Tap chf Tin hoc va Diéu khién hoc, T.17, S.3 (2001), 48-52

ON THE MINIMAL FAMILY

VU DUC THI

Abstract. Equivalent descriptions of family of functional dependencies (FDs) play important role in the
design and implementation of the relational datamodel. In this paper, we introduce the new concept of
minimal family. We prove that these families are equivalent descriptions of family of FDs.

Tém tdt. Nhirng sy md td twong dwong cia ho cidc phu thudc ham cé vai trdo quan trong trong viéc thiét
ké& va viéc thuc hién mé hinh di liéu quan hé. Trong bii ndy, chiing t&i trinh biy khéi niém méi vé ho cuc
ti€u. Chiing t6i chimg minh ring nhirng ho niy 1i nhitng md td twong dwong cda ho cic phu thudc him.

1. INTRODUCTION

It is known [1,4- 8,14, 17] that closure operations, meet-semilattices, families of members which
are not intersections of two other members give the equivalent descriptions of FDs, i.e. they and
family of FDs determine each other uniquely. These equivalent descriptions were successfully applied
to find many desirable properties of functional dependency. Equivalent descriptions of family of FDs
have been widely studied in the literature. In this paper, we investigate the minimal family. We show
that it is equivalent description of family of FDs.

Let us give some necessary definitions and results that are used in next section. The concepts
given in this section can be found in [1,2,4,6,7,8,17].

Let R = {ai,...,an} be a nonempty finite set of atributes. A functional dependency (FD) is a
statement of the form A — B, where A, B C R. The FD A — B holds in a relation r = {hy,..., hsn }
over R if V h;,h; € r we have h;(a) = h;(a) for all a € A implies h;(b) = h;(b) for all b € B. We also
say that r satisfies the FD A — B.

Let F, be a family of all FDs that hold in r. Then F' = F, satisfies
() A—-A€eF,

(2)(A—-BeF, B—»CeF)=(A—CE¢cF),
83)(A—-BeF, ACC, DCB)= (C—DEgeF),
(4)(A—-BeF, C—-DeF)= (AUC—-BUDEF).

A family of FDs satisfying (1) - (4) is called an f-family (sometimes it is called the full family)

over R.

Clearly, F, is an f-family over R. It is known [1] that if F' is an arbitrary f-family, then there
is a relation r over R such that F, = F.

Given a family F' of FDs, there exists a unique minimal f-family F* that contains F'. It can be"
seen that F'* contains all FDs which can be derived from F by the rules (1)-(4).

A relation scheme s is a pair (R, F'), where R is a set of attributes, and F is a set of FDs over R.
Denote AT = {a: A — {a} € F*}. A" is called the closure of A over s. It is clear that A —» B € F*
iff BC AT,

Clearly, if s = (R, F) is a relation scheme, then there is a relation r over R such that F, = F*t
(see [1]). Such a relation is called an Armstrong relation of s.

Let R be a nonempty finite set of attributes and P(R) its power set. The mapping H : P(R) —
R) is called a closure operation over R if for all A, B € P(R), the following conditions are satisfied:

3) H(H(A)) = H(A).
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Let s = (R, F) be a relation scheme. Set H,(A) = {a: A — {a} € FT}, we can see that H, is a
closure operation over R.

Let r be a relation, s = (R, F) be a relation scheme. Then A is a key of r (a key of s) if
A— ReF, (A— ReF'). Ais a minimal key of r(s) if A is a key of r(s) and any proper subset
of A is not a key of r(s).

Denote K, (K,) the set of all minimal keys of r (s).

Clearly, K,, K, are Sperner systems over R, i.e. A, B € K, implies A Z B.

Let K be a Sperner system over B. We define the set of antikeys of K, denoted by K~!, as
follows:

K'={ACR:(BeK)=— (BZ A)and (Ac C) = (3B€ K)(B C C)}.
It is easy to see that K ! is also a Sperner system over R.

It is known [5] that if K is an arbitrary Sperner system over R, then there is a relation scheme
s such that K, = K.

In this paper we always assume that if a Sperner system plays the role of the set of minimal keys
(antikeys), then this Sperner system is not empty (doesn’t contain R). We consider the comparison
of two attributes as an elementary step of algorithms. Thus, if we assume that subsets of R are
represented as sorted lists of attributes, then a Boolean operation on two subsets of R requires at
most |R| elementary steps.

Let L C P(R). L is called a meet-irreducible family over R (sometimes it is called a family of
members which are not intersections of two other members) if V A, B,C € L, then A = BN C implies
A=Aor A=C.

Let I C P(R), ReI,and A,Be€ I = AN B e I. Iis called a meet-semilattice over R. Let
M C P(R). Denote M* = {nM': M' C M}. We say that M is a generator of I if MT = I. Note
that R € M+ but not in M, by convention it is the intersection of the empty collection of sets.

Denote N={Aecl:A#n{A' €I:AcC A'}}.

In [5] it is proved that N is the unique minimal generator of I.

It can be seen that N is a family of members which are not intersections of two other members.

Let H be a closure operation over R. Denote Z(H) = {A : H(A) = A} and N(H) = {A €
ZH):A#n{A' € Z(H) : Ac A'}}. Z(H) is called the family of closed set s of H. We say that
N(H) is the minimal generator of H.

It is shown [5] that if L is a meet-irreducible family then L is the minimal generator of some
closure operation over R. It is known [1] that there is an one-to-one correspondence between these
families and f-families.

Let r be a relation over R. Denote E, = {E,; : 1 <1 < j < |r|}, where E;; = {a € R: h;(a) =
h;(a)}. Then E, is called the equality set of r.

Let T, = {A € P(R) : 3E;; = A, BEp, : A C E,;}. We say that T, is the maximal equality
system of r.

Let r be a relation and K a Sperner system over R. We say that r represents K if K, = K.

The following theorem is known [7].

Theorem 1.1. Let K be a non-empty Sperner system and r a relation over R. Then r represents K
iff K~1 = T, where T, 1s the mazimal equality system of r.

Let s = (R, F) be a relation scheme over R, K, is a set of all minimal keys of s. Denote by K !
the set of all antikeys of s. From Theorem 1.1 we obtain the following corollary.

Corollary 1.2. Let s = (R, F) be a relation scheme and r a relation over R. We say that r represents
sif K, = K,. Then r represents s iff K; ! = T,, where T, is the mazimal equality system of r.

In [6] we proved the following theorem.
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Theorem 1.3. Let r = {hy, ..., hm} be a relation, and F an f-family over R. Then F, = F iff for
every AC R
N E; +f3E;€E. :ACE,;,
Hp(A) = ASEy
R otherwase,
where Hp(A) = {a € R: A — {a} € F} and E, 1is the equality set of r.

Theorem 1.4. (3] Let K = {K;,...,K,, } be a Sperner system over R. Set s = (R, F) with F =
(K, > R,...Kmn — R}. Then K, = K.

2. MINIMAL FAMILY

In this section we introduce the new concept of minimal family. We show that this family and
family of FDs determine each other uniquely.

Now we introduce the following concept.

Definition 2.1. Let Y C P(R) x P(R). We say that Y is a minimal family over R if the following

conditions are satisfied:

(1) V(A,B),(A",B')eY: ACBCR,AcC A implies BC B', A C B' implies B C B'.

(2) Put R(Y) ={B:(A,B) € Y}. For each B € R(Y) a3 C such that C ¢ B and AB' € R(Y) :
C Cc B'C B, there is an A€ L(B) : AC C, where L(B) ={A:(4,B) €eY}.

Remark.
- Re R(Y).
- From A C B’ implies B C B’ there is no a B' € R(Y) such that A € B’ C B and A = A’ implies
B = B
- Because A C A’ implies B C B’ and A = A’ implies B = B', we can be see that L(B) is a
Sperner system over R and by (2) L(B) # 0.

Let I be a meet-semilattice over R.

Put M*(I) ={(A,B):3Ce€l:AcC,A#n{C:Cel,AcC},B=n{C:Cel,AcC}}.
Set M(I) = {(A,B) € M*(I) : A(A',B) € M*(I) : A’ C A}.

Note that if C € I, then C is an one-tern intersection. It is possible that A = 0.

It can be seen that for any meet-semilattice I there is exactly one family M (I).

Theorem 2.2. Let I be a meet-semilattice over R. Then M(I) 1s a minimal family over R.
Conversely, if Y 1s a minimal family over R, then there 1s ezactly one meet-semilattice I so that

M(I)=Y, where I={C C R:V(A,B)€Y : AC C wmplies BC C}.

Proof. Assume that I is a meet-semilattice over R. We have to show that M(I) is a minimal family
over R. It is obvious that A ¢ B C R.

From B' = n{D : D € I, A' C D}, we have B' C D. If A Cc B', then A C D and by
B=n{C:Ce€I:AcC C} weobtain BC B'. By A(A",B) € M*(I) : A' C A and from
A' C A C B implies B’ C B we can see that if A’ C A then B’ C B. Thus, we obtain (1). Clearly,
L;(B)={A:(A,B) € M(I)} is a Sperner system over R.

If there is a B € R(M(I)) and D satisfying D C B and VB' € R(M(I)) : D c B', B' C B imply
B = B’, then for all A€ L;(B): AZ D ().

It can be seen that D #N{C:Ce€I,Dc C}and B=nN{C:CeI,Dc C}.

If L;(B)UD is a Sperner system over R, then by definition of M(I) we have D € L;(B). From
(*) this is a contradiction.

If there exists an A € L;(B) : D C A, then this conflicts with the definition of M(I). Thus, we
have (2) in Definition 2.1. Consequently, M () is a minimal family over R.
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Conversely, Y is a minimal family over R. Clearly, [ is a meet-semilattice over R. It is obvious
that (A, B) € Y implies A ¢ I.

Now we have to prove that M(I) = Y. Assume that (4,B) € Y. By (1) in Definition 2.1.
V(A',B') €Y : A' C B implies B’ C B. From this and definition of I we obtain B € I.

According to definition of I there is no C' € I such that A ¢ C C B. On the other hand,
A C B and B is an intersection of C, where C € I, A c C. Thus, B=n{C:C € I,A C C} and
A#n{C:C eI, Ac C}. Hence, (4,B) € M*(I) holds.

Clearly, if A = 0 then (A, B) € M(I). Assume that A # @ and (A’, B) € M*(I). It is obvious
that by the definition of M*(I) A’ C B and AB': A’ C B’ C B. By (2) in Definition 2.1 there is
an A" € L(B) : A" C A'. Because L(B) is a Sperner system over R and A € L(B) we have A’ ¢ A.
Thus, (A4, B) € M(N) holds.

Suppose that A C R and A ¢ I. Based on the above proof, B € R(Y) implies B € I. Clearly,

R € R(Y). Consequently, for A there is a B € R(Y) such that A C B ().
We choose a set B so that |B| is minimal for (*x),i.e. AB'€ R(Y): A C B’ C B. According to (2) in
Definition 2.1 there exists an A' € L(B) : A’ C A. If thereisCel: AcC C C B, then A' C C C B.
This conflicts with the definition of I. Consequently, for all C' € I and C' # B, A C C implies B C C.
From this and according to the definition of M*(I) (A, B) € M*(I) implies B € R(Y).

Assume that (A, B) € M(I). By the above proof, B € R(Y) holds. We consider the set L(B) =
{A": (A", B) € Y}. According to definition M(I) we have A € B and AB' € R(Y): A C B' C B.
By (2) in Definition 2.1 there is an A’ € L(B) such that A’ C A. If A’ C A, then according to the
above proof (A, E) € Y implies (A’, B) € M(N). A’ C A contradicts the definition of M(N). Thus,
A" = A holds. Consequently, we obtain (4, B) €Y.

~ Suppose that there is a meet-semilattice I’ such that M(I') =Y. We have to show that I = I'.
By definition of M(I') E € I' implies E € I. Thus, I' C I holds. Suppose that there is a D € I and
D ¢ I'. According to the definition of meet-semilattice R € I'. Put D" =nN{E eI : D C E}. By
D ¢ I' we have D C D". According to M*(I') (D,D") € M*(I'). From definition of M (I') there is
aD' :D' CDand (D', D") € M(I'). Thus, D' C D c D" holds. This conflicts with the fact that
D e I. Hence, I = I' holds. The theorem is proved.

It is known [1] that there is an one-to-one correspondence between families of FDs and meet-
semilattices and by Theorem 2.2 we obtain the following.

Proposition 2.8. There 1s an one-to-one correspondence between minimal families and famalies of

FDs.
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