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DIFFERENCE SCHEMES FOR GENERALIZED SOLUTIONS
OF SOME ELLIPTIC DIFFERENTIAL EQUATIONS, II

•
HOANG DINH DUNG

Abstract. The approximate methods for the problems of differential equations with non-regular data
are studied by some authors. For example, in [1-3,6,7] are considered the cases of data belonging
to the Sobolev spaces W;(G). In this paper, which is a continuation of [4], we consider the difference
schemes for solutions of some elliptic problems in the case where the region of definition for variable
has arbitrary form. In the last section the result is generalized to a class of problems with data defined
by the continuous linear functionals in W~-I) (G).

1. DIFFERENCE SCHEME FOR THE DIRICHLET PROBLEM
OF POISSON EQUATION

Consider the following Dirichlet problem:

6.u = - f(x), x E G,
u(x) =0, x E aGo (1)

To simplify the exposition, assume that G is a convex region in R2 with aG E C2. We shall
keep some notations in [4], [7].

Let Rh be a rectangle grid covered the z-plane and defined by

Rh == {x = (Xl,X2) : Xi = xU;) = Jihi' Ji = 0, ±1, ±2, ... , i = 1,2},

where the straight lines Xi are the parallels to the coordinate lines, hi are positive mesh sizes in
the xi-directions, i = 1,2, respectively. Denote by w = Rh n G the set of all gridpoints in G, and
by "t = Rh n aG the set of boundary gridpoints, by ,t and 'f the set of right and left boundary
grid points in the Xi - directions respectively. Let w-y be the subset of interior netpoints that the lie
in the neighbourhood of aG, Wo == w \ W-y, w == w U ,.

Let us introduce a supplementary grid of the parallels x(i to the lines Xi:

X(i == xV+O
.
5) = 0.5 (x;j;) + xV+l)).

Let every gridpoint x E w be corresponding to the subregion e(x) E G bounded by the straight lines
x(i = xV +0.5), i = 1,2. If x E w-y, e( x) is limited by not only the X(i but also an arc of the curve B G,
The boundary segments X(i of e(x) perpendicular to the coordinate lines OXi are denoted by 1;±0.5),
i = 1,2, respectively.

Denote by x(±l;) , i = 1,2, the neighbourhood netpoints of the netpoint x E w in the xi-direc-
tion, h;±l;) == Ix;±l;) - xii, xi and x;±ld being the coordinates of the netpoints x and X(±l;) E w
respectively. We see that there are the differences of steplengths h(±0.5) and hi only in the neigh-
bourhoods of B G,

The points of intersection of the straight lines Xi = xV) with x(i = xV±0.5) are denoted by
x(±0.5,) that are called the stream grid points in the xi-direction. Denote by w~ the set of these points,
Wi == w~ uw~.
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Let every gridpoint x(±o.s,) correspond to a following area, i = 1,2,

ei(x(±0.S;))={~=(~1'~2): Xi<<;i<Xi+hi, IX{3-~{31<0.5h{3, f3=3-i}.

Let x E w-r and in the area e(x) the segment 6.l correspond to the arc 6.f of aG [I' == aG).
Denote by e(x) the area bounded by the segments ti±o.S) and 6.l. Note that, by assumptions for G,
with z E w-r the different value between the areas e(x) and e(x) is equal to O(h), where Ihl2 = hf+h~.

1.1. Construction of difference schemes

The generalized solution of the problem (1) is considered in the spaces W2 (G), m = 2,3. As
in [4] the generalized solution (denoted by the GS) u(x) satisfies the following equalities: .

Pu == II 6.u(x)v(x)dx = - II f(x)v(x)dx, Vv(x) E L2(G); u(x) = 0, x E ec. (2)
G G

Let x E W-r. For deriving finite - difference methods, we may take the solution of (2) in the
neighbourhood area e(x) of the gridpoint x by the form:

e 1 If 1 If [~ au ( au) ~ Bcx au)P u =hf: a(~l' ~2)6.u(~)d~ = hh c: ~ =s: - c: ~~ d~
1 2 1 2 . l~' ~, . 1 ~, ~,

e(x) e(x) ,= ,=

= - _1_ If a(df(dd~ == -Rf, (3)
hlh2

e(x)

{

I {x' +x' }m 1 m 1 exp - ~ , x E e,
where v(x) = (hlh2)-la(x), a(x) = 41rh, h, , ,

0, z E G \ e.
From (3), applying the Green-Ostrogradski formula one has1{2' 2, }t=« =hf: L l}o.S)wi+o.S;) - L l}o.S)wi-o.S;) + 6.lf3(x)w(O)

1 2 i=1 i=1

1/f2
aa .-hh Laaaud~=-Rf, xEw-r; u(x)=O, xEl, (4)

1 2 . 1 ~, ~,( ) ,=
where c;yt±o.s,) ~x_1_ I a~dl w(O) = ~ I a au dl (5)

, l(±o.s) aXi' 6.l an'
, Il±o.S) t>l

the net function f3(x) is equal to 1 as z E w-r and is zero as z E Wo, the lengths of segments li±o.S)
are denoted also by l1±0.S), w(O) is calculated by a contour integral of the first kind. The notation
"2:'" signifies that this sum has no the i-th summand corresponding to the li±o.S) = 0 respectively,

t

ii being the outer normal to Be.
Note that if the netpoint x E Wo, one has the form of peu analogous to (4) in which the sum

2: has no the sign"'" and l~=:~·S), i = 1,2, are replaced by hi respectively.
Now, to construct the difference schemes one may do in the same way as in Section 2.1 for the

net problem (8), [4]. Thus, by (4) we obtain the following difference approximations analogous to (9)
and (12) in [4] respectively:

2

Ky == - (a1 Yx,);-, - (a2Yx,);-, + h 1h If L·ax;(x)Yx;(x}Yx;{x)d~ = <p{X) == Rf(x)'
1 2 .

e(x) ,=1

xEw; y(x)=O, xE" (6)

and Ly = -Yx,x, - yx,x, = <p{x), z E w; y(x) = 0, z E 1, (7)
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where
+1;) _

(+D.s;) _ Y Y
YX; - h(+O.S) ,

t

(±o.s;) 1
a· =---

t l(±o.S;)
t 1~±O.5;)

) Y_y(-l;)
- o.S; _ _---;--::-::-.,--YX; - h( =o.s) , Y';;

t

Y( +o.S;) _ Y( -o.s;)

hi

/ a(r)dl for d±o.S;) -I- 0, (±o.S;) - ~ / ()dl f l(±o.s;) - 0) . r ai - fl.l a ~ or i -.

6.1

Note that the integrals should be taken along the segments l;±o.S) and fl.l lying inside the
region G. For x E Wo one has the formula similar to (6).

1.2. Estimation of the convergence rate

We shall estimate the method error and the approximate error of the scheme (7) and (6).

1.2.1. Consider first the difference scheme (7). The left-hand side of the difference equation (7)
coincides with a standard fivepoints approximation for the one of the differential equation (1) in the
case of the variable region G of any form. Consider now the convergence of the approximate solution
11 to the GS u of form (4). Denote the method error by z == 11 - u. By (7) one has

Lz = W(x), z E w; z(x) = 0, z E /, (8)

where W(x) is the approximate error of the scheme (7): W(x) = <p(x) - LU. Then, using the expression
(4) of <p= R f we get 2

Lz = W = L TJix; + TJo, (9)
i=1

where
(±O.S;) _ (±o.s;) -(±o.s;) if l(±o.s;) - hTJi -ux; - wi i - 3-1,

, (l(±O.S;) )(±o.s;) _ (±O.S;) -(±O.S;) + 1 t (-(±o.S;) ~ )TJi -ux; - wi - -h-- wi - wi
3-i

(±O.S;) _ (±o.s;) _~. if l(±O.S;) - 0TJi -Ux; Wt 1 i -,

2

~ 1 / au 1 If L aa auWi =- a-dl, TJo= -- ----d~.
fl.l aXi hlh2 i-I a~i a~i

6.1 e(x) -

(10)

if 0 < l(±O.S;)" < h .
1 i 3-tJ

(11)

(12)

(13)

Now, to obtain a priori estimation, let us scalar multiply both sides of (9) by z(x) and, then,
arguing by the same way as in [4, Sec. 2,2]' we get

Ilzlkw < M(IITJIilo,w' + IITJ2110,w'+ IITJollo,wl), (14)

where M is a constant independent of hand z(x),

IlvilL =llvll~,w + II'Vvllo,wl, Ilvllo,w == ~
II'Vvll~,wl ==('Vv, 'Vv)', 'Vv(x(±o.S;)) == vi~o.S;) for x(±o.s;) E w:,

o
(u, v) is the scalar product on the set of net functions Hh : (u, v) == 2: b, h2U( x)v (x), (u, v)' is the

xEw

scalar product on the set of functions defined on the net w' of stream gridpoints H~:
2

(u, v)' == L L h;±O.S;) h3_iU(X(±0.S;))v(x(±0.S;)).
i=1 x(±o.5;)Ew:

ThE; estimation of summands in the right-hand side of (14) is analogous to that of (18) in Section 2.2
[4], and one has
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Ilzlll,w ::; Mlhlm-11lullm G + Mlhl 1[u.112,&'
, ,

(15)
o ~

where m = 2,3; G = U edx'), G = U edx'), z' = x(±O.5), i = 1,2, Wo being the subset of
x/Ew~ x/Ew~

gridpoints x' that e;(x') C G (Fig. a)' w~ == w' \ wb; If x' E w~, then edx') == e,:.U e, with ei C G and
e; ~ G (Fig. b).

--------l----------
I

: et(x'j,
(+ 1t)

X
t+t«)

XX ''X'
I
I
I
I________ L _

, X',,
I

--------'---------

Ftg. a Fig. b

The set 8 can be bounded by a boundary strip Ge with its width e = Mlhl. Then, if u E Wi(G)
one has the following estimation [7]

IluI12,& ::; MlhI1/21Iulh.G.
Finally, if follows from (15) and (16)

Ilg - ulkw ::;Mlhlm/21Iullm,G,

(16)

(17)

where m = 2,3; the constant M is independent of hand u(x).

1.2.2. Consider now the difference scheme (6). By the same way as we did for the scheme (9) in the
Section 2.2 [4], and for the scheme (7) above, with employing (17) one obtains the following result

Theorem 1. Let a:(x)f(x) E L2(G). Then the solution 'Y of the scheme (6) converges to the GS (4)
u(x) of the problem (1) in the grid norm Wi(w) with the rate O(lhlm/2) that is, there is a number
M such that

II'Y - ulll,w ::; Mlhlm/21Iullm,G, (18)

where the constant M is independent of hand u(xL m = 2,3.

2. ELLIPTIC DIFFERENTIAL EQUATION OF THE SECOND ORDER
WITH VARIABLE COEFFICIENTS

Consider the elliptic problem

2 a au
Pu. == L ~(kdx)a;:-) = -f(x)' x E G; u(x) = 0, x E B G,

t ee L 1. 1.

(19)

where G is defined as in the problem (1), k;(x) E C(G), i = 1,2,

0< C1 ::; k;(x) ::;C2, X E G, (20)
here C; being constants.

2.1. Construction of difference scheme
o

Consider the GS of the problem (19) u(x) in the space W2' (G) nWH G) satisfying the equality:

II i: (kdx) :;)v(x) = - II f(x)v(x)dx, Vv(x) E W~(G)
G t=1 G

(21)
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From the last equation, arguing as in Sections 1.1 and 3.1, [4], one has the following net problem
for the GS of the problem (19):

=« = hl1h2 {~d+0.5)W}+0.5;) - ~ l}-05;) + ~l,B(X)W(O)}

__ 1_ If i:ki aa au d~ = Rf, u(x) = 0, x E" (22)
hI h2 . a~i a~i

e(x) ,=1

where R] == cp and a(x) have the form (3), ,B(x) is defined as in (4),

-(±0.5) = _1_ J k ~dl -(0) = ~ J k· au dl
w, l(±0.5) ,a aXi ,w ~l ,a al .

, 'l±o.5) ~l

By (22), in a manner analogous to the proof of the forms (6) and (7) one obtains the following
difference schemes of the net problem (22):

2 2
Ky == - L(biYx.);-. + h ~ If Lki(x)aX.Yx.(x)d~ = cp(x)y(x) = 0, x E" (23)

. 1 2 . 1
,=1 e(x) ,=

2

Ly == - L(diYx. );-. = cp(x); y(x) = 0, x E " (24)
i=1

where
b(±0.5) =_1_ J l(±0.5) k·(") ()dl f l(±0.5) ...J- 0, l(±0.5)' ' ~ a ~ or, r:>,,
b}±0.5) = ~l J ki(da(~)dl for l}±0.5) = 0,

~l

d(±0.5) =_1_ J k(")dl f l(±0.5) ...J- 0
, d±O.5) , ~ or, r:>,

, 'l±o.5)

d}±0.5) = ~l J ki(ddl

~l

for l(±0.5) = o.,

2.2. Estimate of convergence rate

By (22)-(24), arguing as in the proof of the Theorem 1, we have following.

Theorem 2. Let ki(X) E W:-l(G), i = 1,2, satisfying the condition (20), m = 2,3j a(x)f(x) E

L2(G). Then the solution y of the scheme (23) or (24) (y = y or y) converges to the GS (22) u of
the problem (19) in the net norm Wi(w) with the rate O(lhlm/2), that is there is a number M such
that

(25)

where the constant M is independent of hand u( x).

Remark
a. For simplicity of presentation, the homogeneous boundary condition was considered. The

Theorems 1 and 2 are also valid in the case where u(x) = g(x), x E aGo
b. Some generalizations given in Section 2.3, [4] are also true for the problems (1) and (19):
- The Theorems 1 and 2 are also valid, if in the formulas (2) and (21) of the GS u(x), vtx) is

any function in the space f) (G) of Schwartz basic functions [8].
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- It is known (see [5], [9]' etc.) that the right hand side of differential equations in the envi-
ronment problems may be a functional (e.g., f is the Dirac delta functions 8). The estimates (17),
(18) and (25) are obtained with the assumption f E L2( G), now we show that the results may be
generalized to the equations with right-hand side f E WJ -I) (G) - the space of continuous linear func-

o
tionals on the space W~ (G), l is a nonnegative integer. Indeed, by this assumption, f (x) E D' (G) -
the space of Schwartz distributions [8]. Then, by the theorem on local structure of the distributions
(see [9, ch ap.L, n.2]) there exist a function g(x) E Loo(e) and an integer k ~ 0 such that

f(x) = D7 ... D~g(x), (26)

where z E e , the set e is compact in G c H",
Let v(x) E D(e), from (26) and (21) one has

2If ~ a~i (ki(x) :~) v(x)dx = - If g(x)v(x)dx, (27)

where V(x) = o;D~v(x) (n = 2).

We have v(x) E D(e), g(x) E L2(e). Therefore, the equation (27) has the form (21), (22). Then
one may repeat the procedure used above and obtains the following

T'heorem 3. Let the coefficients kd x) of the problem (19) belong to the space W!'-l (G), satisfying

the condition (20), m = 2,3, and let the right-hand side f (x) E WJ -I) (G). Then the solution y of the
scheme (23) or (24) converges to the GS (22) u of the problem (19) in the grid norm Wi(w) with the
rate O(hm/2), that is, there is a number M such that

IIY - ulll,w ~ Mlh[m/2[lullm,G,

where the constant M is independent of hand u(x).
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