
T,!-p chi Tin tioc va Di'eu khifln hoc, T. 17, S.2 (2001), 39-44

THE AUTOMATA COMPLEXITY
OF THE LANGUAGE TRANSFORMATION SCHEMA THAT CONTAINS

OPERATIONS WITH RESTRICTED DEGREE

NG UYEN VAN DINH

Abstract. In accordance with the concept of automaton with the output we have built the language transfor-
mation schema E (see [6]). In this paper we study the relation between the automata complexity g(E), the
number of essential vertices lEI and the depth of operations 5 on a language transformation schema. The esti-
mation of the automata complexity of a language transformation schema that holds operations with restricted
degree is also given.

Tom t~t. Du'a tren kh ai n iern 0 to mat co loi ra, ta xay dung oU"<!C1U"<)"c00 bien oo'i ngori ngir (BDNN) [6].
Khi cac 1U"<!c00 BDNN chira cac ph ep l~p khOng han che thl oi? ph ire tap 0 to mat cua no khong phu th uoc
vao so ph ep l~p v a oa d u'o'c danh gia bd·i [6]' nhirng khi so ph ep l~p, cling nhu· mot so phep totin kh ac nhu·
ph ep lily cac c~p tjr chRn, lily cac c~p t ir le , ph ep bo' sung ... , co b~c bi h ari cM thl oi? ph ire tap 0 to mat cd a
cac hro'c 00 BDNN se ph u th uoc vao oi? sau o~t dilu (b~c) cd a cac phep toano

Bai nay trinh bay moi lien h~ giira oi? ph u'c tap 0 to mat, so dinh cot yeu va oi? sau o~t dfi u cac ph ep
toin cila mot lu'o'c 00 BDNN co chira cic ph ep toin co b~c ducc han che.

1. INTRODUCTION

Using notation £ = X X Y, wherein X = {Xl,X2, ... ,Xn} is input alphabet of source (original)
language, and Y = {Yl, Y2, .. ·, Ym} is output alphabet of target (final) language. An automaton with
the output, M = (S, X, Y, 50,5, A, F), recognizes a language on the input alphabet, symbolized Tg ,
and transforms it into another language on the output alphabet, that is symbolized Tv . This language
transformation is due to automata mappings, on which the lengths of words are completely preserved.
(See [6]). In brief, the automaton M recognizes a language pair R = (Tx, Ty). Corresponding to
automaton with the output M, we can build the language transformation schema equivalent to M,
which also recognizes the same language pair with the initial automaton. (See [6]). When the language
transformation schema holds unrestricted repetitions, its automata complexity does not depend on
the number of the repetitions and has been appraised by [6]. However, if the number of the repetitions,
as well as another operations: creat ing even word pairs, odd word pairs or complement ... have limited
degrees, the automata complexity of the language transformation schema will be reliant on the depth of
operations. This paper is to analyze evaluate the automata complexity of a language transformation
schema that contains operations with restricted degree.

2. PRELIMINARY CONCEPTS

Some preliminary concepts about the language transformation schema presented in [6] are sum-
marized in th is part. In addition, new relating concepts will be separately described. The language
pair (Tx, Ty) on the dual alphabet £ = X x Y, denoted R, and R'" is pair of repeated language
with degree m of Tx and Tv . The subset of R, con t.ains word pairs with either even or odd lengths,
denoted erR) or 0 (R), respectively. The set of all initial parts of word pairs, of which lengths are
at most 5, denoted){(R, s).

The language transformatwn graph on the dual alphabet £ = X x Y is a directed graph G, in
which, a particu lar vertex called entry vertex, denoted a(G), and a nonempty set of vertices called the
set of final vertices, denoted F' (G), and we denote the set of all vertices as A(G). Initial vertex and

40 NGUYEN VAN DINH

final vertex of an edge a are denoted a(a) and ,8(a), respectively. On each edge a of the graph Gis
labelled by a group of word pairs on the dual alphabet .c, this group is denoted Mc(a). Suppose that
every edge al, a2, ... , at (t 2: 1) is a certain path in G and T; E Mr, (a;) is word pairs corresponding
to edge a, (1 ::; i ::; t), then word pairs Tl T2 ... Tt are considered is created by this path. We denote the
set of all word pairs generated by path initiating from vertex a and ending at vertex ,8 as N G (a,,8).
The set Nr, (a,,8) is inductively defined as the following principles:

1. A = (c,c), wherein e is an empty word of X* and Y*.
2. If X, Yare word pairs, wherein X E Nn(a, /,), and "t = a(a), ,8 = ,8(a), Y E Mn(a) then

XY E Nr.(a, ,8).

Definition 2.1. The language transformation schema ~ on the dual alphabet .c = X x Y is a range
of the language transformation graphs on .c:

~ = (Gl, G2,···, Gn),

and on this range, we build a function mB(a), defined on the set of all edges of all graphs Gi

(1 ::; i::; n) and satisfied the following conditions:

1. For a certain edge a of C, (1 ::; i ::; n), the function mB(a) is satisfied one of following standards:

1.1. mB (a) = A and Mn, (a) = A, then a is called an empty edge.

1.2. mda) = (x, y) E .c and Me;, (a) = {x, y}, then edge a notes a pair of symbols (x, y) and edge
a is called essential edge.

1.3. mB(a) = G) (1 ::; J ::; n - 1) and Mn, (a) = C(N(G)))' then edge a is stated to depending
on graph G) and is called an even edge.

1.4. mB (a) = Gk (1 ::; k ::; n - 1) and MG, (a) = 0 (N(Gk)), then edge a is stated to depending
on graph Gk and is called an odd edge.

1.5. mB(a) = C; (1::; r::; n - 1) and Me, (a) = NS(Gr), then edge a is stated to depending on
graph G; and is called repeated edge with degree s.

1.6. mB (a) = Gt (1 ::; t ::; n - 1) and Mr., (a) = N(N(Gt}, s), then edge a is stated to depending
on graph Gt and it is called complement edge with degree s.

2. Each graph G l, G2, ... , Gn-l has one and only one edge of graph Gn depending on. Graph Gn

called a base graph.

3. Graphs Gl, G2, ... , Gn have no common vertex.

Gn is called the base graph of the language transformation schema. If ~ contains only one graph,
this unique graph is also signed ~, and called a simple language transformation schema. The set of
word pairs N(Gn) is considered to be created by ~, and denoted N(~). We at times use Nx(~)
and Ny (~) to denote separately the set of origin and the final words defined by~. Obviously,
N(~) ~ Nx(~) x Ny(~).

The vertex a of graph G is called an essential vertex if it is entered by at least one essential
edge. The number of essential vertices of graph G is signed IGI. The number of essential vertices of
all graph belong to ~ is signed I~I. We state that graph C, depends on graph G) if it contains some
edge depending on graph G).

Definition 2.2. For the language transformation schema, the depth of operations, denoted l(~),
and determined as follow:

Let a is an unintentional edge of graph G; (1 ::; r ::; n), then the depth of operations of a is
signed l (a), and we define the depth of operation in G by the formula:

LtG) = maxl(a),
<LEr.

wherein l(a) is inductively determined as follows:

1. If a is an even edge, odd edge, repeated edge with degree n or complement edge with degree s
and a depends on graph G) (1 ::; j ::; i), and l(G)) has been defined, then:

l(a) = L(G)) + 1.

THE AUTOMATA COMPLEXITY OF THE LANGUAGE TRANSFORMATION SCHEMA 41

2. For the remaining cases, l(a) = O.
The equation l(~) = I(Gn) is admitted.

Definition 2.3. Possible minimum number of states of an weak deterministic finite automaton
with output (see [6]) which recognizes N(~), is called the automata complexity of the language
transformation schema ~, and denobed g(~).

3. THE RESULTS

In this part, we will prove a theorem so that to appraise the automata complexity g(~) of the
language transfor;mation schema ~ which depends on the number of essential vertices I~I and t.he
depth of operation s.

Firstly, we prove some lemmas.

Lemma 3.1. For every simple language transformation schema ~J there exists an weak deterministic
finite automaton with the output A, such that:

T(A) = N(~) and IAI :S 21EI + 1.

Proof. As ~ is a simple language transform schema, thus, according to [6]' it is possible to build an
automaton with output, M = (5, X, y, so, 8,.A, F) as follows:

- 5: the set of states of automaton M, includes all vertex signs of ~.
- Entry vertex sign of ~ is regarded as initiating state So of automaton M.
- The set of final vertices of ~ is admitted to be a set of final states of M.
- State transitional function 5 : 5 x ~ -+ 5 of automaton M is determined: Vs E 5, Vx E X then

8(s, x) = {Sil, Si2, ... , sid {} Vi with 1 :S J' :S t then: z E Nx [s, SiJ)' SiJ E 5.
- The output function .A : 5 x X -+ Y of automaton M is determined: Vs E 5, Vx E X then

.A(s, x) = Y E Y, wherein y is an element corresponding to x in the pair (x, y) which is written in the
edge (s, 5(s, x)) of the simple language transformation schema ~.

- The input and output alphabet X, Y of the simple language transformation schema ~ are
considered as the input and output alphabet, respectively, of automaton M.

In this way, it is obviously that Tx(M) = Nx(~) and Ty(M) = Ny(~). Indeed, we have build
an automaton M that recognizes the same language pair with the simple language transformation
schema ~.'

With automaton M, using algorithm and determinazing automata program [7], we can build an
weak deterministic finite automaton with output A that equates to M (i.e. automata A recognizes
the same set of word pairs with automaton M). In addition, as the results in [2], then:

T(A) = T(M) = N(~) and IAI :S 21MI + 1 = 21EI + 1.
Thus, the lemma is proved. o
Lemma 3.2. For every simple language transformation schema ~J there exists another simple schema
~' J such that:

N(~/) = [(N(~)) and I~/I :S 21~1·
Proof. 1. Builds sdiema ~o: This schema includes two vertices Qo and Ql' Vertex Qo is entry as well
as final vertex of ~o. From Qo to Ql and conversely from Ql to Qo, there are just right n edges on
each of which, one of symbols from the dual alphabet C = X x Y is written, and two different edges
are written with two different pairs of symbols. Thus, the schema ~o just right two essential vertices,
i.c, I~ol = 2, and N(~o) contains word pairs whose lengths are even.
2. Build schema ~/: We regard ~' as an intersection of schemas ~o and ~, as ~' is the intersection
of simple schemas, according to the results of [6]' the conclusion is:

N(~/) = N(~o) n N(~) and I~/I :S l~ol.I~1 = 2·1~1·
Obviously, N(~/) is a set of word pairs possessing even lengths.

42 NGUYEN VAN DINH

The lemma has been proved. o
Lemma 3.3. For every simple language transformation schema E, there exists another simple schema
E', such that:

N(E') = 0 (N(E)) and PI < 21EI.

Proo]. 1. Builds a schema E1: This schema is structured the same as Eo, except ao is input vertex,
whereas al is unique final vertex. From ao to al and conversely from al to ao, there are just right
n edges, on each of which one pair of symbols from the dual alphabet .c = X x Y is written, and two
different edges are written with two different pairs of symbols. Hence, the schema El has just right
two essential vertices, obviously, IEll = 2, and N(Ed contains word pair whose lengths are odd only.

2. Build up a schema E': We regard E' as an intersection of schemas El and E, as E' is the intersection
of simple schemas, according to the results of 16]' the conclusion is:

N(E') = N(Ed n N(E) and IE'I ::; IEll.IEI = 2.IEI.
On the other hand, obviously N(E') is a set of word pairs possessing odd lengths.
The lemma has been proved. o
Lemma 3.4. For every simple language transformation schema E and with any integer s > 0, there
exists another simple schema E', such that:

N(E') = N.:(E) and IE'I ::; siEI.

Proof. Build up a schema E': Put from left to right a range of language transformation schemas that
are structured as same as schema E. Nevertheless, their vertices are symbolized variously. Each final
vertex of ith-schema (0 ::; i ::; s - 1) has an empty edge linking with the entry vertex of i+ 1th-schema.

The entry vertex of the first schema is considered as the entry of E', and the set of final vertex
of sth-schema become the final vertex of E'. Obviously:

N(E') = N: (E) and IE'I < s.IEI.
The lemma is proved. o
Lemma 3.5. For every simple language transformation schema E and with any integer m > 0, there
exists another simple schema E', such that:

N(E') =)((N(E), m) va IE'I ::; m.IEI.

Proof. 1. Build up a schema Err" including m + 1 vertices: ao, al, ... , am-l, am. From ai to ai+l
(0 ::; i ::; m - 1) there are n edges on which different pairs of signs extracted from the dual alphabet
.c are written. From am-l to am, there are n edges on which different pairs of signs from .c are
written. The vertex ao is regarded as the entry, and,ao, al, ... , arn-2, am-l are acknowledged as
final vertices of Ern. Thus, schema Ern recognizes all possible word pairs on the dual alphabet .c,
whose lengths are bounded at m and they have just right m essential vertices.

2. Build up a schema E' as an intersection of Ern and E, of which the pair of vertices containing
final vertex of Ern is recognized as final vertex of E'. It is clearly that E' is a simple schema, and
according to the results of [6]' the conclusion is: N(E') =)((N(E), m), this is a set of all first parts
of word pairs whose lengths are at most m, and IE'I ::; m.IEI.
The lemma is proved. 0

Lemma 3.6. For any the language transformation schema E, of which the depth of operations
restricted at s, there exists a simple schema E', such that:

N(E') = N(E) and IE'I < sl(E) .IEI.

Proof. The lemma is proved by mathematical induction on to the depth of operations on the schema
E.
1. If E is a simple schema, obviously, we can regard E' as E, therefore:

N(E') = N(E) and IE'I = lEI = sO.IEI = SI(E) .IEI.

THE AUTOMATA COMPLEXITY OF THE LANGUAGE TRANSFORMATION SCHEMA 43

2. Suppose that, ~ = (GI, G2, ... , Gm-l) and al, a2, ... , ap are even edges, odd edges or complement
edges with degree t, repeated edges with degree u. on the graph Gn. As the depth of operations not
exceed s, thus t :S sand u. :S s.

Suppose that, a; (1 :S i :S p) depends on the graph Gki. For every i (1 :S i :S p) it is possible to use
all the graphs on which Gki depends, including Gki , to build schema ~ki. Then we have:

N(~kd = N(Gkd·
According to the definition of the depth of operations, there is a conclusion:

l(~) = I(Gn) ~ l(a;) + 1 = I(Gki) + 1 = l(~k;) + 1.

Hence:

To match the definition of induction, for each i (1 :S i :S p), there exists a simple schema ~L, such
that:

N(~~i) = N(~kd and I~~il :S l~kil·sl(Bk;) :S l~kil·sl(B)-l.

If c; is an even edge (or an odd edge), then, in accordance with Lemma 3.2 (or Lemma 3.3) we can
build up a simple schema 6.i, such that:

, N(6.;) = [(N(~~ill = [(N(L;k;)) = {(N(Gkill
(or N(6.i) = O(N(~~;)) = O(N(~ki)) = O(N(Gk;)), respectively)

with:
16.1 < 21~1·1 < 21~ ·1.s1(B)-1 < I~ ·1·s1(B).,- k, - k, - tci

If a, (1 :S i :S p) is the complement edge with degree r (or repeated edge with degree
according to Lemma 3.5 (or Lemma 3.4) we can build a simple schema 4i, such that:

r), then

N(6.;) =){(N(~~;), r) =){(N(~kd, r) =){(N(Gki), r)
(or N(6.i) = N;(~~;) = N;(~kd = N;(Gk;), respectively)

with:
l6.il:S r.I~~il:S r·l~kilsl(B)-l:s l~kilsl(B).

Replace a, (1 :S i :S p) on Gn with schema 6.i, in accordance with the definitions of substitution
(seeI6]), we have a simple schema ~I, such that:

N(~I) = N(~)
with:

I~II = IGnl + I: l6.il
l:Si:Sp

:S IGnl + I: I~ki Is1(B)
l:Si:Sp

:S IGnlsl(B) + I: 1~'lilsl(B)
l:Si:Sp

= (IGnl + I: I~ki I) sl(B)
l:Si:Sp

The lemma is proved. o
Theorem. For any language transformation schema ~, on which the depth of operations restricted
at s, then:

Proof. 1. For the language transformation schema ~ as above, using Lemma 3.6, we can build up a
simple schema ~I, such that:

2. For this simple scherr.a ~I, using Lemma 3.1, we can build up an weak deterministic finite au-
tomaton with output A, such that:

44 NGUYEN VAN DINH

T(A) = N(~I) = N(~), and:

g(~) = IAI < ZIL'1 + 1 ::; zlLlal(El + 1.

The theorem has been proved. o

REFERENCES

[1] Arto Saloma., Computation and Automata (in Vietnamese), Science Publishers, 199Z.
[Z] Dang Huy Ruan, 0 CJIO)KHOCTHKOHe'fHOrO aBTOMaTa, COOTBeTCTBYlOuter-o o606III;eHHoMY

perYJIHapHOMY Bblpa)KeHHlO,,n:AH CCCP, TOM Z13, No.1 (1973).
[3] Dominique Perrin, Finite Automata, J. van Leeuwen (ed.), Handbook of Theory tical Computer

Science, Elsevier Science Publishers B.V., 1990, p. 3-53.
[4] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and Computation,

Addison- Wesley, Reading, MA, 1979.
[5] Lung H., "An Algebraic method for Solving decision problems in Finite Automata theory",

Ph.D. Thesis, Penn. State Univ. University Park, PA, 1987.
[6] Nguyen Van Dinh, "Builds the language transformation schema and analyses its automata

complexity", Master Thesis, Vietnam National University (VNU), Hanoi, 1997.
[7] Nguyen van Dinh, Solving determinazation problems of automata on the computer, VNU Jour-

nal of Science, Nat. Sci., XIV (1) (1998).
[8] Peterson J.L., Petri nets, Computing Surveys 9 (3) (1997).

Received August 20, 2000
Revised January 10, 2001

United Nations International School-Hanoi

