > EE(:] a; (also true for U; = §).
i€V
Since U; UU; = {1,2,...,n}, we have %’— = Z a; = Z a;. Thus S has a partition U with
; i€, i€U; :
E a; = —Izi
ieU

Corollary 1. The FOFT-problem for the three-stage MLS and SLM flow-shop with‘.positive task
time 1s NP-complete.

Theorem 2. The FOFT—problem for three-stage 1-minimal flow-shop with positive task time 1s
strongly NP-complete.

Proof. Given an instance of 3PAR-problem with S = {aj,a2,...,a3,} of 3n nonnegative integers a;
3n

such that Za,- = nK and %f— <a; < %, we can construct the following 1-minimal flow-shop with
t=1

4n + 2 jobs:

t1,£ = 2(1. - l)K + 1, t2,,' == (2'1. = l)K + 1, tg,,; = 2(1 + 1)K + 1, fOI‘ 1 S ’l, S n,
and

tint2e =1, tant2 =tant1, tanyz =1,

t1i=1, tai=ai_pn-2+1, t3;=1, forn+3<:<4n+2,

and T = (4n +4) + (n® + 5n+ 5) K.
(a) If S has a 3-partition {Uy,Us, ..., Uy} such that
Zai ZZa,- = e =Zai =K
Uy U, Un
then the schedule showing in figure 2 has the finish time T' = (4n + 4) + (n? + 5n + 5) K.

- i€ Ul

T | Tz T T
; 1 ELF
1 Ti.l T,2,i+2+x . Tg_g ““““ Tl*'*?
; .
: iel,
! Tll T3.z'+2+x T_?..ﬂ Tt T ?,3*"'2
:.
1
1
i
|

(An+H+ +50+5K
Figure 2
(b) If there is a schedule ¢ with finish time

flp) < (4n +4) + (n® + 5n+ 5)K.
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By reducing each task of job exactly 1 unit time, ¢ is a schedule with finish time (n? +5n+5)K
for the following three-stage flow-shop ¥ with 4n + 2 jobs:

t1:= 2(1. = I)K, ta; = (21 = 1)K, t3; = 2('& & 2 l)K, for 1<1<n,

and
tint+2 =0, t2nt2 =t3n+1, t3,nty2 =0,
t1:,=0, t2;=a;_p_2, t3;, =0, for n+3 <7< 4n+2.
Without the last 3n jobs the three-stage flow-shop 7' with the first n + 2 jobs:
t1i =20 —-1)K, t;= (20— 1)K, t3;=2(:+ 1)K, for 1 <1< n,
and

tint+2 =0, t2ny2 =1t3n41, t3n42=0.

has the unique permutation schedule (1,2,...,n+2) with the same finish time (n%+5n+5) K because
of Lemma 1. Thus, the schedule ¢ is only an “extended” schedule of (1,2,...,n + 2), it means that
the order.of (1,2,...,n + 2) in ¢ remains the same and that by 7 the three processors perform the
last 3n jobs in the pause time of #'. The only pause time by the schedule (1,2,...,n + 2) of 7' is
established by the second processor and has the form of exatly n intervals with the same volume K

(see Fig. 3). Since in ¥ we have t3; = @i—p—2,V1 = n+3,...,4n + 2, S has a partition into n subset
- U1,Us,...,U, such that Za; = K. Since % < a; < %, each U; contains exact 3 elements of S.
U;

Thus S has a 3-partition.

2K 4K

K 3K 5K 8K
i ax 6K 8%
P (n* +58+9K :

Figure 8 (One example with n = 2)

With similar proof to proof of Theorem 2 (by the symmetry of the first and the third processor)
we contain the following corollary. ‘

Corollary 2. The FOFT-problem for three-stage 8-minimal flow-shop with positive task time 1s
strongly NP-complete. .

Theorem 3. The FOFT-problem for three-stage 1-mazimal flow-shop with positive task time 1s

strongly NP-complete.

Proof. The proof is similar to the proof of Theorem 2. From an instance of 3-partition problem with
3n

the set S = {a1, as, ..., a3, } of 3n nonnegative integers a; such that Za; = nK and % <a; < %,

: t=1
we can construct the following 1-maximal flow-shop with 4n + 1 jobs:

K : . K . . K .
tl,i=(i2+3‘i+4)?+1, t2,i=(z2+z+4)7+1, ts,,-=(zz—z+2)7+1, for 1<1<n+1,

and
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t1i=1t3; = Gi_p-1+ 1, t2;~1, for n+2<1<4n+ 1.
We will show that S contains an 3-partition iff there is a schedule ¢ with finish time f(p) <

n+1 25 ¥
30 +4
(;Q%i—)+4+n)K+4n+3.

.(a) If S has an 3-partition {Uy,Us,...,U,} then the permutation schedule (n + 1,: € Uy,n,i €
Uz, ..., 2,2 € Uy, 1) (Fig. 4) has the finish time

n+1l ..o .
+3i+4
f(<P)=(Z(z_—2z)-+4+n)K+3n.
=1
T T
1,1 1
11K +1 Uy TK+1 ) U2 4K +1
8K +1 5K +1 3K+1
aK L |
+1 U U, K+1

Figure 4 (One example with n = 2)

(b) If there is a schedule ¢ with finish time

n+1
(> +‘:’*+4 + 4+ n)K +3n.
=1

By reducing each task exactly 1 unit time, ¢ is a schedule with finish time fle) <
n+1

(12 + 31 + 4) . ; ;
(Z B +4 + n)K for the following three-stage flow-shop 7 with 4n + 1 jobs:
1=1

. . K g K B K )
tl‘i:(z2+3z+4)—2~, t2,,~=(22+1+4)—2—, t3,,‘:::{z2—-2+2)—2—, for 1<i<n+1,

and .
to; =0, forn+2<2<4n+ 1.

)

tii=13:; = QGi—n-1,
Without the last 3n jobs the three-stage flow-shop #' with the first n + 1 jobs:
t1; =20 - 1)K, ta;= (2~ 1)K, t3;=2(i+1)K, for 1<1<n,

and
tint2 =0, tantz =t3n+1, t3n+2=0.
n+1

‘2 .
3 4
has the umque permutation schedule (n + 1,n,...,1) with the same finish time (Z (2% + 31+ 4) +

2
4+n)K because of Lemma 1. Thus, the schedule  is only an “extended” schedule of (n+1,n,...,1),
it means that the order of (n+ 1,n,...,1) in  remains the same and that by 7 the three processors
perform the last 3n jobs in the pause t1me of #'. The only pause time by the schedulef (n+1,n,...,1)
of 7' is established by the third processor and has the form of exatly n intervals with the same volume
K (see Fig. 5). Since in 7 we have t3;= a;—n- 1, Vi = n+2,...,4n + 1, S has a partition into n
subset Uy, Us, ..., U, such that Za,- = K. Since —{—f— <a; < %, each U; contains exact 3 elements of
U;
S. Thus S has a 3-partition.

With similar proof to proof of Theorem 5 (by the symmetry of the first and the third processor)
we contain the fcllowing corollary.
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Corollary 8. The FOFT-problem for three-stage S-mazimal flow-shop with positive task time is
strongly NP-complete. :

11K 7K 4K

8K 5K 3K

4K 2K K

Figure 5 (One example with n = 2)
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