Tap chf Tin hoc va Diéu khién hoc, T.17, S.2 (2001), 39-44

THE AUTOMATA COMPLEXITY
OF THE LANGUAGE TRANSFORMATION SCHEMA THAT CONTAINS
OPERATIONS WITH RESTRICTED DEGREE

NGUYEN VAN DINH

Abstract. In accordance with the concept of automaton with the output we have built the language transfor-
mation schema ¥ (see [6]). In this paper we study the relation between the automata complezity g(X), the
number of essential vertices |E| and the depth of operations s on a language transformation schema. The esti-
mation of the automata complexity of a language transformation schema that holds operations with restricted
degree is also given.

Tém tdt. Dya trén khai niém 6 t6 mdat c6 18i ra, ta xiy dung dwoc lugc dd bién d8i ngén ngi (BDNN) [6].
Khi cic lwgc dd BDNN chira cidc phép 13p khdong han ché thi dé phic tap 8 t6 médt cda né khéng phu thudc
viao s8 phép lip va da dwoc dinh gid bdi [6], nhung khi s8 phép 1ip, cling nhu mét s§ phép todn khic nhuw
phép 1iy cdc cip tir chin, 14y cdc cdp tir 18, phép bd sung..., ¢é bic bi han ché thi d6 phirc tap 6 t6 mat cda
cic lwgc d5 BDNN sé phu thudc vao dd siu dit ddu (béc) cda cdc phép todn.

Bai nay trinh bay méi lién hé gitra dd phic tap & td mat, s& dinh c8t yéu va dd siu dit diu cic phép
toin cia moét lwgc dd BDNN cé chia cic phép todn cé bic dwoc han ché.

1. INTRODUCTION

Using notation £ = X x Y, wherein X = {z,,z,,...,z,} is input alphabet of source (original)
language, and Y = {y1, y2, ..., Ym } is output alphabet of target (final) language. An automaton with
the output, M = (S, X,Y,s0,6, A, F), recognizes a language on the input alphabet, symbolized T,
and transforms it into another language on the output alphabet, that is symbolized Ty-. This language
transformation is due to automata mappings, on which the lengths of words are completely preserved.
(See [6]). In brief, the automaton M recognizes a language pair R = (Tx,Ty). Corresponding to
automaton with the output M, we can build the language transformation schema equivalent to M,
which also recognizes the same language pair with the initial automaton. (See [6]). When the language
transformation schema holds unrestricted repetitions, its automata complexity does not depend on
the number of the repetitions and has been appraised by [6]. However, if the number of the repetitions,
as well as another operations: creating even word pairs, odd word pairs or complement... have limited
degrees, the automata complezity of the language transformation schema will be reliant on the depth of
operattons. This paper is to analyze evaluate the automata complexity of a language transformation
schema that contains operations with restricted degree.

2. PRELIMINARY CONCEPTS

Some preliminary concepts about the language transformation schema presented in [6] are sum-
marized in this part. In addition, new relating concepts will be separately described. The language
pair (Tx,Ty) on the dual alphabet £ = X x Y, denoted R, and R™ is pair of repeated language
with degree m of T and Ty . The subset of R, contains word pairs with either even or odd lengths,
denoted £(R) or O(R), respectively. The set of all initial parts of word pairs, of which lengths are
at most s, denoted X (R, s).

The language transformation graph on the dual alphabet £ = X x Y is a directed graph G, in
which, a particular vertex called entry vertez, denoted o(G), and a nonempty set of vertices called the
set of final vertices, denoted F(G), and we denote the set of all vertices as A(G). Initial vertex and

40 NGUYEN VAN DINH

final vertex of an edge a are denoted «(a) and f(a), respectively. On each edge a of the graph G is
labelled by a group of word pairs on the dual alphabet £, this group is denoted M;(a). Suppose that
every edge ay,az,...,a; (t > 1) is a certain path in G and T; € M¢(a;) is word pairs corresponding
to edge a; (1 <1 <t), then word pairs T} T»...T; are considered is created by this path. We denote the
set of all word pairs generated by path initiating from vertex o and ending at vertex 8 as Ng(a,).
The set N¢;(a, B) is inductively defined as the following principles:

1. A = (g,¢), wherein ¢ is an empty word of X'* and Y*.

2. If X, Y are word pairs, wherein X € Ni(a,v), and v = afa), # = B(a), Y € M;(a) then
XY € Ne(a, B).

Definition 2.1. The language transformation schema ¥ on the dual alphabet £ = X X U is a range
of the language transformation graphs on £:
Y =(G,Gy...,G,),
and on this range, we build a function mg(a), defined on the set of all edges of all graphs G;
(1 <7 < n) and satisfied the following conditions:
1. For a certain edge a of G; (1 <1 < n), the function my(a) is satisfied one of following standards:
1.1. my(a) = A and M, (a) = A, then a is called an empty edge.
1.2. my(a) = (z,y) € L and Mg, (a) = {z,y}, then edge a notes a pair of symbols (z,y) and edge
a is called essential edge.
1.3. my(a) = G; (1 <7 <n-—1)and Mg, (a) = E(N(G;)), then edge a is stated to depending
on graph G; and is called an even edge.
1.4. my(a) = Gk (1 <k <n-—1) and Mg, (a) = O(N(Gk)), then edge a is stated to depending
on graph G and is called an odd edge.
1.5. mg(a) =G, (1 <r <n-—1)and Mg, (a) = N9(G,), then edge a is stated to depending on
graph G, and 1s called repeated edge with degree s.
1.6. my(a) =Gy (1 <t <n-—1)and Mg, (a) = X(N(G¢),s), then edge a is stated to depending
on graph G; and it is called complement edge with degree s.
2. Each graph G;,G>,...,G,,—; has one and only one edge of graph G,, depending on. Graph G,,
called a base graph.

3. Graphs G1,G3,..., G, have no common vertex.

G,, 1s called the base graph of the language transformation schema. If ¥ contains only one graph,
this anique graph is also signed ¥, and called a simple language transformation schema. The set of
word pairs N(G,,) is considered to be created by ¥, and denoted N(X). We at times use Nx (%)
and Ny (X) to denote separately the set of origin and the final words defined by ¥X. Obviously,
N(X) € Nx(Z) x Ny (). ‘

The vertex o of graph G is called an essential vertex if it is entered by at least one essential
edge. The number of essential vertices of graph G is signed |G|. The number of essential vertices of
all graph belong to ¥ is signed |X|. We state that graph ¢; depends on graph G if it contains some
edge depending on graph G;.

Definition 2.2. For the language transformation schema, the depth of operations, denoted I(X),
and determined as follow:

Let @ is an unintentional edge of graph G, (1 < r < n), then the depth of operations of a is
signed [(a), and we define the depth of operation in G by the formula:

}(G) = maxli(a),
wherein I(a) is inductively determined as follows:

1. If a is an even edge, odd edge, repeated edge with degree n or complement edge with degree s
and a depends on graph G; (1 <7 <<), and {(G,) has been defined, then:

I(a) = I(G;) + 1.

THE AUTOMATA COMPLEXITY OF THE LANGUAGE TRANSFORMATION SCHEMA 41

2. For the remaining cases, {(a) = 0.
The equation {(X) = [(G,,) is admitted.

Definition 2.3. Possible minimum number of states of an weak deterministic finite automaton
with output (see [6]) which recognizes N(X), is called the automata complexity of the language
transformation schema %, and denoted g(%).

3. THE RESULTS

In this part, we will prove a theorem so that to appraise the automata complexity g(X) of the
language transformation schema ¥ which depends on the number of essential vertices |¥| and the
depth of operation s.

Firstly, we prove some lemmas.

Lemma 3.1. For every simple language transformation schema %, there ezists an weak deterministic
finite automaton with the output A, such that:

T(A) = N(Z) and |A| < 2/%! +1.
Proof. As ¥ is a simple language transform schema, thus, according to [6], it is possible to build an
automaton with output, M = (S, X, Y, so,6, A, F) as follows:

- S: the set of states of automaton M, includes all vertex signs of 3.

- Entry vertex sign of ¥ is regarded as initiating state sy of automaton M.

- The set of final vertices of ¥ is admitted to be a set of final states of M.

- State transitional function § : S X ¥ — S of automaton M is determined: Vs € S, Vz € X then
§(s,z) = {si1,Si2y---, 8t} € V7 with 1 < 7 <t then: z € Nx(s, si), sij € S.

- The output function A : S x X — Y of automaton M is determined: Vs € S, Vz € X then
A(s,z) =y € Y, wherein y is an element corresponding to z in the pair (z,y) which is written in the
edge (s,6(s,z)) of the simple language transformation schema 2.

- The input and output alphabet X, Y of the simple language transformation schema % are
considered as the input and output alphabet, respectively, of automaton M.

In this way, it is obviously that T (M) = Nx(X) and Ty (M) = Ny (X). Indeed, we have build
an automaton M that recognizes the same language pair with the simple language transformation
schema .-

With automaton M, using algorithm and determinazing automata program [7], we can build an
weak deterministic finite automaton with output A that equates to M (i.e. automata A recognizes
the same set of word pairs with automaton M). In addition, as the results in [2], then:

T(A) = T(M) = N(Z) and |A| < 2M| 4+ 1= 2=l 41,

Thus, the lemma is proved. O

Lemma 3.2. For every simple language transformation schema ¥, there ezists another simple schema
X h that:
p SRER N(Z') = E(N(Z)) and || < 2|5,

Proof. 1. Builds schema %,: This schema includes two vertices ag and a;. Vertex a is entry as well
as final vertex of ¥y. From aq to a; and conversely from o) to g, there are just right n edges on
each of which, one of symbols from the dual alphabet £ = X x Y is written, and two different edges
are written with two different pairs of symbols. Thus, the schema 3 just right two essential vertices,
le. || =2, and N(XZ() contains word pairs whose lengths are even.

2. Build schema %': We regard ¥’ as an intersection of schemas X, and X, as ¥’ is the intersection
of simple schemas, according to the results of [6], the conclusion is:

Obviously, N(X') is a set of word pairs possessing even lengths.

42 NGUYEN VAN DINH

The lemma has been proved. O

Lemma 3.3. For every simple language transformation schema 2, there ezists another simple schema
Y, such that:
N(Z') = O(N(X)) and |Z'| < 2|Z).

Proof. 1. Builds a schema 3;: This schema is structured the same as), except g is input vertex,
whereas « is unique final vertex. From o to a; and conversely from «a; to «g, there are just right
n edges, on each of which one pair of symbols from the dual alphabet £ = X x Y is written, and two
different edges are written with two different pairs of symbols. Hence, the schema ¥, has just right
two essential vertices, obviously, |Z;| = 2, and N(2;) contains word pair whose lengths are odd only.

2. Build up aschema ¥': We regard ¥’ as an intersection of schemas ¥; and ¥, as X' is the intersection
of simple schemas, according to the results of [6], the conclusion is:

N(Z') = N(Z,) N N(Z) and || < |Z4.[Z] = 2.[5].

On the other hand, obviously N(X') is a set of word pairs possessing odd lengths.
The lemma has been proved. ' O

Lemma 3.4. For every simple language transformation schema % and with any integer s > 0, there
ezists another ssmple schema X', such that:

N(X') = N} (Z) and |Z'| < s|X|.

Proof. Build up a schema %': Put from left to right a range of language transformation schemas that
are structured as same as schema X. Nevertheless, their vertices are symbolized variously. Each final
vertex of ¢*'-schema (0 < 1 < s—1) has an empty edge linking with the entry vertex of +1*"-schema.
The entry vertex of the first schema is considered as the entry of ¥’, and the set of final vertex
of s*¥-schema become the final vertex of ©'. Obviously:
N(Z') = N;(Z) and |¥'| < s.|5].
The lemma is proved. O

Lemma 3.5. For every stmple language transformation schema ¥ and with any integer m > 0, there
ezists another ssmple schema ¥', such that:

N(Z') = ¥(N(Z),m) v |2 < m.|5].

Proof. 1. Build up a schema X,,, including m + 1 vertices: aq, @1, ...,%m—1,Cm . From a; to ;4
(0 <% < m—1) there are n edges on which different pairs of signs extracted from the dual alphabet
L are written. From «,,_; to a,,, there are n edges on which different pairs of signs from [are
written. The vertex a(is regarded as the entry, and-ag, a1, ..., @m—2, @m—1 are acknowledged as
final vertices of X,,. Thus, schema X,, recognizes all possible word pairs on the dual alphabet L,
whose lengths are bounded at m and they have just right m essential vertices.

2. Build up a schema ¥’ as an intersection of X,, and X, of which the pair of vertices containing
final vertex of X,, is recognized as final vertex of ¥'. It is clearly that X' is a simple schema, and
according to the results of [6], the conclusion is: N(X') = ¥ (N(X), m), this is a set of all first parts
of word pairs whose lengths are at most m, and |2'| < m.|Z|.

The lemma is proved. O

Lemma 3.6. For any the language transformation schema X, of which the depth of operations
restricted at s, there ezists a simple schema X', such that:

N(Z') = N(Z) and |Z'| < s'(F).|2].
Proof. The lemma is proved by mathematical induction on to the depth of operations on the schema
3.
1. If ¥ is a simple schema, obviously, we can regard X/ as 3, therefore:

N(Z') = N(Z) and |Z'| = |Z| = s°.|Z| = s'(B)|Z).

THE AUTOMATA COMPLEXITY OF THE LANGUAGE TRANSFORMATION SCHEMA 43

2. Suppose that, ¥ = (G, Ga,...,Gpu-1) and ay, ag, ..., a, are even edges, odd edges or complement
edges with degree ¢, repeated edges with degree u on the graph G,,. As the depth of operations not
exceed s, thus ¢t < s and u < s.

Suppose that, a; (1 <1 < p) depends on the graph Gy;. For every ¢ (1 <14 < p) it is ‘possible to use
all the graphs on which Gg; depends, including Gy;, to build schema ;. Then we have:
N(Zgi) = N(Gri).
According to the definition of the depth of operations, there is a conclusion:
UZ) =UGy) =2 Ua:) + 1= UGr) + 1 =(Eg;) + 1.

Hence:

I(Zk:) <UZ) - 1.
To match the definition of induction, for each ¢ (1 < ¢ < p), there exists a simple schema X}, such
t:
tha N(ZL,) = N(Sk) and [BL,] < [Seels/E6) < [y s E)1,

If a; is an even edge (or an odd edge), then, in accordance with Lemma 3.2 (or Lemma 3.3) we can
build up a simple schema A;, such that:

« N(Ag) = €(N(25;)) = E(N(Eki)) = E(N(Gri))
(or N(A;) = O(N(Z};)) = O(N(Zk:)) = O(N(Gr;)), respectively)

with: A < 2|BL] < 2[8e] sE) 71 < [l .12,

If a; (1 £ ¢ < p) is the complement edge with degree r (or repeated edge with degree r), then
according to Lemma 3.5 (or Lemma 3.4) we can build a simple schema A;, such that:
N(Ai) = H(N(Zy;),r) = H(N(Zki),r) = ¥(N(Gri),)
(or N(A;) = N} (2};) = N (Zk:) = N} (Gg:), respectively)

ith:
W 18] < 7 || < 7S B 1 < (D [6HD),

Replace a; (1 < ¢ < p) on G,, with schema A;, in accordance with the definitions of substitution
(see[6]), we have a simple schema ¥', such that:
N(Z') = N(Z)

with:

' = 1Gal+ Y 1A

1<:<p
<|Gol+ D [Skils'®)
<<
<G 4 T el
1<i<p
= (IGal+ X mual) ™
1<:<p
=|E|s[(2).
The lemma is proved. O

Theorem. For any language transformation schema ¥, on which the depth of operations restricted

at s, then:
g(Z) < 2= 4,

Proof. 1. For the language transformation schema X as above, using Lemma 3.6, we can build up a
.))
simple schema ¥’, such that: N(Z') = N(Z) and 5] < |E[s'(2).

2. For this simple schema ¥', using Lemma 3.1, we can build up an weak deterministic finite au-
tomaton with output A, such that:

44 NGUYEN VAN DINH

T(A) = N(X') = N(Z), and:

g(B) = |A| < 2B 1< 2B g,
The theorem has been proved. OJ

REFERENCES

[1] Arto Saloma., Computation and Automata (in Vietnamese), Science Publishers, 1992.

[2] Dang Huy Ruan, O c1o>kHOCTH KOHEYHOTO aBTOMaTa, COOTBETCTBYIO IIero o6obleHHOMY
perynuapHoMy Beipakeruto, [JAH CCCP, Tom 213, No.1 (1973).

[3] Dominique Perrin, Finite Automata, J. van Leeuwen (ed.), Handbook of Theorytical Computer
Science, Elsevier Science Publishers B.V., 1990, p. 3-53.

(4] J.E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and Computation,
Addison-Wesley, Reading, MA, 1979.

[5] Lung H., “An Algebraic method for Solving decision problems in Finite Automata theory”,
Ph.D. Thesis, Penn. State Univ. University Park, PA, 1987. ‘

[6] Nguyen Van Dinh, “Builds the language transformation schema and analyses its automata
complexity”, Master Thesis, Vietnam National University (VNU), Hanoi, 1997.

[7] ﬂ“Nguyen van Dinh, Solving determinazation problems of automata on the computer, VNU Jour-
nal of Science, Nat. Sci., XIV (1) (1998).

(8] Peterson J.L., Petri nets, Computing Surveys 9 (3) (1997).

Recewed August 20, 2000
Revised January 10, 2001
United Nations International School-Hano1

