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COMPLETION OF THE CATEGORY OF FINITE-DIMENSIONAL
FUZZY SPACES
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Abstract. In this paper we introduce a method to expand the category 1of all finite-dimensional fuzzy
spaces associated with finite-dimensional Chu spaces in to a complete system.

Torn tli t. Ba.i nay tiep tuc nghien CUll pham tr u cac kh orig gian- mo' h iru han chie u d a dU'<TCde c~p den
trong [7] v a [8]. Nhtr da diro'c chirng minh trong [7], ph arn tru 1cac khong gian me: hii'u h an chie u lien ket
vO'i cac khong gian Chu hiru han chieu 111.mot h~ thong tiro'ng du-o'ng, tuy nhien , 1 khorig dong doi vo'i ph ep
lay tich cheo nen no khorig 111.mot h~ thong day duo Trong b ai nay, chiing toi du'a ra mot phiro'ng ph ap mo-
r9ng pharn tru 1 th an h mot M tliong day duo Dg lam dieu do, chung toi xay dung mot ph am tru n-t~p ho-p
doi ngiu 1* chtra 1 nh u' mot ph am tru con, trong do 1* la mot h~ thong day duo

1. INTRODUCTION

It is shows in [71 that, the category 1of all finite-dimensional fuzzy spaces associated with
finite-dimensional Chu spaces is an equivalent system. Unfortunately, 1 is not closed under the cross
product, therefore 1 is not a complete system. In this paper we introduce a method to expand the
category 1 into a complete system, that is, we construct a "dual" n-set category 1* containing 1 as
a subcategory, where 1* is a complete system.

2. FINITE-DIMENSIONAL *-FUZZY SPACES
AND THE *-FUZZY FUNCTOR

By n-set we mean a cartesian product X = 11;~1Xi. Let S denote the n-set category, when
the category S * is defined as follows:

1. Objects of S* are morphisms in S.
2. If a : X = 11;~1X; -t Y = 11;~1Y; and a' :

objects of S*, then a morphism <p : a -t a' from a to

ip : Y = 117=1Yi -t X' = 117=1X:.
Let a : X = 11n X· -t Y = 11n y: a': X' = 11n X' -t Y' = 11n Y' and a" . X" =t=1 t t=l t) 1.=1 t t=1 t •

11;~1X:' -t Y" = 11;~1y';" be objects in S*, <p: a -t a' and <p' : a' -t a" be morphisms of S* (i.e.,
ip : Y = 117=1Y; -t X' = 117=1X: and <p' : Y' = 117=1Y/ -t X" = 11;~1X:').

Then composition of <p and ip", denoted by <p' * <p, is given by

XI 11n X' Y' 11n Y'= i=1 i -t = i=1 i are two
a' in S * is a map (in the n-set category)

<p' * <p= <p'a'<p: a -t a".

It is easy to check that with the above definition S * is a category.

For a given set X = 11;'=1Xi, let X* = [0, llx denote collection of all fuzzy sets of X. For a map
a : X = 11;~1Xi -t Y = 11;~1Y; we define the conjugate a* : Y* -t X* of a by the formula

a*(a)(x) = a(a(x)) for x E X and a E Y*.

It is easy to see that

(.Bar = a*.B* for every a : X -t Y and.B : Y -t Z.
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Now for a : X = rr=l Xi ---t Y = TI~'=1Y; we define F*(a) = (TI7=1 Xi, fa, Y*), where Y* denotes
the collection of all fuzzy sets of Y = TI~~1 y;, and fa : TI7=1Xi X Y* ---t [0,1] is given by

fa (Xl, X2,··· ,Xn, a) = a(a(xI' X2, ... ,xn)) for every (Xl, X2, ... , Xn, a) E TI7=1 Xi X Y*.

The (n+1)-dimensional Chu space F*(a) = (TI7=1 Xi, fa, Y*) is called the (n+l)-dimensional
*-fuzzy space associated with the map a : X = TI7=1 Xi ---t Y = TI~1 Y;. The category of all
(n+1)-dimensional *-fuzzy spaces associated with maps in the n-set category S is called the (n+l)-
dimensional *-fuzzy category and denoted by 1*.

3. RESULTS

At first, we will show that the (n+ 1)-dimensional *-fuzzy category 1* defined above contains
the category 1as a subcategory. In fact, we have the following theorem.

Theorem 1. Any (n+l)-dimensional fuzzy space is a (n+l)-dimensional *-fuzzy space.

Proof. If F(X) = (TI7=IXi,fx',X*) then clearly that F(X) = F*(lx) is a (n+1)-dimensional
*-fuzzy space.

\
Theorem 2. 1* is a complete system.

Proof. Assume that <I> = (TI7=1 <Pi,1f;) : F*(a) = (TI7=1 Xi, fa, Y*) ---t F*(a') = (TI7~1 X:, fa', Y'*)
is a (n+1)-Chu morphism, where F*(a) and F*(a') are (n+1)-dimensional *-fuzzy spaces associated
with the maps a = TI~'=1cc; : X = TI:~1 Xi ---t Y = TI7=1 Y; and a' = TI~'=1a; : X' = TI7=1 X; ---t

Y' TIn Y' . 1 P . (3 , TIn , X TIn X Y' TIn Y'= i=l i' respective y. utt mg = a <P= i=l ai<Pi: = i=l i ---t = i=l i' we
get the cross product C = (TI7=1 Xi, fa X <I> fa', Y'*), which is a (n+1)-dimensional *-fuzzy space
associated with the map (3 = TI7=I a; <Pi· In fact, for every (X I, ... ,Xn, b) E TI7=I Xi X Y'*, we have

(to X 'I' fa' )(XI,'" ,Xn, b) = fa' (<pdxd,··· ,<Pn(xn), b)

= b(a~<pI(xd,··· ,a~<Pn(Xn))

= fa''P(xI,'" ,xn,b)
= f{1(xI,'" ,xn,b).

Thus, the category 1* is closed under the cross product. Therefore the theorem is proved.

Theorem 3. F* S* ---t 1* is a covariant functor.

Proof. For a morphism <P= TI7=1 <Pi a = TI:'=1 ai ---t a' = TI7=1 a;, with a,a' E S*, we define

n

F*(<p) = (II <Piai, <p*a'*)
i=l

where ip" and a'* are conjugated of <P= TI7=1 <Pi and a' = TI7=1 a;, respectively, that is
n

<p*(a)(YI"" ,Yn) = a(<pdyd,··· ,<Pn(Yn)) for every (Yl,'" ,Yn) E II Y; and a E X'*
i=1

and n

a/*(b)(x~, ... ,x~) = b(a~ (x~), ... ,a~(x~)) for every (x~, ... ,x~) E II X: and bE y'*.
i=l

We claim that F*(<p) : F*(a) = (TI7=IX,fo,Y*) ---t F*(a') = (TI7=IX:,fa"Y'*) is a (n+1)-
dimensional Chu morphism. That is, the following diagram commutes:
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[[';=1 Xi X v':
(L,'P*a'*) 1

('Po,ly,.) ITn x: ,
------>1 i=1 i X Y *

In fact, for every (Xl, ... ,Xn) E IT;';"1 Xi and bEY'*, we have

fa(x1,'" ,xn,<p*a/*(b)) = <p*a'*(b)(adx1),'" ,an(xn))

= (a'<p)*(b)(adxd,··· ,an(xn))
= b(a~ <P1adxd, ... ,a~<Pnan(xn))
= fa' (<pa(x), b)

Consequently the above diagram commutes.
Hence F*(<p) = (IT7=1 <Piai, <p*a'*) is a (n+1)-Chu morphism.

Now we will show that F* preserves the composition. In fact, let
n n n n n n

a' = IIa: : X' = IIX: -> Y' = IIY/
i=1 i=1 i=1i= 1 n=l i=1

and n n n

II - II II. X" - IIX" yll - IIyllQ - Ui' - i --+ - i

i=1 i=1 i=1

be objects in the category S*. Let <p= IT7=1 <Pi : a = IT7=1 ai -> a' = IT7=1 a: and <p' = IT7=1 <p~:
I ITn I II ITn II b hi . S* (. ITn y ITn y. X'a = i=1 ai -> a = i=1 ai e morp Isms In l.e., <p = i=1 <Pi: = i=;1 i -> =

rr=1 X: and <p' = IT7=1 <p; : Y' = IT7=1 Y./ -> X" = IT7=1 X:' are maps in the n-set category). By
the definition we have <p'* <p= <p'a'<p = IT7=1 <p~a:<pi' Therefore

F* (' ) (' I (' I ) * "*)<p * <p = <pa spec, <pa <p a

(
I I * '* '* 11*)= <pa <pa, <p a <p a

= F*(<p')F*(<p).

Consequently F* preserves the composition, and hence F* : S* -> 1* is a covariant functor.

The functor F* : S* -> 1* is called (n+l)-dimensional *-fuzzy functor.
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