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ABOUT SEMANTICS OF PROBABILISTIC LOGIC

TRAN DINH QUE

Abstract. The probabilistic logic is a paradigm of handling uncertainty by means of integrating the
classical logic and the theory of probability. It makes use of notions such as possible worlds, classes
of possible worlds or basic propositions from the classical logic to construct sample spaces on which a
probability distribution is performed. When such a sample space is constructed, the probability of a
sentence is then defined by means of a distribution on this space.

This paper points out that deductions in the point-valued probabilistic logic via 'Maximum
Entropy Principle as well as in the interval-valued probabilistic logic do not depend on selected sample
spaces.

1. INTRODUCTION

In various approaches to handling uncertainty, the paradigm of probabilistic logic has been
widely studied in the community of AI reseachers (e.g., [1], [4], [5], [6]' [8]). The probabilistic logic,
an integration of logic and the probability theory, determines a probability of a sentence by means of a
probability distribution on some sample space. In order to have a sample space on which a probability
distribution is performed, this paradigm has made use of notions of possible worlds, classes of possible
worlds or basic propositions from the classical logic. It means that there are three approaches to give
semantics of probabilistic logics based on the various sample space: (i) the set of all possible worlds;
(ii) classes of possible worlds; (iii) the set of basic propositions.

Based on semantics of probability of a sentence proposed by Nilsson [8]' an interval-valued
probabilisticlogic has been developed by Dieu [4]. Suppose that 8 is an interval probability knowledge
base (iKB) composed of sentences with their interval values which are closed subinterval of the unit
interval [0,1]. From the knowledge base, we can infer the interval value for any sentence. In the
special case, in which values of sentences in 8 are not interval but point values of [0,1]' i.e., 8 is a
pointed-valued probabilistic knowledge base (pKB), the value of S deduced from 8, in general, is not
a point value [8]. In order to obtain a point value, some constraint has been added to probability
distributions. The Maximum Entropy Principle (MEP) is very often used to select such a distribution
([2], [4], [8]).

The purpose of this paper is to examine a relationship of deductions in the point-valued prob-
abilistic logic via MEP as well as in the interval-valued probabilistic logic. We will point out that
deductions in these logics do not depend on selected sample spaces. In other words, these approaches
are equivalent w.r. t. the deduction of the interval-valued probabilistic logic as well as one of the
point-valued probabilistic logic via Maximum Entropy Principle. Section 2 reviews some basic no-
tions: possible worlds, basic propositions and the probability of a sentence according to the selected
sample space. Section 3 investigates the equivalence of deductions in the interval-valued probabilistic
logic as well as in the point-valued probabilistic logic. Some conclusions and discussions are presented
in Section 4.

2. PROBABILITY OF A SENTENCE

2.1. Possible worlds

The construction of logic based on possible worlds has been considered to be a normal paradigm
in building semantics of many logics such as probabilistic logic, possiblistic logic, modal logics and
so on (e.g., [4], [5], [6]' [8]). The notion of possible world arises from the intuition that besides the
current world in which a sentence is true there are the other worlds an agent believes that the sentence
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may be true. We can consider a set of possible worlds to be a qualitative way for measuring an agent's
uncertainty of a sentence. The more possible worlds there are,the more the agent is uncertain about
the real state of the world. When such a set of possible worlds is given, the uncertainty of a sentence
is quantified by adding a probability distribution on the set.

Suppose that we have a set of sentences ~ = {CPr,... ,cpt} (we restrict to considering proposi-
tional sentences in this paper). Let A = {al, ... ,am} be a set of all atoms or propositional variables
in ~ and Cr. be a propositional language generated by atoms in A. Each possible world of ~ or Cr.
is considered as an interpretation of formulas in the classical propositional logic. That means it is
an assignment of truth values true (1) or false (0) to atoms in A. Denote {1 to be a set of all such
possible worlds and W F cP to mean that cP is true in a possible world w. Each possible world W

determines a ~-consistent column vector a = (aI, ... ,al)t, where a, = valw (CPi) is the truth value of
CPi in the possible world w (we denote here at to be the transpose of vector a).

Note that two different possible worlds may have the same ~-consistent vector. We need to
consider the set of all possible worlds as well as the set of subsets of possible worlds, which are
characterised by ~-consistent vectors. In the later case, it means that we group all possible worlds
with the same ~-consistent vector into a class. Now we formalise this notion.

Two possible worlds WI and W2 of !l are ~-equivalence if valWl (Si) = valW2 (Si), for all i =
1, .. , ,l. This equivalent relation determines a classification on !l and we call 0 to be the set of all
such equivalent classes. Each equivalent class is then characterised by a ~-consistent column vector
a.

We consider an example.

Example 1. Suppose that ~ = {Sl = A,S2 = A 1\ B,S3 = A --+ C}. Since there are three atoms
{A, B, C} in ~, !l has 23 = 8 possible worlds

WI = (A, B, C),
W2 = (A,.B, C),
W3 = (A, B, .C),
W4 = (.A, B,C),

Ws = (.A, .B, C),
W6 = (.A, B, .C),
W7 = (A,.B, .C),
Ws = (.A, .B, .C).

The notation W2 = (A, .B, C) means that the truth value 1 is assigned to atoms A, C and the value
o to B and so on.
Truth values of sentences in ~ with respect to possible worlds are given in the following matrix

W2 W3 W4 Ws
1 1 0 0
o 100
1 0 1 1

It is easy to see that there are five classes of possible worlds in 0: WI = {wr}, W2 = {W2}, W3 = {W3},

W4 = {W4,WS,W6,WS}, Ws = {W7}. Then the truth values of sentences in ~ w.r.t. 0 are represented
in the following matrix

Each column vector in the above matrix characterises truth values of corresponding sentences in a
class of possible worlds. For instance, vector V = (1,0, l)t characterises the 'truth value 1 of Sl, 0 of
S2 and 1 of S3 in the class W2 = {W2} and so on.

The construction of two sets !l and 0 that we have just discussed plays an important role in
giving semantics of probability of a sentence. The set of all possible worlds !l as well as the set of all
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equivalent classes n will be sample spaces for a probability distribution. Before going on examining
the probability semantics of a sentence, we consider the other sample space that is obtained from
basic propositions.

2.2. Basic propositions

In the previous subsection, we have presented notions of possible worlds as well as of their
classes which are sample spaces for constructing probability. We now consider the other sample space
which is composed of basic propositions.

As presented in subsection 2.1, £r; is denoted to be the propositional language generated by
the set of all propositional variables A = {al,'" ,am} in the set of sentences E = {<p1, ... ,<PI}. A
basic proposition has the form <P= 0'1 1\ ... 1\ 0'm, in which a; = ai or ai = -.ai. It is clear that
since 1 A 1= m (I . 1 is denoted to be the cardinal of a set), there are n = 2m basic propositions
Ab = {b1, ... ,bn}. The following proposition showed in [9] provides a basis for simplifying operations
in the propositional logic.

Proposition 1. For every sentence <Pin £r;, there exists a set A4> ~ Ab such that <P= V 4>iEA¢ <Pi.

Note that it is possible to represent <P= V 4>01=4> <Pi. That means <Pmay be represented in the
form of disjunction of basic propositions and then <Pis true if some <Pi is true. Consider a simple
example.

Example 2. Given A = {A, B}, then Ab = {A 1\ B, A 1\ -.B, -.A 1\ B, -.A 1\ -.B} and for instance, the
sentence A -+ B can be represented in the form of disjunctions of some basic propositions in Ab

A -+ B = (A 1\ B) V (-.A 1\ B) V (-.A 1\ -.B).

The following proposition points out a closed relationship between the set of all possible worlds
and one of basic propositions.

Proposition 2. There is an one-to-one correrspondence between elements of the set of basic propo-
sitions Ab = {bl, ... ,bn} and ones of the set of possible worlds O.

Proof. In fact, given bi E Ab, b, = ai 1\ ... 1\ a~, where a;. E A or -.a;. E A (A is the set of atoms
defined in Subsection 2.1) consider the column vector Wi = (wi, ... ,w~)t defined as follows

{

1
i_

Wj - 0
if i(1j = aj

otherwise a~.= -.aj

Then Wi is a possible world corresponding to bi. In contrast, for every possible world Wi, it is possible
to define a basic proposition b; corresponding to Wi .. The proposition is proven.

Note that if <Pis a sentence and ~j is a possible world w.r.t. <Pj E A4>, then <Pis true in Wj.

2.3. Probability of a Sentence

In this subsection, we consider three ways of determining probability of a sentence according
to various sample spaces.

2.3.1. Probability on Possible Worlds

First of all, we remind some notions of the theory of probability [7]. Given a sample space+
(0, [), in which 0 is a finite set and £ = 2°, a function P: £ -+ [0,1] is called to be a probability if
it satisfies the following conditions:

lSince the set [ referred in our considering is always a power set of 0, for simplicity, we can call 0 to be a sam-
ple space.
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(i) P(A) 2: 0 for all A E e.
(ii) P(O) = 1;
(iii) For every A, BE C such that An B = 0, P(A n B) = P(A) + P(B).

Very often, the probability function is determined by means of a probability distribution on the set
O. A probability distribution is a function p: 0 ---+ [0, I] such that LwHI p(w) = 1. The probability
of a set A is then defined to be P(A) = LWEA p(w).

The semantics of probability of a sentence defined from a probabilistic distribution on classes
of possible worlds 0 has been proposed by Nilsson [8] in building his probabilistic logic and utilised
later by Dieu [4] in developing the interval-valued probabilistic logic. Suppose that P is a probability
distribution on 0, the probability of a sentence ¢ E E is the sum of probabilities on classes in which
¢ is true, i.e.,

P(¢) = L p(w;).
WiF=<P

Another way of constructing probability is based on a probability distribution on the set of all possible
worlds 0 rather than on the classes n. The probability of a sentence ¢ is then defined

P(¢) = L p(Wi)'
wiF<P

We emphasise here that the probability of a sentence ¢ is not its truth value but its degree of truth
or degree of belief in the truth of the sentence ¢. Note that P can be defined for any sentence in the
language £E since 0 merely depends on the set of atoms appeared in E. Otherwise, P, in general, is
merely defined for sentences in E since 0 may change according to ¢ in the language.

2.3.2. Probability on Basic Propositions

As presented above, Jib is denoted to be the set of all basic propositions generated from a set E
of sentences and £E is its propositional language. Instead of basing on a probability distribution on
possible worlds, the probability of a sentence can be given by means of distribution on the set Jib [6].
Suppose.that P is such a probability distribution. Then the probability Pi, of a sentence ¢ is defined

Pb(¢) = L p(¢d
<piEJh,<piF<p

3. EQUIVALENCE OF DEDUCTIONS IN THE INTERVAL-VALUED
AND THE POINT-VALUED PROBABILISTIC LOGICS

In this section, we review the interval-valued and the point-valued probabilistic logics and point
out that deductions in these logics do not depend on the selected sample spaces. In other words,
deductions in these logics are equivalent.

3.1. Deduction in the Interval-valued Probabilistic Logic

Suppose that 13 = {(Si, Ii) I i = 1, ... , l} is an iKB, in which Si is a sentence and I; is a
closed subinterval of the unit interval [0,1]' and S is a target sentence. We review here a method
of deduction developed by Dieu [4] to infer the interval value for the probability of the sentence S.
Denote r = {S1, .•. , St, S} and suppose that n = {WI' ... , wd is the set of all r-classes of possible
worlds defined by r. Each class Wi is characterised by a consistent vector (Uli,'" , Uti, Ui)t of truth
values of sentences Sl, .. ' , St, S.

Suppose that P = (PI, ... , Pk) is a probability distribution on 0. The truth probability of S,
is defined to be the sum of probabilities of classes of worlds on which S; is true, i.e.,

rr(S;) = UilPl + ... + UikPk .

The interval value [0,,8] of S is then 'defined ...by
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{
a = minj- 7r(S) = minp(uIPI + + UkPk)

f3 = maxj- 7r(S) = maxp(ulPI + + UkPk)

subject to constraints

{
7ri= UilPI + ... + UikPk E t,
L:~=lPi = 1, Pi 2: 0 (j = 1, ... ,k)

that can be written in the form of the matrix equation

II' = U'P (1)

where II' = (1, 7r1," . ,7rdt and U' is the (l + 1) X k-matrix constructed from U by adding a row with
values 1. We call the equation (1) to be the conditional equation. Denote this interval [a, f3] to be
F(S, B, ll) - an interval deduced by means of distribution on the sample space ll.

Similarly, let 0 = {WI, ... ,wr} be the set of all possible worlds defined by rand

II' = W' P (2)

be the conditional equation. Let F(S, B, 0) to be an interval value of S deduced from B by means
of distributions on the sample space 0. The following proposition asserts that these values do not
depend on sample spaces ..

Proposition 3. Suppose that B is iKB and S is a sentence. 0 and II are the sets of all possible
worlds and classes of possible worlds, respectively, defined by S and sentences in B. Then F(S, B, 0) =

F(S,B,ll).

Proof. Suppose that P = (PI,'" ,Pk) is a probability distribution on II and 7ri E Ii such that the
equation (1) holds. Let Q = (ql,'" ,qr) be a distribution on 0 such that

Pi = L qi (i = 1, . 00 ,k)
W jEll.

(3)

The equation (2) clearly holds. Conversely, Q = (ql,'" ,qr) is a distribution on 0, take P to be a
distribution on n determined by (3). The equa.tion (i) then holds. From that we can deduce the
requirement of proof.

Similarly, we also can define an interval value F(S, B, Jib) of S deduced from B based on
probability distributions on Jib, The following proposition is inferred directly from Proposition 2 and
the result of Proposition 3.

Proposition 4. Let B be iKB. Then

F(S, B, 0) = F(S, B, ll) ==F(S, B, Jib).

3.2. Deduction in Point-valued Probabilistic Logic via MEP

We first review a technique to select a probability distribution via MEP"
Suppose that

B = {< s.,«, >1 i = 1,00' ,l}

is pKB and S is a sentence (S of. Si, i = 1, ... ,l). As above, we denote F(S, B, ll) to be a set of
values of 7r(P) = UIPI + ... + UkPk, where P varies in the domain defined by conditional equation

II' = U'P, (4)

Note that w.r.t. point-valued knowledge base II' = (1, aI, ... ,a/V.
According to MEP, in order to obtain a single value for S, we select a distribution P such that

it is the solution of the following optimization problem
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k

H(P) = - L PilogPi -> max
i=1

(5)

which subjects to constraints defined by the conditional equation (4).
Suppose that (PI, ... ,Pk) is a solution of the above problem. Then the probability of S IS

denoted by

F(S, 8, 0, M EP) = UIPI + ... + UkPk·

The method of solving the problem is given in [8]. We review briefly the way of determining the
probability distribution P from the matrix U'. Let ao, aI, ... ,a, be parameters for rows of U'. Each
Pi is defined according to ai by means of ith-column of U'

pi=aO II ai (i=l, ... ,k).
uij=I,I~i9

(6)

For example,

(

1 1
U' = 1 1

1 0 H)
then

Similarly, suppose that Q = (q1,'" .e-) is a distribution on ° satisfying MEP, i.e.,

H(Q) = - LPilogPi -> max
i=1

(7)

which subjects to constraints defined by the conditional equation

II' = W'Q. (8)

The probability of S is then defined by

F(S, 8, 0, M EP).

Note that if Q = (ql,'" ,qr) is a distribution satisfying MEP on 0, then q/s are determined as
similarly as in the expressions (6), and some qi have the same representation. It is easy to prove the
following proposition.

Proposition 5. Let 8 be pKB. Then

F(S, 8,0, M EP) = F(S, 8,11, MEP).

As stated above, propositions 2 points out that there is an one-to-one corresponding between
elements of JIb and 0. The following proposition is a direct consequence of Proposition 2 and Propo-
sition 5.

Proposition 6. Suppose that 8 is pKB. The probability value of S deduced from 8 via MEP does
not depend on the selected sample spaces, i.e.,

F(S, 8, 0, M EP) = F(S, 8,0, M EP) = F(S, 8, JIb,M EP).
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4. CONCLUSIONS

There are various approaches to assigning a probability of a sentence in probabilistic logics. It is
able to define a probability of a sentence via probabilistic distributions on the set of all possible worlds,
on classes of possible worlds or on the set of basic propositions. We have showed that deductions in
the point-valued probabilistic logic via MEP as weel as in the interval-valued probabilistic logic do
not depend on the selected sample spaces. The obtained results have been presented in Propopsitions
4 and 6.

Some authors, such as Dieu [4] and Nilsson [8], define the probability of a sentence based on a
distribution on classes of possible worlds. Others such as Gaag [6] makes use of basic propositions for
constructing the probability of a sentence. On the aspect of semantics, these logics are equivalent.
However, the main difference between probabilistic logics proposed by Nilsson as well as Dieu, on
one side, and Gaag, on the other side, is a definition of constraints of variables in computing the
probability of a sentence. While there is no any constraint in probabilistic logics based on possible
worlds given by Nilsson and Dieu, Gaag's approach allows for independency relationships between
the propositional variables.
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