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ON THE DESIRABILITY OF {l-ACYCLIC DATABASE SCHEMES

NGUYEN VAN DINH

Abstract. In this paper we study a subclass of acyclic database schemes, the w- acyclic database schemes and
someclosely related problems. We first prove that with this class given here, the notion of acyclic hypergraphs

used by graph theorists is equivalent to the notion, in the sense relevant to database theories. In the last of
the paper, new characterizations for the class of the w-acyclic database schemes are also given.

T6m tll.t. Trong bai bao nay, chung t6i nghien CUll m9t 16-p con cila cac hroc do CO' sO-dir lieu, d6 111, 16-p cac
hro'cdo CSDL w- phi chu irinh, Chung t6i da chtrng minh diro'c ding vo i lap nay thl khai niern phi chu trinh.
cua cac sieu do thj diro'c djnh nghia trong 1:9' thuyet do thi va trong 1:9' thuyet CSDL 111, tucng diro'ng. Phat
trie'ncac ket qua cda 1:9' thuydt do thj, chung t6i da du'a ra nhirng d~c trtrng m&icho 16-p cac hro'c do nay.

1. INTRODUCTION

Since 1979, Namibar K. K. is the first one, who presented the idea of using hypergraph as a
tool for the design of relational database schemes [8]. A database scheme is naturally viewed as
a hypergraph. If R. is a database scheme over U, then R. may be viewed as a hypergraph (U, R.).
That is, the attributes in R. are the nodes in the hypergraph and the relation schemes of R. are the
hyperedges.

For the first time, since 1981, the notion of acyclic database schemes was appeared in the study
of semijoins and the existence of a full reducer for a system for distributed databases (SDD-1) [10].
Then pairwise consistency (PC), total consistency (TC), the connection of fain tree and full reducer
of the database schemes were also studied [1], [3]' [4].

These studies showed that if a database scheme is cyclic then the management is difficult and
the cost is high. In addition, a cyclic database scheme may has redundancies and lossy [oins, but an
acyclic scheme has no above problems. In addition, it appears that queries whose hypergraph are
acyclic have a number of optimization algorithms that are simpler and more efficient than those one
in the general case. Thus, the acyclicity plays an important role on the database schemes; it is a
desirable property of database schemes.

There are many equivalent definitions for the notion of acyclic hypergraph, in the sense relevant
to database systems. However, none of these definitions is equivalent to the one generally used by
graph theorists. Hence, the direct application of results of graph theory for the database schemes is
very difficult. Some authors presented the new notions of acyclic hypergraphs to study a subclass of
database schemes, such as the l-acyclic database schemes [5]. In this paper, we consider a special
subclass of database schemes, in which request that the intersection of nondisjoinst pair of relation
schemes has only one attribute. We call this class the w-acyclic database schemes. We prove that for
this class the notion of acyclic hypergraphs used by graph theorists is equivalent to the definitions for
this notion, used in the database theories.

Up to the present, many characteristics of acyclic database schemes were found and there
exists some algorithms to test cyclicity of the database schemes, such as Graham algorithm, GYO
algorithm ... [7], [9]' [12].

In the last section of this paper, basing on the res ults of graph theory, we proved equivalence
of the new characterizations for the w-acyclic database schemes. The new characterizations showed
the relation between the number of attributes and the number of relation schemes on the w-acyclic
database schemes.
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2. HYPERGRAPHS AND DATABASE SCHEMES BACKGROUND

Some preliminary concepts about hypergraphs and acyclic database schemes presented in [2], [7], [9],
[12] are summarized in this part.

2.1. Hypergraphs and cycles. in a hyper graph

Definition 2.1. Let X = {Xl, X2, ... , X,,} be a finite set, and let C = {El' E2, ... , Em} be a family of
subsets of X. The family C is said to be a hypergraph on X if:

(1) s. ¥= 0 (i E I = {I, 2, ... , m});
(2) U e. = X.

iEI

The pair H = (X, C) is called a hypergraph. The elements Xl, X2, ... ,Xn are called the vertices
(or nodes) and the sets El, E2, ... ,Em are called the hyperedges.

H is reduced if no edge in C properly contains another edge and every node is in some edge. The
reduction of H, written RED(H), is H with any contained edges and non-edge nodes removed.

If it is clear when dealing with hypergraphs, we may use "edges" for "hyperedges".

Definition 2.2. In a hypergraph H = (X, C), a cycle of length q is defined to be a sequence
(Xl, El, X2, E2, , Xq, Eq, Xq+d such that:

(1) Xl, X2, ,Xq are all distinct vertices of H.

(2) El, E2, , Eq are all distinct edges of H.

(3) Xk,Xk+l E Ek for k = 1,2, ... ,q.

(4) q> 1 and Xq+l = Xl.
If only first three conditions of the definition are satisfied, this sequence is called a chain of length

q.
E,

A hypergraph H = (X, C) is an acyclic hypergraph
if H does not have a cycle; otherwise it is a cyclic hy-
pergraph.

Example 2.1. A cyclic hypergraph with a unique cycle
of length 4: (Xl, El, X2, E2, X3, E3, X4, E4, Xl)

2.2. Acyclic Database Schemes Fig. 1. A hypergraph

A database scheme is defined to be a set of relation schemes over a set of attributes U, written
R = {Rl' R2, ... , Rp}, wherein Rl, ... , Rp are relation schemes and U = Rl U R2 U ... U Rp.

A database scheme is naturally viewed as a hypergraph. Given a database scheme R =
{Rl' R2, ... , Rp} over U, its hypergraph , denoted HR. = (U, R), wherein the attributes in Rare
the nodes and the relation schemes of R are the hyperedges. We shall simply use H R. or R in place
of HR. = (U, R) when dealing with the hypergraph that R represents.

We shall be concerned mainly with database schemes that have no proper partition into two sets
of the relation schemes, such that they are disjoint. That mean its hypergraphs consist of a single
connected component and it is called connected hypergraph.

Example 2.2. In drawing hypergraphs, nodes are represented by their labels and hyperedges are
represented by closed curves around the nodes. The hypergraph for Ra = {ABC, ADE, BE} and
Rb = {ABC, AF E, EDC, AEC} are given in figures 2 and 3.
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Fig. 2. Hypergraph for HRa Fig. s. Hypergraph for HRb

Definition 2.3. Let H = (X, £) and H' = (X', [') be hypergraphs, wherein X' ~ X and [' ~ e,
then H' is a subhypergraph of H.

The X'-induced hypergraph for H, denoted HX" is the reduction of hyper graph (X', [XI), where:

Note that, Hx, is not necessarily a subhypergraph of H, since [XI may contain edges not in [.

Definition 2.4. Let H = (X, [) be a hypergraph. A set F ~ X is an articulation set for H if
F = EI n E2 for some pair of edges EI, E2 E [, and the induced hypergraph H{X-F} has more
connected compo,nents than H.

A block of hypergraph H is an induced hypergraph of H with no articulation set. A block is
trivial if it has only one edge.

Definition 2.5. Let H = (X, [) be a hypergraph, H is acyclic if it is reduced and has no nontrivial
blocks; otherwise it is cyclic.

A database scheme R = {RI' R2, ... , Rp} is cyclic or acyclic precisely when its hypergraph HR

IS.

Example 2.3. Consider the database scheme Ra = {ABC, ADE, BE}, its hypergraph shown in
figure 2, is a block, since it contains no articulation set. We conclude H R a is cyclic. Precisely, the
database scheme Ra is cyclic.

The database scheme Rb = {ABC, AF E, EDC, AEC} has its hypergraph which is acyclic (figure
3), so Rb is an acyclic database scheme.

Algorithm 2.1. The Graham Reduction Algorithm [6]
The Graham reduction algorithm consists of repeated application of two reduction rules to hyper-
graphs until neither can be applied further. Let H.= (X, [) be a hypergraph. The two reduction
rules are:
(1) rEo (edge removal): If E and F are edges in [ such that E is properly contained in F, remove

E from [. (when, said, E is removable edge in favor of F).
(2) rN. (node removal): If A is a node in X, and A is contained in at most one edge in [, remove A

from X and also from all edges in [ in which it appears.
We say the Graham reduction succeeds on hypergraph H if the result of applying the Graham

reduction algorithm to H is an empty hypergraph.

Theorem 2.1. The Equivalence Theorem for Acyclic Database Schemes [7]
Let R is a connected database scheme, the following conditions are equivalent:

(1) R is acyclic;
(2) Graham reduction succeeds on R;
(3) R has a join tree;
(4) R has a full reducer;
(5) PC (pair wise consistency) implies TC (total consistency) for R;
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(6) R has the running intersection property;
(7) R has the increasing [oin. property;
(8) RED(R) is a unique 4NF decomposition;
(9) The maximum weight spanning tree for R is a [oin. tree;
(10) MVD(R) F *[RI·
The proof of this theorem will proceed via a series of lemmas, and can be found in [71.

The first two equivalent conditions of this theorem show that hyper graph H R is acyclic if and
only if Graham reduction succeeds on HR. Thus, we can use condition (2) as a definition for acyclic
property of a hypergraph H R of database schemes R.

Example 2.4. Applying the Graham reduction algorithm to hypergraphs

_n-~------ - \D,\

/\ \
~ //' \ \"
_'",(2)< \r)

- ![!'.">

(~ \\
1. N ~~~., /\ ~
~ '~/ \r\/

(A

Q
~ '0 '{\

~~

,-1\1-- .:
Fig.4. R(' = {ABC,BCD,CE,DE}

//~~~~~'
//

D'~ A ~f N t/ r.t , r N. LN. r:-. r ~l_ r,=- ~ ==? =~)='I-
/

~:/ f .' C:: r "of"

Fig. 5. s; = {ABC, BCD, CDE}

The result of the Graham reduction algorithm to HRc is a nonempty hypergraph; thus this
hypergraph is cyclic (Fig. 4). Otherwise, hypergraph H R« is acyclic, since Graham reduction succeeds
on it. (Fig.5).

3. THE O-ACYCLIC DATABASE SCHEMES

In this section, we define a subclass of hypergraphs, the w-acyclic hypergraphs, and we shall
prove that with this class the notion of acyclic hypergraph used by graph theorists is equivalent to
this notion that used by database theorists. In the last of this section, basing on the results of graph
theory, we can prove two new characterizations for the w-acyclic hypergraphs.

We first prove lemmas and present examples to show that the notion of acyclic hyper graphs used
in graph theory is not equivalent to that one used in database theories.

Lemma 3.1. Let H = (X, C) be a hypergraph. H is acyclic (in the sense of Definition 2.2) only if
lEi n E]I < 1 for every pair of edges e; E] E e.
Proof. Suppose that H is acyclic, and assume the contrary, that there exists a pair of edges E, ::f E],
Ei, E] E e, such that, lEi n E]I > 1. Assume that {Xi, X]} ~ E, n E], thus there are Xi, X] in
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E, r1 Ej. Consider the sequence (Xi, Ei, Xj, Ej, X;). It is clear that this sequence satisfies conditions
(1) through (4) of Definition 2.2. Hence, it is a cycle of length 2. Thus H is cyclic. This contradicts
the hypothesis. The proof is completed. 0

Lemma 3.2. Let H R. = (X, C) be the connected hypergraph for a database scheme R. If the Graham
reduction algorithm does not succeed on H R. then the result of the Graham reduction algorithm on H R.

(the remaining part of H R.) has at least three distinct hyperedges and three distinct nodes.

Proof. Suppose the contrary, the remaining part of H R. has only two edges Ei, i= Ei,. Thus there
exists Xi, E Ei" Xi, tic Ei, and we can remove Xi, by rN. rule. Now Ei, ~ Ei1, and Ei, can be
removed by r E. rule. The remaining part of H R. has only one hyper edge and we can remove it. So,
H R. is empty, which contradicts the fact that the Graham reduction algorithm does not succeed on
HR..
Otherwise, if the remaining part of H R. has only two nodes, it can not have three distinct hyperedges.
The lemma is proved. 0

Lemma 3.3. Let H R. = (X, C) be the connected hypergraph for a database scheme R. If H R. is acyclic
according to the Definition 2.2 (said, G-definition) then it is acyclic according to the definition in
relational database theories (said, R-definition).

Proof. Suppose that HR. is acyclic according to Definition 2.2 (G-definition), we have only to prove
that the Graham reduction succeeds on H R., i.e. it is acyclic according to R-definition.

Assume the contrary, that the Graham reduction does not succeed on HR.. According to the
Lemma 3.2, the remaining part of H R. has at least three hyperedges and three nodes, namely Eil i=
Ei2 i= Ei3 and Xii i= Xi2 i= Xi3 (If it has more than three, the proof is similar). Each node Xij should
be in at least two hyperedges, because if not so, this node can be removed by the rN. rule of Graham
reduction. We always can build a sequence (Xil,Eil,Xi2' Ei2,Xi3,Ei3,Xi4) wherein Xij,Xij+l E Eij
U = 1,2,3). Thus we have Xi2 E EilnEi2 and Xi3 E Ei2nEi3. Since HR. is acyclic (by G-definition),
then by Lemma 3.1 applied to connected hypergraph H R. there exists lEi n Ej I = 1 for every pair of
edges of c. However, there is only Xi2 in Ei! n Ei2 and only Xi3 in Ei2 n Ei3, so Xi!, Xi4 should be in
Ei! n Ei3, once again apply Lemma 3.1, we have Xi! = Xi4. We see that the above sequence satisfies
the conditions of the Definition 2.2, thus it is a cycle of length 3. This contradicts the hypothesis
that H R. is acyclic.
The proof is completed. 0

Example 3.1. Consider the hypergraph H R.b (Fig. 2) for the database scheme Rb = {ABC, AF E,
EDC, AEC}. Since this hypergraph has the cycle of length 3 (A, {AFE}, E, {EDC}, C, {CBA}, A),
thus it is cyclic according to the Definition 2.2. On the other hand, it is easy to verify that the
Graham reduction succeeds on HR.. Hence, the notion of acyclic hypergraphs used by graph theorists
is not equivalent to the definitions for the notion, used in the database theories.

Definition 3.1. Let H = (X, C) be a hypergraph. H is called w-hypergraph if IEinEjl :S 1 for every
pair of distinct edges Ei, Ej E C.

If an w-hypergraph H is acyclic (cyclic, respectively) then H is called w-acyclic (w-cyclic, respec-
tively) hypergraph.

A database scheme R is w-acyclic (w-cyclic, respectively) if the hypergraph for R is w-acyclic
(w-cyclic, respectively).

The following theorem will show that with w-hypergraph the notion of acyclic used by graph
theorists is equivalent to that used by database theorists.

Theorem 3.1. Let H = (X, C) be a w-hypergraph, then the two following conditions are equivalent:
(1) H is acyclic according to the G-definition in graph theory;
(2) H is acyclic according to the R-definition in database theories.

Proof. The proof will proceed via following steps:
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(1) => (2) The proof is immediate from Lemma 3.3.
(2) => (1) Suppose that H is acyclic according to the R-definition, thus the Graham reduction
succeeds on hypergraph H. We have to prove that H is also acyclic according to the G-definition,
i.e. H does not have a cycle. Consider an arbitrary chain (Xl, EI, X2, E2,.... , Xq, Eq, xq+d of H, we
need only show that Xl I- xq+l. Suppose the contrary, that Xl = Xq+l. This chain should satisfies
the conditions (1), (2), (3) of the Definition 2.2, so we have:

Xi E Ei-l n Ei, for i = 2,3, ... ,q.

Otherwise, Xq+l = Xl EEl,

Xl = Xq+l E Eq.

Hence, we get
Xl EEl n Eq•

It is clear that each Xi (i = 1,2, ... ,q) belongs to at least two edges, thus no Xi can be removed from
this chain. This contradicts the hypothesis that the Graham reduction succeeds on hypergraph H.
The theorem is proved. 0

The next theorem will be fundamental in this paper.

Theorem 3.2. Let R, = {Rl' R2, ... , Rp} be a connected database scheme over the set of the attributes
U. The following conditions are equivalent:

(1) R, is w-acyclic;
(2) I: (IR;I- 1) = fUl- 1;

l::oi::op
(3) I U Ril > I: (lRil- 1), for any J c 1= {1, 2, ... ,p}, J I- 0.

iEJ iEJ

Proof. Let HR be the hypergraph for database scheme R,. The proof will proceed via following steps:
(1) {} (2) Consider the bipartite graph G (H R) whose nodes represent the nodes and hypered ges

of H R, wherein the nodes that representing Xj E U is joined to the nodes representing R; if and
only if Xj E Ri. Hence, the number of the nodes of G(HR) is I: IRil. For example, let R, =

l::oi::op
{AB, BCD, CE}, said Xl, X2, X3, X4, Xs are nodes which represent the attributes A, B, C, D, E and
e I, e2, e3 are nodes which represent the relation schemes RI = (A B), R2 = (B CD), R3 = (C E).
Then the bipartite graph G(HR) for HR is:

Xl X5

Fig. 6. Graph G(HR)

It is clear that hypergraph HR is acyclic if and only if G(HR) is a tree, this condition is equivalent
to the following condition 2: IRil = IUI+ p - l.

l::oi::op

i.e. 2: (1R;1-1) = fUl-l.
l::oi::op

(1) {} (3) +(if) Suppose that the condition (3) is satisfied, we have to prove HR is acyclic. Assume
the contrary, that HR is cyclic, i.e. it has a cycle of length q (q < p) (Xl, RI, X2, R2, ... , Xq, Rq, Xq+l),
wherein Xl = Xq+l, let J = {1, 2, ... , q}. We have:
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I Us; I = I U(Ri - {Xi}) I ::; L In; - {Xi} I = L (Is. I - I).
iEJ iEJ iEJ iEJ

This inequality conflicts with the condition (3), so HR is acyclic.
+(only if) Now we suppose that HR is acyclic. Therefore, an arbitrary subhypergraph {~Ii E J} c
R, is acyclic. According to the condition (2), we have:

iEJ iEJ iEJ

The theorem is proved. o
Example 3.2. Consider the database scheme Ra = {ABC, ADE, BE}. Its hypergraph is showed in
figure 2. We have WI = 5; Rl = (ABC), R2 = (ADE), R3 = (BE). It is clear that Ra is connected
and I~ n Ril ::; 1 for i =1= j. Otherwise, we have 2:(I~1 - I} = 2 + 2 + 1 = 5 > WI - 1, so the
condition (2) of Theorem 3.2 is not satisfied. Hence, Ra is cyclic.

Example 3.3. Consider the database scheme Re = {AB, BCD, DE, CF}. We have WI = 6,
Rl = (AB), R2 = (BCD), R3 = (DE), R4 = (CF). It is clear that R« is connected and l~nRil ::;1
for i =1= j. Otherwise, we have 2:(IRil - I} = 1 + 2 + 1 + 1 = 5 = WI - 1, so the condition (2) of
Theorem 3.2 is satisfied. Hence, Ra is acyclic.
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