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COMPLETION OF THE CATEGORY OF FINITE-DIMENSIONAL
FUZZY SPACES '
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and
VU THI HONG THANH

Abstract. In this paper we introduce a method to expand the category 7 of all finite-dimensional fuzzy
spaces associated with finite-dimensional Chu spaces imto a complete system.

Tém tat. Bai nay tiép tuc nghién ctu pham tru cdc khdéng gian- mé hiru han chidu di dwoc dé cip dén
trong [7] va [8]. Nhuw di dwoc ching minh trong [7], pham tri 7 cdc khéng gian md& hitu han chiéu lién két
véi cdc khong gian Chu hiru han chigu 14 mét hé thdng twong dwong, tuy nhién, 7 khong déng d8i véi phép
iy tich chéo nén né khéng 13 moét hé thdng diy dd. Trong bai niy, ching t6i dwa ra mét phwong phap md
réng pham trit 7 thinh mét hé thdng day dd. D& lam diéu dé, ching i xiy dung mét pham tri n-tip hop
d8i ngdu 7* chira # nhuw mot pham tru con, trong dé 7* 13 mét hé théng diy dd.

1. INTRODUCTION

It is shows in [7] that, the category 7 of all finite-dimensional fuzzy spaces associated with
finite-dimensional Chu spaces is an equivalent system. Unfortunately, 7 is not closed under the cross
product, therefore 7 is not a complete system. In this paper we introduce a method to expand the
category 7 into a complete system, that is, we construct a “dual” n-set category 7* containing 7 as
a subcategory, where 7* is a complete system.

2. FINITE-DIMENSIONAL *-FUZZY SPACES
AND THE *-FUZZY FUNCTOR

By n-set we mean a cartesian product X = [["_, X;. Let § denote the n-set category, when
the category S* is defined as follows:

1. Objects of §* are morphisms in §.

2. fa: X =L, X; =Y =T",Y% and o' : = H«.—lXI — Y' = [, Y/ are two

i=1
objects of §*, then a morphism ¢ : @ — o' from « to o' in §* is a map (in the n-set category)

pEY = Hz_lY — X' = H?_ X!

Let a: X =], X; = Y = Hz-—lYH a! — H1—1 XY =1]._,¥ and " : X" =
I, X! = Y" =T1]"_, ¥” be objects in §*, p:a — o' and ¢' : @' — " be morphisms of §* (i.e.,
90 Y Hz—l Y - X’ = Hz—l X‘t’ and (P ‘ YI - I_L—l Y', - X” - Ht*l X“)

Then composiiton of ¢ and ', denoted by ¢’ * o, is given by

<,o'*<p:<p'oz'<_0:a—>a”.
It is easy to check that with the above definition S* is a category.

For a given set X = [[I~, X;, let X* = [0, 1]* denote collection of all fuzzy sets of X. For a map
a: X=[[_,Xi—>Y= H~.—1 Y; we define the conjugate a* : Y* — X* of a by the formula

a*(a)(z) = a(a(z)) forz€ X anda e Y".
It is easy to see that
(Ba)* =a*p* forevery a: X - Y and f:Y — Z.
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Now fora: X =[["_, Xi =Y = [17_,Y: we define F*(a) = (IT~, Xi, fa,Y*), where Y* denotes
the collection of all fuzzy sets of Y =[] ¥, and f, : [[\=, Xi X Y* — [0,1] is given by

fa(z1,22,... 2, a) = a(a(zy, 22, ... , 3,)) for every (z1,Z2,...,2n,a) € [[in, X; x Y.
The (n+1)-dimensional Chu space F*(a) = ([[i=, Xi, fa,Y ") is called the (n+1)-dimensional
*-fuzzy space associated with the map o : X = [["., X; — Y = [["_,Y;. The category of all

(n+1)-dimensional *-fuzzy spaces associated with maps in the n-set category § is called the (n+1)-
dimensional *-fuzzy category and denoted by F*.

3. RESULTS

At first, we will show that the (n+1)-dimensional *-fuzzy category #* defined above contains
the category ¥ as a subcategory. In fact, we have the following theorem.

Theorem 1. Any (n+1)-dimensional fuzzy space 1s a (n+1)-dimensional *-fuzzy space.

Proof. If F(X) = ([1’., Xi, fx+,X*) then clearly that F(X) = F*(lx) is a (n+1)-dimensional

*_fuzzy space.
Theorem 2. 7* is a complete system.

Proof. Assume that ® = ([T, i, ¢¥) : F*(a) = ([, Xi, fa, Y*) = F* () = (H:L:lX:,fu:,Yl*)
is a (n+1)-Chu morphism, where F'*(a) and F*(a') are (n+1)-dimensional *-fuzzy spaces associated

with the maps a = [[[_ s : X =[], Xi = Y =[], Y. and o' =[] ol : X' =[], X} —

1=1 "z
Y' = [I, Y/, respectively. Putting 8 = o'o = [[[_,alpi : X =[]\, Xi = Y' =[], Y/,

get the cross product C = (H:.‘:1 Xi, fa Xo far, Y'"), which is a (n+1)-dimensional *-fuzzy space
associated with the map B = [, alp;. In fact, for every (z1,...,2,,b) € [[\, Xi X Y *, we have

(fa X& fa)(Z1y-- s Zn, b) = far(@1(z1)s- -, @nlzn),b)
R oS, S
= faro(®1,.- - 3 %0 0)
= folzis:s 5 Zns b)

Thus, the category F* is closed under the cross product. Therefore the theorem is proved.
Theorem 3. F* : §* — F* 15 a covariant functor.

Proof. For a morphism ¢ = [["_, o :a =[], s — o' =[], o, with o, 0’ € §*, we define

F*(p) = (][ picirp*a™)
1=

i, o, respectively, that is

where ©* and o'* are conjugated of ¢ = [T, ¢ and o' =[]

e (a)(y1,---yyn) = ale1(y1), ..., ©nlyn)) for every (yi,...,yn) € HYi andae X*

i=1

a*(b)(z),...,z,) =b(ai(z}), ..., ol (z],)) for every (z},...,z,) € HX: and be Y™
=1
We claim that F*(p) : F*(a) = ([[i, X, fa, Y*) — F*(o) = (Hl-"le:,fa:,Yl*) is a (n+1)-

dimensional Chu morphism. That is, the following diagram commutes:
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((ptx,lyu)

r L Xix Y 2 LT
Hl—l g=il. “*¢

(1x.zp'a’*)l J»fﬂ,

M, X. xY* [0, 1].
In fact, for every (z1,...,2z,) € [[1—, X; and b € Y'*, we have
fal@iye- s 2, 00 (8) = @™ (B)(a1(21), - - . , n(20)
= (@) (b)(e1(z1), ... , an(zn)
= b(a{ﬁolal(xl): ROy )a:,,<|01Lan(zn))

= f(x' (pa(z), b)
Consequently the above diagram commutes.
Hence F*(p) = ([[i2, pici, ¢* @ *) is a (n+1)-Chu morphism.

Now we will show that F'* preserves the composition. In fact, let

a=ﬁa,~:X:ﬁX¢—>Y:ﬁY,-, a':ﬁa;:X':ﬁXf—»Y':fIYi'
=1 g=1

n=1 =1 =1 =1

and
n n

n
il = HO‘;I:X” _ HXzU_'Y” _ HY«;”
1=1

i=1 =1

be objects in the category §*. Let o = [[l_, pi:a =], 0i = o' =[], ol and ¢’ =[], ! :
o =", el — o" =[], o be morphisms in §* (e, p =[[' 0 : Y =[], Y —» X' =
[T, Xl and o' =[]\, @} : Y' =[], Y/ = X" =[]’_, X! are maps in the n-set category). By
the definition we have ' * o = p'a’p = [[_| plalp;. Therefore
F*(@I % ‘P) _ (Solalpa’ (@IC!I@)*OL °)

o ’ ' * I* l* II*

= (p'd'pa,p ap a *)

= F'(¢) F* ().

Consequently F'* preserves the composition, and hence F* : §* — 7* is a covariant functor.

The functor F* : §* — 7* is called (n+1)-dimensional *-fuzzy functor.
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