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PROBABILISTIC REASONING BASED ON LAYERS
OF KNOWLEDGE BASE

TRAN DINH QUE

Abstract. Reasoning in the interval-valued probabilistic logic depends heavily on the basic matrix of truth
values of sentences in a knowledge base B and a target sentence S. However, the problem of determining
all such consistent truth value assignments for a set of sentences is NP-complete for propositional logic and
undecidable for first-order predicate logic.

This paper first presents a method of approximate reasoning in the interval-valued probabilistic logic
by basing on “layers” of a knowledge base. Then, we investigate the method of slightly decreasing the
complexity of reasoning via the maximum entropy principle in a point-valued probabilistic knowledge base.
Such a method is based on the reduced basic matrix constructed from sentences of the kncwledge base without
the target sentence.

Tém tat. Lip luin trong logic xdc suit gid tri khodng phu thudc rdt nhigu vao ma trin co bdn cia céc gid
tri chin 1y cda cic ciu trong co s& tri thic B va ciu dich S. Tuy nhién, bai toin xic dinh tit cd nhing
phép gén gid tri chin ly phi mAu thuidn cho mdt tip hop ciu la NP-diy dd d8i véi logic ménh dé va khéng
quyét dinh duoc d8i véi logic vi tir cip 1.

Bai bdo nay truéc hét trinh bay mét phuwong phip lip luin xdp x{ trong logic xic suidt gia tri khodng
bang cich dua viao “céc ting” cda co sd tri thic. Sau dé ching ta sé xem xét mot phwong phip lam gidm
mét chit dd phic tap cda lip ludn dua trén nguyén ly entropy t&i dal trong co sé tri thic xdc suit gid tri
di€ém. Phwong phap lip luin nhw viy dua trén ma trin co bdn rit gon dwoc xiy dung tir cdc ciu trong co
sé tri thirc khéng bao gdm ciu dich.

1. INTRODUCTION

In various approaches to handling uncertain information, the paradigm of probabilistic logic has
been widely studied in the community of Al reseachers (e.g., [1-13]). The interest in probabilistic
logic as a research topic for Al was sparked by Nilsson’s paper on probabilistic logic [11].

The probabilistic logic, an integration of logic and the probability theory, determines a probability
of a sentence by means of a probability distribution on a sample space composed of classes of possible
worlds. Each class 1s defined by means of a tuple of consistent truth values assigned to a set of
sentences. The deduction in this logic is then reduced to the linear programming problem. However,
the problem of determining all such consistent truth value assigments for a set of sentences is NP-
complete for propositional logic and undecidable for first-order logic. There have been a great deal
of attemps in the Al community to deal with the drawback (e.g., [1], [8], [10], [13]).

This paper first proposes a method of approximate reasoning based on “layers” of an interval-
valued probabilistic knowledge base (iKB). The first layer consists of elements of the iKB such that
their sentences have some logical relationship with the target sentence. The second one contains
elements of iIKB whose sentences have some relationship with sentences in the first layer and so on.
Our inference method is based on the idea that the calculation of a value of a sentence is only based
directly on its nearest upper layer. Later we consider the deduction of point-valued probabilistic logic
via Maximum Entropy (ME) principle. Like the deduction from iKB, ME deduction is also based on
the matrix composed of vectors of consistent truth values of the target sentence and sentences in a
point-valued knowledge base (pKB). It is possible to build this deduction based on the reduced basic
matrix of only sentences in some layers of pKB without the target sentence .

The method of constructing layers from sentences in a knowledge base and a method of approx-
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imate reasoning based on them will be presented in the next section. Section 3 presents a method
of reducing the size of the basic matrix in the pointed probabilistic reasoning via ME. Our approach
is to construct the basic matrix of the sentences in the related layers without referring to the goal
sentence. Some conclusions and discussions are presented in Section 4.

2. APPROXIMATE REASONING BASED ON LAYERS
OF A KNOWLEDGE BASE

2.1. Entailment problem in probabilistic logic

This section overviews the entailment problem of the interval-valued probabilistic logic [3] and
of the point-valued probabilistic logic proposed by Nilsson [11].
Given an 1KB
B == {(Si11i> |'L: 1,.‘.,1},

in which S; (¢ = 1,...,l) are sentences, I; (¢« = 1,...,1) are subintervals of the unit interval [0, 1];
and a target sentence S. From the set of sentences ¥ = {Sy,...,5,,Si4+1}, (Si41 = S), it is possible
to construct a set of classes of possible worlds. Every class is characterized by a vector of consistent

truth values of sentences in ¥. In this section, we suppose that = {wy,...,wk} is the set of all X-
classes of possible worlds and (uyj,...,u;, w+17)" is a column vector of the truth values of sentences
w.r.t. S, ..., 5, Si4+1 1n the class w;.

Let p = (p1,...,pr) be a probability distribution over the sample space (2. The truth probability
of a sentence S; is then defined to be the sum of probabilities on possible world classes in which S;
is true, i.e.,
m(S:) = uipy + -+ uikpk

m(S;) = Z Py

wil=S:

or

We can write these equalities in the form of the following matrix equation
IL=UP,

where II = (m(51),...,7(51), x(S)), P = (p1;.--,p)t and U = (ug;) (¢ =1,...,01+1,5=1,...,k).
"The matrix U will be called the basiz matriz of .
The probabilistic entailment problem is reduced to the linear programming one finding

a =min n(S), B =max n(S),

where
7(S) = w1101 + - + U1 kPk,

subject to constraints

7ri=ui1p1+~'+uikpk61i (izl,...,l)
k

Ypi=1 p; =20 (j=1,...,k).

=1

We denote the interval [a, 8] by F(S, B), and write B + (S, F(S, B)).
In the special case, when B is the point-valued probabilistic knowledge base (pKB), i.e., all I;
are points o; in [0, 1], constraints become equalities

m=uapr+ - ftuapk=a (F=1,...,1)

k
Yopp=1, ;>0 [f=1,...,k.
j=1
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However, in general, F'(S, B) is not to be a point value. Some assumption is added to the constraints
to derive a point value for a target sentence. The Maximum Entropy (ME) principle is usually used
for such a deduction. We will return to this investigation in Section 3.

2.2. Layers of knowledge base

This subsection is devoted to presenting a procedure to produce layers of a knowledge base.

Suppose that B = {(S;, L) |+ = 1,...,{} is an iKB, in which S; are propositional sentences and
I; are interval values of sentences S;; S is any target sentence we would like to calculate its probability
value. )

The reasoning for deriving the probabilistic value of the sentence S from the knowledge base B
depends strongly on the basic matrix of truth values of a subset of sentences in &' = {S;,..., 5}
that have some logical relationship with the target sentence. We will characterise the relationship by
layering the set of sentences in the knowledge base.

A subset B' of B is sufficient for S if the probabilistic values of S deduced from B and B’ are
the same.

It means that if B + (S, I) and B' - (S, I') then I = I'.

Denote atom(¢) the set of atoms occuring in the sentence ¢ and atom(®) = U¢€<I> atom(¢) the
set of all atoms in sentences in ®.

Example 1. atom(A — BAC) = {4, B,C}. atom({AAB,C — -D}) = {A,B,C,D}.
The following note shows us the meaning of introducing the notion of atom.
If B' is a subset of B such that

atom(B' U{S}) Natom(B — B') =0,

then B’ is sufficient for S.

We now consider a procedure to produce layers of a knowledge base based on a logical dependence
between its sentences with the sentence S.

Layers of sentences in % are constructed recursively as follows:

LS == {S}a
L} ={¢| €%, ¢¢&L5 and atom(¢) Natom(Ly) # 0},
L§ = { | # €T, ¢ ¢ UL, L{ and atom() Natom(L{) # 0}

LS ={¢|$€X, ¢ U SLY and atom(4) Natom(L;_,) # B},

n

With respect to each L3, let .
BY ={(¢,Iy) | ($,1s) €B and g €L}, n>0.

Note that if S & ', then 85 = {(S, [0,1]); otherwise By = {(S,Is) | (S,Is) € B}.
We call the subset B to be n*"-layer of the knowledge base B w.r.t. S. If ¢ € L;, the layer Bi‘il
is called the nearest upper-layer of the sentence.
It is easy to see that there always exists a number ny such that L;fo # 0 but Lﬁoﬂ = {. We
denote i
Bsuf(S) = U:'L:U()Bih &

It is clear that Bsuf(s) is a sufficient subset for S.
Consider the following illustrating example.

Example 2. Given a knowledge base
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B={B—A:]9,1],

D — B :[.8,.9],
ANC :|.6,.8],
D :[.8,1],
Gz [:2,:7]}

and a target sentence A.
The knowledge base can be layered into subsets with the target sentence A
Ly ={4}, By ={A:[0,1]}
L{ ={B— A,ANC}, B{f={B—A:[91,AAC:][6,.8]}
L‘; ={D — B,C}, BQAZ{D—vB:[.S,.Q],C’:[.2,.7]}
Ly ={D}, Bi ={D:[8,1]}

Thus, the sufficient subset for A is
Bsu_/(A) = B.

Similarly, layering can be performed for a point-valued probabilistic knowledge base.
2.3. Approximate solution based on layers

In the case a knowledge base is large, it is not easy to derive the smallest interval value for a
target sentence S from Bys(s). Layers gives us a method of calculating an approximate value. The
1dea of approximate reasoning is that the probabilistic value of each sentence is updated by deriving
its value based on the nearest upper-layer of this sentence. And when all sentences of the nearest
upper-layer of the target sentence are updated, its value is then calculated. We now formalise the
above presentation. ’

Without loss of generality, we suppose that B is a sufficient knowledge base and S is a target
sentence. It is layered into subsets BJ, B, ..., B:ﬁ, where B,fo is the highest layer in the knowledge
base. Remind that LY (¢ = 1,...,ng) are subsets of sentences w.r.t. 87.

Update of a sentence ¢ 1s recursively defined as follows:
(1) For all ¢ € L;j”, ¢ is updated;

(ii) ¢ € L7, (¢ < ng), is updated if all ¢y € L7, | are updated and B(‘i+1_u) F (¢, 1), where
B(L:“+1.u) is the updated layer of BiS_H.

If B is updated into B(‘ql'u) and B(Sl’u) (S, Is), then Ig is the approximate value for S.

Thus, the approximate calculation of interval value for a sentence consists of three steps:

1. Divide the knowledge base into layers with the lowest layer being the target sentence S.

2. Update the values for sentences of B;_| from the nearest upper-layer B;. This process starts
s

from 2 = ng till B, is updated into B(Lu).

3. Calculate the value for S from B(‘iu).

Example 3. (continued) In Example 2, we have constructed the layers of the knowledge base. If we
base on the whole Bsuf(A), it is necessary to build a 6 X 14-basic matrix of 6 rows and 14 columns. It,
is possible to calculate the value for A according to the above approximate method.

In the process of updating, D — B and B — A are stable, i.e., their values are [.8,.9] and [.9, 1],
respectively. Since the value of C is [.2,.7], AA C is updated to [.6,.7]. Thus, a value of A is deduced
from the 1** updated layer

By ={B—A4:[9,1,AAC:8,.7)}.
The basic matrix for sentences ¥ = {B — A, AAC, A} is

1

O O =

1
0
1

o o o
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We need to compute
min(p; + p3) max(p; + p3)

on the domain determined by

IA
—

9<pi+p2+ps
6<p <.7

p1+p2t+p3+ps=1

The value of A is then [.6,1]. 7 :

We compare now the computable value with a value derived from the anytime deduction proposed
by Frish and Haddawy [8]. Anytime deduction is based on a set of thirty two rules enumerated from
(i) to (xxxii). In the above example, applying (xx) first to D : [.8,1] and D — B : [.8,.9] yields
B : [.6,.9]; then combining it with B — A : [.9,1] via the rule (xx) results to A : [.5,1]. In the
same way, combining C : [.2,.7] and A : [0, 1] via the rule (xxv) gives A A C : [0,.7] and then with
ANC :[.6,.8] via (xvii) gives AA C : [.6,.7]; applying (xxvi) to this result yields A : [.6,1]. Applying
(xvii) to two ways of computation of A, we have A : [.6,1]. The derived interval equals to the interval
value of A deduced by our method of approximate reasoning.

3. MAXIMUM ENTROPY DEDUCTION BASED ON THE REDUCED
BASIC MATRIX

In this section, we investigate a method of reducing the complexity of computation in applying the
Maximum Entropy Principle for deriving a point value for a sentence from a point-valued probabilistic
knowledge base.

3.1. Maximum Entropy Deduction

We first review a technique named Maximum Entropy Principle [11] to select a probability distribution
among distributions holding some initial conditions given by a knowledge base.
Suppose that

BZ{(Si,a,;Hi:l,...,l}

is pKB and S is a sentence (S # S;, ¢+ = 1,...,0). As presented in Section 2, denote F(S, B) the
set of values of 7(5) = Ew‘\:s Pi = Wi41,1P1 + -+ Yiy1 kPk, Where p = (py,...,px) varies in the
domain defined by conditional equation

T=UTtP, (1)
where I = (1,ay,...,0;)" and U™ is the basic matrix composing of columns of truth values of
sentences S, ...,5, Si+1 (Si+1 = S) with the first row being units.

According to Maximum Entropy Principle, in order to obtain a single value for S, we must select
a distribution p such that the following optimization problem holds
k
H(p) = — Zp]-logpj — max, (2)

j=1

where p subjects to constraints determined by the conditional equation (1).
Suppose that (py,...,pk) is a solution of the above problem. Then the probability of S is denoted
by
F(S,B) = uyips + - + w41, kPk -

Let ag,ay,...,a; be parameters for rows of Ut. Each p; is defined according to a; by means of
t"M-column of U™

p; = ag H a; (B=1,...,k). (3)
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From the initial conditions of the knowledge base, we can compute a; and then p;. Thus the point
probability value of S is then derived. We call the deduction based on the Maximum Entropy Principle
to be the Mazimum Entropy deduction or shortly ME deduction.

3.2. Maximum Entropy Deduction with the Reduced Basic Matrix

As presented above, the ME deduction is based on the basic matrix constructed from the target
sentence and all sentences in the initial knowledge base. The larger the basic matrix is, the more
complex the computation is. In fact, coefficients a; in (3) are only related to the matrix of truth
values of sentences in the knowledge base. The complexity is slightly decreased if ME deduction is
based on the basic matrix constructed only from sentences of the knowledge base without the target
sentence.

As presented in Subsection 2.2, the probabilistic inference only depends on the sufficient subset®
for the target sentence. Without loss of generality, we suppose that B = B,,y(s), 1 = {wi,y ..., we}
is a set of possible world classes determined by ¥ = {S;,...,S5;} and U™ is the reduced basic matriz
of sentences in % with the first row being units.

In each class w;, S can have either one truth value true/false or both truth values true and false.

For ease of presentation, we suppose that on classes wy, ...,w,,, the sentence S gets one truth value
and on w,,41,...,wk, S has both values true and false. Thus, the e.tended set of possible world
classes w.r.t. 2 U {S} has the form

Qt =FUE,
where F = {wy,...,w,} and E = {W::;+1:‘”;+1» e ,wz,wk—}. We have the following proposition.

Proposition 1. Suppose that p 1s a probability distribution satisfying ME principle on (1. We have

"= Y mty; Y m (1)

wiESw;,1<i<m wil=8,m+1<:<k

Proof. Suppose p™ = (p!, ... ,p’,n,p,+n+1,p;+l, ...yPr yPg ) is the probabability distribution on Q7
satisfying ME and (1). According to the method of constructing this distribution, we have

+ - + -
Pm+1 = Pm+1s++ 1P = Pg -

Therefore, if p = (p1,-- ., Pm,Pm+1,---,Pk) is the probabilistic distribution on 1 satisfying (1) and
ME, then

Pz:P: (izly"'am))
pi=2p; (I>m+1)
It is easy to derive (4) from these equalities. The proposition is proved.
In summary, the computation of the point value for a sentence S via ME consists of three steps:
1. Construct the sufficient subset for S to eliminate unnecessary information.
2. Find an entropy-maximizing p based on the reduced basic matrix U™ of the sentences in the
sufficient subset.
3. Calculate m(S) via the equality (4).

Example 4. Given a knowledge base

B={A: o,
A— B: as,
B — C: a3z}

and a target sentence C.

It is clear that B = By,s(¢). The reduced basic matrix for the set of sentences in B with the first
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row of units is

111 1 1
11010
Ut =
1110 1
\1 0 0 1 1

in which the second row is the truth values of A, the third and fourth ones are of A — B and B — C,
respectively. Thus, there are five classes of possible world wy,...,ws corresponding to five column
vectors (eliminating the first row):

v; = (1,1,1)%, vz = (1,1,0)%, v3 = (0,1,0)%, vs = (1,0,1)%, vs = (0,1,1)".

Components of p; are written in the form

-

P1 = @paiaza3, p2 = apaiadz, p3 = apdz, P4 = Apa103, P5 = ApA20a3
with (ao, ai, as, as) satisfying the system of equations
apajazas + apaiaz + apaiaz + apazaz = a)
apaazag + apajaz + apaz + apazaz = Qs

apajazas + apaias + apazaz = as

apaiazas + apajaz + apaz + apaiasz + apazaz =1

Solving yields

(I—ai)(l—a2)(1— o +az—asz)/(ar + a3 — 1)(az — a3),
(a2 — a3)/(1 = ai),

(a1 + oz —1)(az — a3)/(1 — a2)(1 — a1 + az — as),

(14 o1+ a3)/(1 — a1 + az — as).

ag
ay
az
as

Thus, the entropy-maximizing p is given by:

(a2 — a3)/(a1 + ag — 1)

Q2 — Q3
p= 1=y
1-0&2

(1 - al)(al &+ Qg — 1)/(1 — Q] -+ Qg — Otg)
Since C has one true value on wy, two truth values in classes w4 and ws (false value on ws, w3), the

probability of A is then

1 1
n(A) = p1 + oPs i 2Ps

(al + asz — 1)(1 =@y, “F 26!2 = 2&3)

1(1 ) +
= (11—«
2 2(1— a1 + az — as)

2

4. CONCLUSION

This paper has presented a method of layering a knowledge base based on the logical relationship
between sentences of the knowledge base with a target sentence. By means of layers, we can perform
approximate reasoning in order to derive an interval value for the sentence. Our approximate method
is different from the anytime deduction proposed by Frish and Haddawy [8]. While our one is based
on the process of updating of all sentences before deriving an interval value for the target sentence,
their anytime deduction is based on a set of rules.



34

TRAN DINH QUE

We have also presented a method of calculating the point probabilistic value of a sentence via

the Maximum Entropy Principle by not referring to the target sentence when constructing the basic
matrix. This method slightly decreases the size of the matrix in the computation process.

We have presented a comparative example between our approximate method and the anytime

deduction proposed by Frish and Haddawy. A complete comparison of this approximate method with
the other ones will be a topic of our further work.
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