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BRIEF ON ORDER-REDUCTION FOR MODELS: A CRITICAL SURVEY

NGUYEN THUY ANH, NGUYEN NGOC SAN

Abstract. A review on different methods for obtaining reduced-order models for complex high-order
systems is briefly made. A critical comparison is made of the extent to which the models obtained
from the optimal projection equations adopting state - optimization method proposed by authors are
seen retaining the physical significance of the original modeled states.

1. INTRODUCTION

In most practical situation of system control, a fairly complex, high-order often makes a difficul-
ty in understanding the behavior of the system as well as in controlling the system can be accomplished
with a great easy by using suitably selected low-order model having the important characteristics of
the model. :

During the last 40 years, a great deal of research work has been carried out for solving the
order-reduction problem, as would be evident from the fact that more than 500 research papers have
been so far published proposing different approaches on the subjects. However, practically all of the
proposed approaches are seen to belong to one of three main groups. The first groups of methods
(approaches) attempts to retain the important eigenvalues of the system-model and then obtain the
corresponding parameters of the low-order model in such a manner that the response of the low-order
model to certain inputs is a close approximation to that of the original model. The earliest methods
of order-reduction for models proposed by Marshall [27], Davison [9], Mitra [28] and Aoki [3] are
belonged to the first group. However, Hickin and Sinha [15] have shown that the first three methods
may be regarded to be special cases of the aggregation method proposed by Aoki [3].

The second group is based on an optimum manner indifferent of the eigenvalues location of
the original model. Anderson [1] has proposed a geometric approach based on orthogonal projection
for obtaining a low-order model minimizing square errors in the time-domain. Sinha and Pile (1971)
have proposed a method utilizing least squares fit with the samples of the response. Other criteria for
optimization have also been studied for the mentioned purpose i.e. Wilson [45], Sinha and Berezail
(1971), Bandler et al. [4], Hyland and Bernstein [17], Nath and San [31], San [39], Methods for
obtaining optimum low-order models in the frequency domain have been proposed by Langholz and
Bishtritz [21], Elliott and Wolovich [10], Haddad and Berntein (1985).

The third group of methods is based on matching some other properties of the responses. Chen
and Shieh [6] have shown that if the continued fraction expansion of a transfer function was truncated
it led to a low-order model with step response matching closely that of the original model of the system.
The main attraction of this approach lies on the fact that computation is simpler as compared with
methods in the earlier groups. The method of matching time moments proposed by Gibarillo and
Lees [13] is an other interesting one to the problem. Later Shemash (1974) has shown that these
method are equivalent and classified as Pade’ approximation. An important drawback of the methods
using pade’ approximation is that low-order models obtained may sometimes turn out to be unstable
even though the original one is stable. This led to the development of the Routh approximation
method by Hutton and Friedlan [16] for a single-input-single-output model, a multivariable version
of which was developed later by Sinha et al. (1980). Another solution is to combine aggregation with
the matching of time-moments to ensure the stability, Hickin and Sinha [15]. Bistritz and Lanholz
[5] have proposed a method for obtaining stable Chebyshev Pade’ approximation.

However, there are still some methods which do not belong to any of the above mentioned
groups. The singular perturbation methods proposed by Sannuti and Kokotovic [37] and balanced
matrix method is particularly useful whenever the system has two time-scale property. The states
are partitioned into “slow” and “fast” parts and the reduction is achieved by setting the derivatives
of the “fast” states to zero so that “fast” states can be eliminated. An important advantage of the
method lies on that the physical nature of the problem is preserved. Further, if necessary, the effect
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of the “fast” modes, which were neglected, can be determined by returning to the original system,
since all are not lost.

However, there are different difficulties with the method. The main difficulty lies on the fact
that how to determine an appropriate partitioning of the state vector modes “fast” and “slow” are
seldom decoupled making difficulty in deciding which state is related to which mode. Furthermore,
“fast” and “slow” are relatively defined only.

The balanced matrix method is based on simultaneous diagonalization to the same diagonal
matrix of the controllability and observability Gramians. The mentioned diagonalization permits
the original systems to be transformed to an equivalent “internally balanced” system. A low-order
model is then obtained by deleting the least significant eigenvalues contributing to the input/output
relationship of the transformed system, the internally balanced method has been also adopted to the
“closed loop” thinking system problem, Jonekheere and Silverman [20], Mustafa and Glover [30].

In the author’s opinion, the purpose of order-reduction models is relegated to utilization of the
low-order models for preliminary understanding and controlling the original system. The importance
of reduction hence, lies rather on preserving the physical significance of the modeled states in the
reduced version than on achieving the absolute minimum error. For this purpose, a provision would
be made for keeping information about the desired states of the original states in the reduced version.

The object of this paper is to describe a brief survey of the basic methods. This will be followed
by a presentation of recent work, one is of Hyland and Bernstein [17] and the other is of the author,
San [39], both are seen belonging to the second group developed on an optimum principle. From
the first-order necessary conditions for the optimization in the L, problem, Hyiand and Bernstein
have found the existence of an optimal projection which couples two modified Lyapunov equation
in the optimal projection equations (OPEQ). The significance of developing the first-order necessary
conditions for the Ly optimization of model reduction problem in the OPEQ form lies on the question
of multi-extrema since the coupling effect resulting within OPEQ can be seen to be the effect of an
additional constrained-condition to the L, problem. A sufficient condition is obtainable on satisfying
the Lo-limit and pre-assigned H., bound. However, a lot of difficulties of the OPEQ developed
by Hyland an Berntein especially on the computation point of view is removed by adopting the
state-optimization approach proposed by one of the author, San [39]. The author has found that
there exists a nonsimilarity transformation between the original model and reduced one and this
nonsimilarity transformation can be factorized in terms of a partial isometry. An optimal projector
has formed leading to a new form of OPEQ in the standard-like form of the Lyapunov equations.
The effect of factorization has been seen as if an other additional constrained-condition were used for
decoupling the modified Lyapronov equations. The significance of the author’s method lies on the
OPEQ developed preserving the desired state in the reduced version.

2. STATEMENT OF THE PROBLEM

Consider a linear, time invariant, multivariable system described by
z =AX + Bu,
y=Cz
where z € R"; U € RP; y € R?; A € R***"; B € R™*?; C € R?*",
The object of a reduction-order for model is to obtain the system of equations
z, =A,z, + Bru,

(2)

y =C,z,,
where z, € R"; r < n;y, € R?; A, € R™*"; B, € R"™*P; C, € RIX".
Such that y, is a close approximation to y for all inputs u(t) in some class of function.

3. ON THE BASIC METHODS
3.1. The aggregation method

Among the methods which retain the important eigenvalues of the original system in the reduced
model, the most general is the aggregation method proposed by Aoli [3]. It is based on the intuitively
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appealing relationship. ‘
w=Kz (3)

wherée K is an r X n constant projection matrix and is called the aggregation matrix. Equation (3)
is called the aggregation law. Differentating both sides of equation (3) and substituting for z from
equation (1), we obtain

w= KAz + LBu (4)

Comparison of equation (4) with equation (2) yields the following relationships between the
matrices in the two sets of state equations.

KA=A.K,
KB = B, (5)
C=C.,K,

where the last is only an approximate equality.

It is easily shown ([15]) that a nontrivial aggregation law exists if and only if the eigenvalues
of A, are a subset of the eigenvalues of A. The aggregation matrix is

K = DI, o]V, (6)

where D is any nonsingular 7 xr and V' is the modal matrix of A; the columns of V' are the eigenvectors
(generalized eigenvectors) of A. D is usually chosen so that K is a real matrix. In the particular case
when D is an identity matrix, A, will be obtained in the diagonal or Jordan form. The eigenvalues of
A, are those eigenvalues of A which correspond to the first r coumns of V. There is a natural choice
for K, such that K = V[[I, 0]]TD~!, (Lastman and Sinha 1983).

Some difficulties with the aggregation method are described below.

1) The determination of the reduced model requires the computation of the eigenvalues and
eigenvectors of the A-matrix, which may have a large dimension. Although good methods for such
computation exist, they require considerable amount of computer time.

ii) The d,c steady-state gain may not be preserved with the aggregation method, with the
result that step-responses of the original system and the reduced-order model differ considerably.
This mismatch in responses can be overcome by combining aggregation with moments matching [15].

iil) An important question in the aggregation method is how to select the eigenvalues. A
rational approach is to consider the total impulse response energy in the output of the system and
preserve those eigenvalues which contribute most. This criterion may also be utilized for deciding the
most suitable order of the reduced model. Commault [8] also uses unit impulses to obtain a measure
of the influence of each eigenvalue of A, for determining dominance. Another criterion for selection of
eigenvalues to be retained is the contribution of that mode to the time moments of the system [47].

iv) Another shortcoming of the aggregation method (and, indeed, of most other methods of
model reduction) is that the reduced states do not have a physical significance. This creates a problem
in case the reduced model is to be considered in conjunction with other parts of the system, where
the interconnections are through the states. This difficulty is overcome only partly by the singular
perturbation method and a method proposed by Rozsa, Sinha and Lastman (36|, Moore [29] also
proposed internal dominant concept.

3.2. Methods based on matching moments

Another approach to model reduction is based on matching time moments of the impulse
response of the original system with those of the reduced model. The continued-fraction expansion
method of Chen and Shieh [6] was the earlied method of this type, although the connection with
moment matching and Pade’ approximation was realized later (Samash, 1974). The generalized
version of this approach which is applicable to multivariable system has been proposed by Hichkin
and Sinha [15].

For the system represented by equation (1), the transfer function matrix is given by
G(s) =c(sI — A)"'B. (7

A formal Lauren series expansion of G(s) in that case is given by
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Gs) =D L™, (8)
=0
where J; =CA'B (9)

are called the Markov parameters of the system and are invariant under linear transformation of the
state.

If G(s) has no poles at the origin of the s-plane, we can obtain the following Taylor series
expansion

G(s) =) _ Ji§C+1), (10)
1=0
where J;=CA i+l p (11)

It may be noted that if g(t) is the inverse Laplace transform of G(s) then
/ t'g(t) = (1)1 (). (12)
0

where ¢ is a positive integer.

In other word J; are related to the time moments of the impulse matrix through a multiplicative
constant.

Combining equations (9) and (10), it is noted that

J_i=J;_1 forz>1 (13)

so that the term “generalized Markov parameter” may be used to include J;.

To determine a low-order model, the matrices A,, B, and C, are obtained such that a number
of generalized Markov pagameters are identical to these of the original system. It may be noted that
by matching time-moments one equates the steady-state responses to inputs in the form of power
series (steps, ramps, parabolic functions, etc.). On the other hand, matching Markov parameters
improves the approximation in the transient portion of the response.

The process of obtaining A,, B, and C, is called partial realization, a block Hankel matrix is
formed, consisting of the generalized Markov parameters.

JJ-k j—k+1 i J:}c+j-1

k) _ | TRt etz -kt

0 kB | (19
Jkiin k1 o ktits2

If 2 > o and j > [ are the observability and controllability indices of the system, respectively,
then the rank of H,;(k) is n, and a minimal realization of order n is easily obtained following reduction
to the Hermite normal form (Rozsa and Sinha 1974). If the process is stopped after r steps, where
r < n, one gets a partial realization matching the first ¢ generalized Markov parameters starting with
Jk, where

e e (15)

In view of the above, partial realization may be regarded as the generalization of Pade’ approx-
imation to the multivariable case.

The main drawback of all such methods is that the stability of the reduced model is not
guaranteed even though the original system is stable. Many methods have been developed to overcome
this problem. The most notable in this group is the Routh approximation method, developed by
Hutton and Friendland [16] for single-input-single-output systems. The multivariable version of this
method Chen [7] and Sinha et al. [41] obtains the characteristic polynomial of the even and odd parts
of the characteristic polynomial of the original system. This determines the matrices A, and B, in a
canonical form. The C, matrix is then obtained to match as many time moments as possible.

The main attraction of the methods matching time moments is that they require considerably
less computation. The drawback of the methods stands on the fact that there exists no direct
relationship between the states of the original system and those of the reduced-order model.



BRIEF ON ORDER-REDUCTION FOR MODELS: A CRITICAL SURVEY 5

3.3. Aggregation with moment matching

Since the aggregated model retains the dominant eigenvalues of the original system, its stability
is guaranteed if the system is stable. The steady-state responses of the model, however, do not nec-
essarily match with those of the original system. This can be remedied by obtaining an aggregated
model which matches as many time moments as possible. Not only does this give a better approx-
imation to the response while retaining stability, but it also has the projective relationship between
the states of the system and the reduce model. This is particularly useful if the latter is to be utilized
‘for design with state-variable feedback.

The procedure for obtaining an aggregated model matching some of the time moments is straigh-
forward. Since the matrix A, in the diagonal (or Jordan) form is determined entirely by the eigen-
values to be retained in the low-order the matrix bgp = kb. The elements of the matrix C, may now
be selected to match as many time moments as possible.

3.4. The singular perturbation method

This is an attractive approach for model reduction since the physical nature of the model is
preserved. It is based on partitioning the state vector into two parts, the “slow” and the “fast” part.
Hence, equation (1) may be rewritten as (where z, represent the “fast” modes)

An An||Xi|, |B
A21 A22 X2 Bz

T
T2

u. (16)

For a stable system, the “fast” modes decay much more quickly than the “slow” modes. So that
after the transient period it is a reasonable approximation to set derivative of z to zero. Consequently,
it is possible to eliminate z; from equation (16) to obtain

T = (All - A12A;21A21)I1 + (B - A12A2_2132)u. (17)

The reduced model represented by equation (17) can now be solved to obtain the states imme-
diately. If necessary, the effect of the “fast” modes, which were neglected, can also be determined by
returning to equation (16).

The main difficulty with this method is the problem of deciding the proper partitioning of the
state vector. It is further complicated by the fact that, in general, the states are not decoupled, so
that it is difficult to relate a particular state to a particular mode.

3.5. The balanced method

This method is firstly proposed by Moore [29], then is further developed by Perenbo and
Silverman (33| and Glover [14]. The method is based on the diagonalization simultaneously the
controllability and observability Gramians of system described by equation (1). The Gramian for
controllability and that for observability are defined as

oo
W, = / At BBT A"t gg (18)
0

Wy = / eATt 0T CeAtdt. (19)
0

If A is stability matrix (each eigenvalue of A has negative real part) and system described
by equation (1) is completely controllable and observable, then (18) and (19) are the unique real
symmetric positive definite matrix solution of the Lyapunov equations

AW, + W AT = —BBT, (20)
ATW, + WA = —CTC, (21)

Since W, is real, symmetric and positive definite, there exist an orthogonal matrix V. and a
diagonal matrix A, = diag (u1, 2, .. , 4n), Where gy > pg >=--- > u, > 0, such that

VIW.V, = A% (22)
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We now form the real symmetric positive definite matrix
W = (VoA) T Wo(VeAL) (23)
which can be diagonalized by PTW P = A where P is an orthogonal matrix and
A = diag (01,02, ....0,) (24)
with 0; > 02 > --- > 0, > 0. Then the nonsingular matrix
S =V A PA0? (25)

has the property that
(W(* = S7'W,(S~1)T =4,

(Wo)* = S™'W, = A, (26)

where (W,.)* and (Wj)* are the controllability and observability Gramians of the transformed system
¥ = A%z + B*u,
y =z, (27)
A*=S-'AS, B*S"'B, C*=CS.

The transformed system (27) is said to be internally balanced. If o, >> o¢41 in (24) then there
is an r-th order internally dominant subsystem in (27) [29,33]. An r-th order reduced model can be
obtained from (27); it is also balanced and has the form (2) with A, equal to the upper left r x r
block in A*, B, consists of rows 1 to r of B*, C, consists of columns 1 to r of C*. Because A is a
stability matrix, A, is also a stability matrix [29).

Note that the balanced reduced-order model is obtained by deleting the least controllable
and observable states from equation (27). Consequently, the states in the reduced-order model are
an approximation to the first r states from equation (27). A comparison between the balanced
matrix method and the aggregation method is given by Lastman et al. [22], where it was found,
from computational examples, that a properly chosen aggregation model can compare favorably with
an internally dominant balanced matrix model of the same order, provided the eigenvalues of the
aggregated model are truly dominant. Worst-case error analysis of the balanced method of model
reduction has been given in a more recent paper [25]. It was found that when the model and the
full-scale system are balanced, the computation for obtaining the error bounds is simplified.

In a recent paper, Prakash and Rao [34] have proposed a modification to Moore’s method
where the reduced-order model is obtained by approximating the state of the weak subsystem of the
balanced representation around zero frequency. This has the effect of reducing the spectral norm of
the modeling error at low frequencies.

3.6. Models using optimum approximation

Instead of obtaining the reduced model preserving the important eigenvalues of the original
system, one may like to relax this restriction and select the parameters of the reduced model of a
specified order in such a manner that its response to a given input is an optimum approximation, in
some sense, of the response of the original system to the same input. Alternatively, one may attempt
optimum approximation of the frequency response.

Several authors have proposed different methods of time-domain approximation. Anderson [1]
proposed a geometric approach, based on orthogonal projection, for obtaining the low-order model
which minimizes the integral square error. Sinha and Pille (1971) proposed utilizing the matrix
pseudoinverse for obtaining a reduced order model which minimizes the sum of the square of the
samples of the error between the responses. Other criteria for obtaining the optimum approximation
have also been proposed (Sinha et al., 1971; Banaler, et al. 1973; Bistritz and Lanholz 1979).
Elliott and Wolovich [10] have proposed a frequency domain model reduction procedure which is also
applicable to multivariable systems.

In general, the reduced order models obtaining using these methods provide a better match
than that obtained by aggregation. The use of efficient numerical optimization methods usually
reduces the computational requirements as well. However, there is no guarantee that these models
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will be useful for obtaining a near-optimal design of the controller. Furthermore, the states of the
reduced model are not directly related to the states of the original system.

3.7. Some remarks

a. Selection of states and/or eigenvalues to be retained

All the methods discussed above, with the exception of singular perturbation, suffer from the
drawback that the physical significance of the states is lost. This creates a problem when the original
system is a part of a larger system. Such a situation occurs quite often while modeling large-scale
power larger system of interconnected subsystems for the study of dynamic stability.

In view of the above, a method has been proposed (Rozsa et al., 1982; Lastman et al., 1983) in
which the components of the low-order model state vector formed a subset of the components of the
original state vector, so that the states of the reduced model retain their physical significance. The
choice of the state to be retained is made on the basis of the energy integral participation matrix.
Although the final procedure is similar to singular perturbation, it differs in the way to obtain the
reduced order model through actual of the “slow” (dominant) and “fast” (non-dominant) modes.

Like the aggregation method, the proposed method requires the computation of the eigenvalue
of A. One can assume that A is a stability matrix. Let

A=VAU, (28)

where the columns of V' are the right eigenvectors of A and the rows of U are the left eigenvector of
A. Corresponding to the eigenvalues of A, A is given by

A = diag (A1, A2, ..., An). (29)
The column vectors in V and U are scaled in such a manner that
VU = 1. (30)

In (29), the eigenvalues have order so that
0> Re (A1) > Re(A2) > ... > Re(An). (31)

If one assumes that all the inputs are unit impulses, it can be shown that the total energy at
the output is given by

E = / yT ydt = tr (PW), (32)
0

where P = CTC, W is an n x n matrix that has —bT U7 M;;Ub as its (z, 7)-th entry, b is the sum of

the columns of B, M;; is an n X n matrix that has v,(:)v.(,])/(/\“ + ),) as its (i, v)-th entry, and v(*)
is the 2-th row of V. _

Accordingly, the most significant states of the original system, to be retained in the reduced
model, correspond to the elements on the main diagonal of PW that have the largest magnitude.
This also indicates the dominant eigenvalues relative to their ordering in equation (31).

Once the most significant states and dominant eigenvalues have been determined, a reduced-
order model can be obtained. If the physical significance of the states need not be retained within the
low-order model, then the reduction methods discussed earlier can be used. However, if the physical
significance of the states must be retained then the reduction method given below can be used.

b. On the retaining of physical significance of the states

The physical significance of the state can be made retaining if the following partition of the
state vector would be possible (Rozsa et al., 1982; Lastman et al., 1983).

z = [wT 2T], where w(t) € R", 2(t) € R™", (33)

A= diag (A1, A2), where Ay = diag (A1, ..., Ar), A2 = (Ar41, .0y An), (34)
Un U12] [All Al?]

U: — e —=i] A: === 35

[Uzl Uszs A2 A2z ( )

B= [ﬁ—;], ¢ =[C1 Cal.
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In the above, U;;, A;; are r X r matrices, B; is r X p and C; is ¢ X r and the block have
appropriate dimensions. In equation (35), one does not assume the eigenvalue ordering of equation
(31); Ay1 consists of the most dominant eigenvalues as determined by the procedure described in the
previous section just as the states z, are the most significant states. The eigenvalues may have to be
renumbered from equation (31) in order to obtain equation (34).

The reduced model is of the same form as in equation (2), with

A, = A1y — A12U5,' Uy, (36)
B, = B; — A12U2_21A2_1(U2IBI + U22B»), (37)
C, =Cy — CU,'Us; . (38)

Lastman et al. (1983) have proved that the response of system described by equation (2) with
A,, B, and C, given in equation from (36) to (38) converges to the response of the system described
by equation (1) for any input u as approaching to infinity. This, except, for a transient phase, the
response of the reduced-order model obtained is a close approximation to the response of the original
system for all quasi-state inputs.

4. THE OPTIMAL PROJECTION EQUATIONS
4.1. The work of Hyland and Bernstein [17]

Lemma 1. Suppose Q, P e R™™ gre non-negative definite. Then QP 1s semissmple. Furthermore,
of rank of QP = r then there ezists G, ' € R™™ and positive semisimple M € R™" such that

QP = GTMT. (39)
Proof. See Hyland and Bernstein [17]; also generalization version is available in paper of San [39].

Theorem 1. Suppose (A,,B,,C,) € @ solves the optimal model-reduction problem. Then there
ezists non-negative definite matrices Q, P € R™ ™ such that, for some (G,M,T) factorization of
Q,P,A,, B, and C, are given by

A, =TAGT, (41)
B, =TB, (42)
C, = CG7, (43)

and such that with an optimal projection matriz 0 = GTT, the following condition are satisfied

p(0) = p(P) = p(QP) =, (44)
o[AQ + QAT + BVBT] =0, (45)
ATP+ PA+CTRC]o =0, (46)

where p(-) stands for the rank of (). Equations (45) and (46) are seen to be coupled each to other by
optimal projection matriz, hence they have been termed as modified Lyapunov equations, in which Q
and P have been called the controllability and observability pseudo gramians.

Proof. See Hyland and Berstein [17].

Proposition 1. Suppose (A,, B,, C,) 1s extremal. Then the model-reduction error is given by:

Jn(Ar, Br,Cr) = 2Tr[(QP — W.W,) A] = 2Tr[(QPA] + Tr[CT RCW,]
=2Tr[(QPA] + Tr[BVBTW,]. (47)

Proof. See Hyland and Bernstein [17].
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With respect to the work of Hyland and Bernstein different discussions are made as follows.

a. The optimal projection equations are seen to be simpler form for the necessary conditions for
the Lo-problem. The equation (45) and (46) can be computed only with some additional condition
for decoupling them.

b. These optimal projection equations are found to be applicable to a controllable and observ-
able system only. The fact hides behind it is that in the development of these equations, the constraint
conditions have got no alternative but to be used in the augments form which demands the system
to be an originally controllable and observable one. However, a system may actually consist of two
other parts namely unobservable and uncontrollable ones. Hence, the developed OPEQ are found to
have an impractical application. It is a desire to have the OPEQ independent of the nature of the
system.

c. The common opinion is that the importance of reduction lies rather on preserving the
physical significances of the modeled states in the reduction version than on achieving the absolute
minimum error as the reduced version is utilized for further investigation of the system with respect
to the modeled states. But the physical significances of the original states have been found losing
their traces in the reduced versions obtainable with the developed OPEQ. So, the development of
OPEQS a provision can be made for keeping information about desire states of the original system
in the reduced version.

d. It is seen from the proof of the theorem, a high complexity of mathematics involved in
the development of the result, especially some mathematical formulas for derivatives with respect to
matrix variables are not familiar to scientist.

All the above comments leading to the work of San [39].

4.2. The work of San [39]

Lemma 2. Let X,,, the state vector of a system, be given. Then there ezists always an r X n matriz
T, p(T) = r < n, which transforms the n states of the system to r independently specified states in
n,, the states of the system to r independently specified states in n,, the state vector of the optimal
reduced model. If the number q of the system outputs s less than r, then TT z, leads to the minimum
norm among the least-squares criterion on the output-error for model reduction.

Proof. See [39].

Lemma 3. Let the full row rank r x n matriz T, z € R(TT) and z, be given. Then there exists an
r X n partial 1sometryu E such that T 1s factorized as:

T=GE=FEH, (48)
where G and H are r X n positive definite and n-X n non negative definite matriz respectively.

Proof. See also in [39).

Theorem 2. For a given linear, time-invariant system of the order n, there ezists always a full
row rank r X n transformation T on the states of the system such that optimal parameters of the
reduced-order model are given as

A, = TATY; B, =TB; ¢.=CT".
Proof. See [39].

Theorem 3. There ezists an r X n partial isometry E and n X n nonnegative definite matriz H such
that the optimal parameters of the reduced-order model are accordingly given by:

A, = EHAHYET; B, =EHB; C,=CH"'E". (50)

Further, there ezists an n X n optimal projection matriz § and two n X n nonnegative definite matriz
Q and P such that if optimal model 1s to be controllable and observable, the following conditions are
then to be satisfied:

o[HA.Q+QATH + HB,V\BI H| =0, (51)
[HtAT + Pt A, HYH*H*CTR,C,H]o =0, (52)
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where Vi = Ezpectation (U, UT); Rz is a ¢ X g weighted matriz.
Proof. See [39].
Two modified Lyapunov equations (51) and (52) can be easily written as:
o[HAQ+QATHo +0HB,V, BT Ho| =0, (53)
[cH* AT + PT*A,H* o+ cH*CTR,C, H* 0o = 0. (54)

Proposition 2. Let optimal parameters of the reduced-order model obtained from equation (49).
Then the cost function 1s

Jn(Ar, Br,C;) = Tr[(I, — HtoH)T(CIR,C,)H* (I, — HYoH)]. (55)
Proof. See [39].

Numerical example. It is demonstrated in this example the advantages of the present method over
the existing one. The system considered by many authors for theirs comparison is of fourth order
having the parameters as

0 0 0 -150 4 0
. |1 0 0 -245 1 o
A4‘010-113’ B‘*‘o’ C‘*“o’
00 1 -19 0 1

and a second order model is the subject. _
Assuming due to some technical reasons one has a desire to retain a information about originally
modeled states of the system in the reduced model as

Ir = ::; zn:n-il— 3—(?522::"4? 0.01z,4 (57)
b . } 1 0 006 0 } (55)
0 1 0.05 0.01
which is a full row rank matrix. It is readily obtained
T+ — -0.9964134  -2.988867FE-4  0.0597848 -2.98867E-6 ‘T (59)
-2.988867E-4 0.9998754 4.997583E-2 0.9998754FE-2

Corresponding to which, the best approximate to the original state vector of the system
obtainable from the reduced one. If some one has a desire to get back as

T4, = 0.9964134z,, — 2.98867 E-4z5,,
Tao = -2.988867E-425; + 0.9998754z,,

(60)
T43 = 0.5978z,; + 4.997583E-22,,
T44 = -2.98867E-6z4; + 0.9998754 E-2z,, .
The parameters of the reduced-order model are obtained according to Theorem 4.2 as
A, — |4-684152E-2 -1.507612 B - |4 . — | -2:988867E-4 e (61)
27| 1.070463  -2.452044 |’ 27 1) 27 1 0.9998754E-2

This model has a pair of complex conjugate poles a real zero on the L.H.S. of the s-plane in

the transfer function, which is
F(s) _ 8.803206F — 3zs + 3.986389F — 2.
s2 + 2.405203zs + 1.498985
The impulse response of this reduced model can be computed and the error arised due to the

reduction can be estimated. This error is not expected to be absolute minimum as no desired in this
case.

(62)
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It can thus be concluded the proposed method does not depend on both the nature and the
eigenvalues of the original system. Hence, it is seen that the method enables filtering out the states
related with high eigenvalues to preserve the desire states of the original system in the reduced model.
However, the optimality in reduction is uniquely achieved due to the role of T7. The minimum error
resulted from the reduction, if it is a require, can also be made reachable by following a choice of T,
for which different suggestions are given below.

Suggestion of choing T:

a. Relationship with the result obtained by Wilson [45].

Hyland Bernstein expressed Wilson’s result for a narrow domain in optimal projection equations
and related these equations with the results obtained by Moore [29] and Skelton [42]. Thus, it is
sufficient to differentiate the present result with that obtained by Wilson.

The optimum reduced model obtained by Wilson are of the form:

Since the state space descriptions of the original system and reduced model are not unique, it
follows that and also lead to a solution of the reduction problem, where are respective nx n and r x r
arbitrary similarity noting that is a projector with rank r, a Il exists such that

= Iy 0O

It follows that (6, II) which can be verified by checking the four Moore-Penrose’s condition for
a pseudoinverse. The, by chosing Theorem 3.1 is obtained.

Different points to be noted on this occasion are in order. First, the result obtained by Wilson
cannot be obtained for a system consisting of unstable, even uncontrollable part, while the present
theorem does not deny for this. In the case of a controllable and observable where the result obtained
by Wilson can be applied, the present result also agrees well with this result. However, the straight-
forward, from the methodology point of view, is belonged to the state-optimization thinking. This
is the cause for a simple mathematical treatment to be involved in tackling the problem. Second,
the physical significances of the originally modeled states of the system are preserved in the reduced
model obtainable with the present method. Further one can pay attention on particular combination
of desired states in the reduced version for different purpose, while in the reduction achievable with
result obtained by Wilson there is no trace of the original modeled states. Third is on the usage
point of view. The result obtained by Wilson requires to carry an optimization after solving matrix
nonlinear equations with a guess on initial values of the parameters of the reduced model. The
convergence in soluting the said equatiops cannot be surely obtained. While, the present result is
simple to be applied requiring only an optimization to be carried out in regard the choice of T' for
obtaining the absolute minimum. Less effort will be required for an such optimization if T is properly
chosen.

b. Corresponding to the optimal parameters (49) of the reduced-order model (55) is
Jom = Trace [(I, — TTT)TX L(I, — T*T)], (65)

where ¥ = CT R,C,,, L = E(z,27) are both n x n symmetric matrix. It is seen that due to symmetric
property, indifferent of the nature of the original system, ¥ and £ are nonnegative definite matrices.
Then there exists an n X n nonsingularity matrix ® such that ¥, £ and T* T are diagonalised. That
is

A A O

}(:cp—l{a---g]cb, ,c:@—T[%A-%]@, T+T=<I>‘1{—O—---6]<I>, (66)

where the dimension of positive diagonal Ay and that of A, depend on p(C,) and the degree of the
controllable part of the system. ‘
As AyAp = Ay, one gets

Jom = Trace [Ayc(n —1)], (67)

where Ay p(n — r) is a nonnegative diagonal of order n — r having the n — r least eigenvalues of X L.
Corresponding to which T to be chosen as
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0 0
Tt T=1,-® 1 _... D, 68
=] (68)
where @ is known, hence T can be computed.

It is clearly seen from (64) that when the order of the controllable and observable part of the system
1s r, Jom = 0. The reduced model is exactly the said part of the system.

c. One tries for minimum cost function

©o
Jom = / (Yn — CnT* Tz,)T Royn — CuT+Tx,,) dt (69)
0

to be the absolute minimum. Derivating the above equation with respect to 77T and equating the
result to zero one gets

CoTtTz, =y, or TP = (CLC,)T Oyt (z,2T)* (70)

from which Tt T can be computed as z, C and y are known. Further, the absolute minimum can be
easily seen obtainable only with an orthogonal projector. That is,

/0 (9:Co T T2, )T C.T 2, dt = 0. (71)

Different ways for choosing T' may also be suggested. For example, as z, = Tz and y = Cz
are of the same form, the difference in both z and y of only in the dimension. Thus, one may choose
T = [CT ZT), where Z is (r — q) x n matrix. Then z, = [yZ (Zz,)T]. Performing T+ and a few
mathematical manipulation in substituting y, C, T and z, into the cost function, one may obtain
Z as a function of the available data of the system.

5. CONCLUDING REMARKS

A comparison of the various methods developed so far to 1995 for obtaining reduced-order
model for high-order, complex system shows their relative advantages and disadvantages. Where as
the projective nature of the aggregation method appears as an advantage for controller designed for
state feed back, the other methods prove better for different design criteria. All methods, except
for two, suffer from the disadvantage that the physical nature of the states is lost. The preservation
of the physical nature of the states retain in the reduced model is of great importance when the
model is obtained for a subsystem which is a part of larger system. It is a hope that out of the
method proposed by the author, some other promising approaches, especially the internally balanced
method, can be modified to preserve that physical nature of the modeled states. However, to retain
the data at the output side for a projective (trajectory) control problem, is to be considered, Nath and
San (1991), which is also belonging to the optimum methods group. So far, the state-optimization
approach proposed by the author have been further adopted to the closed-loop thinking, San and
Anh (1996). The same is for balanced method. It is from the author’s opinion that although great
deal of research work has been carried out the research for the most suitable method for model order
reduction is far from over, especially for non-linear system.

Hereby, the authors would like also to mention that even the concept of reduction for nonlinear
system is yet to be defined. Without a clear definition various different type of nonlinearity happened
to be in the reality physics leading to different treatment can not be thought of reduction for the
simpler treatment purpose.
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