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SYSTEM PARAMETER ESTIMATION METHODS
USING TEMPLATE FUNCTIONS

L. KEVICZKY and PHAM HUY THOA

Abstract. This paper presents a system parameter estimation method for correlated noise systems by using
template functions and conjugate equations. The so-called extended template function estimator is developed
on the basis of the conjugate equation theory. Under some weak conditions the parameter estimates obtained
with the extended template function method are asymptotically Gaussian distributed. The covariance matrix
of this distribution can then be used as a measure of the accuracy. In this paper it will be shown that
this matrix can be optimized with respect to the vector of template functions and to the prefilter and
that an optimal vector of template functions really do exist. With the optimal choice of the template
function vector and of the prefilter, the proposed extended template function estimator reduces to the optimal
instrumental variable estimator. When implementing the optimal template function method, a multistep
algorithm consisting of four simple steps is proposed to estimate the system parameters and the parameters
describing the noise characteristics.

Tém tit. Bainay trinh bdy mét phwong phap danh gid thong s8 hé thdng d&i véi cidc hé dn nhidu cé twong
quan trén co sé cidc him miu va cic phwong trinh lién hop. B8 dénh gid ding ham miu mé réng dwoc phat
trién duwa trén ly thuyét cic phwong trinh lién hop. Trong mot s8 diéu kién yéu, cic danh gid thong s& nhan
dwoc bang phwong phip him miu mé réng cé phin b8 Gauss tiém cidn. Ma trin hiép bién cda phin b8 nay
¢6 thé dwoc diing nhu mét thwée do dd chinh xdc. Trong bii bdo niy, ching t8i sé ching td ring ma tran
nay cé thé dwoc 81 wu héa d&i véi vecto cdc haim miu, d&i véi bd tién loc v ching minh sy t¥n tai cda
vecto t8i wu cdc ham mau. Véi viéc chon t8i wu vecto cic haim méiu va bd tien loc, bd danh gid dung cic
haim miu mé réng dwoc dé xuft qui v& bd danh gia bién dung cu t&8i wu. Khi thuc hién phwong phip ham
miu t8i uu, mot thudt gidi bao gdbm bdn buée don gidn di dwoc dé xuit dé danh gid cic thong s hé théng
vi cic théng s& mé td cic dic trung cda on nhiéu.

1. INTRODUCTION

A wide variety of system parameter estimation methods can be discussed from the point of
view of functional operators working on system input/output signals. The classes of operators can
be characterised by time functions, called template functions. Based on the notions of template
functions [1], a multitude of system parameter estimation methods can be presented as a coherent
picture. Template function based identification methods can be recognized as belonging to one of
three related classes, with specific properties [2,3,8|. This leads to increased insight and to new,
practical estimation schemes, adaptable for wide variety of situations.

Based on the theory of conjugate equations, the so-called eztended template function estimator
is developed in this paper. It will be shown that different system parameter estimators with specific
properties can be obtained by particular choices of the prefilter and of the template functions. The
vector of template functions and the prefilter can be chosen in many ways. They must fulfill the
regularity conditions in order to give consistent parameter estimates. The choice of the template
functions and of the prefilter will also influence the accuracy of the parameter estimates. The inter-
esting question is how to choose the template function vector and the prefilter to achieve the best
accuracy of the parameter estimates. There are different ways of expressing the_ accurac
some weak conditions the parameter estimates obtained with the extended templ te'ﬁwﬁogigﬁ
are asymptotically Gaussian distributed. The covariance matrix of this dlstrlbutl n can
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as a measure of the accuracy. In this paper it will be shown that this matrix can be optimized
with respect to the vector of template functions and to the prefilter and that an optimal vector of
template function really do exist. With the optimal choice of the template function vector and of
the prefilter, the proposed extended template function estimator reduces to the optimal instrumental
variable estimator presented in [6].

The optimal vector of template functions and the prefilter will, however, require the knowledge of
the true system dynamics and also the statistical properties of the noise. To cope with this problem,
a multistep algorithm consisting of four simple steps is then proposed when implementing the optimal
template function method.

The paper is organized as follows. After preliminaries and some basic assumptions in Section
2, identification methods using template functions are briefly presented in Section 3. The so-called
extended template function estimator is developed in Section 4 based on the theory of conjugate
equations. The optimal template function estimator is derived in Section 5, where the optimation of
accuracy is discussed. An iterative algorithm for estimating the noise parameters is given in Section
6. A multistep procedure is proposed in Section 7. Some conclusions are given in Section 8.

2. PRELIMINARIES AND BASIC ASSUMPTIONS
The system is assumed to be discrete-time, of finite order, and stochastic. It can be written as
B(g~")
ylk) = ——
) A(g1)
where y(k) is the output at time k, u(k) is the input, v(k) is a stochastic disturbance. Further, ¢7!
is the backward time shift operator, d is the discrete dead time, and

A(q“l) =14a1q 4axg 2+ +a,,q ",
B(q_l) =bo4+biqg t+byg 24 +b,,q ™

u(k — d) + v(k), (2.1)

) (2.2)

The following standard assumptions on (2.1) will be made:

(A1) The polynomial A(z), with z being an arbitrary complex variable replacing ¢~*, has all
zeros outside the unit circle.

(A2) The polynomial A(z) and B(z) are coprime.

(A3) The input u(k) is persistently exciting of order n,+n;, and is independent of the disturbance
v(k).

(A4) The disturbance v(k) is assumed to be a stationary stochastic process with rational spectral
density. It can be described as an ARMA process:

Clg) w(k), (2.3)

") = b

where

C(q_l) == ] ~+= Clq_l “+ czq"z e e Cncq-n,c,

D(q_l) =1 + dlqu + d2q~2 Rl v dndq_nd)

and w(k) is white noise with zero mean and variance A?.

The following assumption is added on (2.4):
(A5) The polynomials C(z) and D(z) are coprime.

If the degrees n, and ng are chosen to be unnecessary large, then this assumption is always fulfilled.
The overall system description then becomes

The system (2.5) can be written as

(k—d) + —F— w(k). (2.5)
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A(g™)y(k) = B(g™)u(k — d) + r(k), (2.6a)
r(k) = H(qg”")w(k), (2.6b)

where H (g™ ') is a finite order filter, H(q ') as well as H~*(¢g™!) are asymptotical stable
Al H)C(¢Y)

H(g™') = T D(eh (2.7)
For k= 1,..., N, the system equation (2.6) can be written in the vector/matrix form:
Ay = Bu+r, (2.8)
Where r=Hw
y=[y(1), -, y(N)]7
u=[u(l—d),..,u(N —d)]T
r=[r(1),..,r(N)]T
and

A=I+aSy+  +a,Sy,
B: boI+b1S11V ++ban?\}b

Here, Sg\}k) denotes the TOEPLITZ shift matrix [4].
Denote the noise-free part of the output by z(k), then

A(g™)z(k) = B(g™")u(k — d). (2.9)

Introduce the following vectors of delayed input and output values
p(k) = [~y(k—1),...,—y(k — ng), u(k —d — 1), ...,u(k — d — ny)]7, (2.10)
plk) =[-z(k—1),...,—=z(k = ng), u(k —d—1),...,u(k — d — ny)]7. (2.11)

Introduce also the following parameter vectors, which describe the system transfer function as well
as the noise correlation:

0" = | @iy o s @iy Do s b L
) o2 2 ’]T (2.12)
ﬂ = [Cl, veey Cnc; dl, ~--7dn¢] "
Using the assumptions (A1) - (A3), it can be shown that
Bk} (k) > Ba(k)" () = Ba(k)e" () = Bo(k)e" (), (2.13)
Ep(k)@" (k) >0, (2-14)

i.e., that the difference Ep(k)p” (k)— E(fo(k)(foT (k) is non-negative definite and the matrix E(ﬁ(k)cﬁT (k)
is positive definite.

3. TEMPLATE-FUNCTION-BASED IDENTIFICATION METHODS

A wide variety of system parameter estimation methods can be discussed from the point of view
of functional operators working on the system input/output signals. The classes of operators can
be characterized by time functions, called template functions [1]. In the discrete-time case, these
operators can be described by

Jy(k)] = (p,y)wv =P, (3.1)

where p(k) is the template function and (-, )y~ denotes the inner product in ®%.



4 L. KEVICZKY and PHAM HUY THOA

For the system to be considered, it follows that
Jly(k)] = J[o7 (k)B] + Jle(k)], (3.2)

where e(k) is the equation error and 0 is the estimate of 6.
Let us use m operators (3.1) that are different in the sense that the corresponding template
functions p;(k), 7 = 1,...,m, are linearly independent, i.e., that they span an m-dimensional space

] = [Jl[.ul’.v“,‘]m[...]]Tl (3.3)

If m is chosen to be equal to ng = n, + ny + 1, i.e., there are many operators as there are parameters
to be estimated, and if let the role of template functions p;(k) be played by P, a matrix of the same
dimension as ¥, then, along the line given before, we have
1
N

Here, P is called the template function matrix.

e L wli = LpT,
Ply— P §(y,u)f = -PTe (3.4)

. . . : o 1
It is recognized that e is unobservable, and under certain conditions NPTC can be chosen to be equal
to 0 [2]. Then, it follows from Eq. (3.4) that

PTy= PTy(y,u)l. (3.5)
Consequently, the template function estimator can be written as
- =
brr = [PT(y,u)] PTy (3.6)

provided of course that PT is invertible.
Substitution of expression for the process output into Eq (3.6) leads to

Orr =6 + [LPTl/)(y, u)]*lPTr, (3.7)

from which statistical properties like (asymptotic) bias and (asymptotic) covariance can be found.

From Eq. [3.6), we obtain different parameter estimators by making particular choices of the template
function matrix P [2, 3]. '

4. THE EXTENDED TEMPLATE FUNCTION METHOD

In this section, the so-called eztended template function estimator will be developed on the basis
of theory of conjugate equations |7, 8].
Consider now the system equation (2.6), which can be rewritten as

H(q "w(k) = A(g~Y)y(k) — B(g™")u(k — d). (4.1)

For a moment, it is assumed that the filter H(g™ ') is known a priopz, then the following estimation
model corresponding to the system (4.1) can be used:

H(q ')e(k) = A(g™)y(k) — B(g™")u(k — d), (4.2a)

9(k) = A(g™Y)y(k) - Bla™ )u(k — d) - H (g )e k), (4.2b)
where Z(q_l) = A(g7') =1, H(g7') = H(g~*) — 1 and ¢(k) is the prediction error

e(k) = y(k) — (k). (4.2¢)

Let F(q~!) denote the prefilter of the input and output data. Then the estimation model can be
extended as 3

(g H{g™Y)elk) = Alg™")y" (k) — Blg™*)u" (k — d), (4.32)
o (k) — 5 (), (4.3b)
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where :

Lg7)=F(¢)H(g ) =1+he '+ +lwg™,

y" (k) = F(q ")y(k), u" (k) = F(¢~")u(k), oF(k) = F(a~")e" (k).
For k= 1,..., N, it can be presented in the matrix/vector form by

Le =y" — 970 (4.3c)

Corresponding to the functional operators J, [y(k)] working on the system output y(k)
Ip, = Jp, (k)] = (ps, v)mw =Py Zp; (4.4a)
the following operators Jj, [§(k)] working on the model output g’)(k) are used:

jp] - Jp] [@(k)] = <P]:y RN = Z Q (4,4b)

where p;(k), 7 = 1,...,m, are the template functions and p(k) = [pl(lc), ...,pm(lc)]T is called the
vector of template functwns
In the matrix/vector form, the functional operators (4 4a) and (4.4b) can be described by

= [oizeei o]’ =Py, (4.4c)
5': [jpu-'-:jpm]T :PTAs (4.4d)

Introduce the conjugate equations corresponding to Eq. (4.3b):
L (k) = gj(k), k=N,..,1, 5=1,.., m, (4.5a)

where L* is the conjugate operator corresponding to L(qg™ 1), g;(k) are time functions, <p;‘-(k) are called

the conjugate functions and the vector of conjugate functions is denoted by p* (k) = [(pj .- P @:n(lc)}T
The conjugate equations corresponding to Eq. (4.3c) are:

oy =9, 1=1,...,m (4.5Db)
o L'4* =G, (4.5¢)
where L* is the conjugate operator of L and ¢* = ], ..., 95, ]

Lemma 1.

a) The conjugate operator for scalar polynomaials s

Conj [P(q7")] = P(¢"*2q) = P(q). (4.6a)
b) The conjugate operator for matrices s
Con [P(S)] = P(S=ST) = P(ST) = P. (1.6b)

Using Lemma 1, it follows from Eq. (4.5a) that
L(q)p; (k) = g;(k), k=N,..,1, 7=1,..,m, (4.7a)

where N N
Llg) =1+ hg+  +lwg™, ¢5(N+1)=¢;(N+2)=--=0,

o (k) = (@1 (k). - el (K],
and from Egs. (4.5b) and (4.5¢) that
LTSO; =95 (4.7b)
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L"¢* =aG. (4.7¢)

Theorem 1. Let (k) be the solution of the conjugate equation (4.5a) with g;(k) = p;(k) and 6Jp,
denote the variations of the functional operators given by Eq.(4.4). Then, the following relation holds

N N
6Jp, = D pi(k)e(k) = D o} (k) [yF(k) —«pr(k)ﬁ}, (4.8a)

where 5J,,] = J,,] - jp] .
The proof of Theorem 1 is given in the Appendix.

For y=1,...,m, and k= 1,..., N, Eq. (4.8a) can be written in the form:
63 = ¢*T [yF —¥r (y) u)a] ) (4'8b)

where 67 =7 — 7 and ¢* = [(pI, ,tp:n].
As @' isindependent of #, the identification problem can be solved by using the following criterion:

2
V =657Q65 =

> (B[s" (8) ~ oE ] (1.9)

Q
Note that in (4.9) Q is a symmetric positive definite matrix.
Minimizing of the loss function V results in

= [(iPF(k)‘P*T(kDQ(ip*(k)ﬂog(k))]—1[(ipp(k)‘p*T(k))Q(i(p*(k)y""(k)ﬂ, (4.10a)

0= (¥ (0. 9) Q6 br ()| - (BFmuws)Qe ™). (4.10b)

It should be stressed here that @ is a consistent estimate of 0%, ie. 0 converges with probability
1 (w.p.1) to #* as N tends to infinity, if the matrix

N
. 1 5
Jim g—l@ (K)er (k) (4.11a)

exists and is nosingular (w.p.1) and if
1
lim — ) @*(k)rf(k) =0 w.p.1, (4.11b)

where ' (k) = F(q~')r(k).
It is well-known that (4.11a) and (4.11b) are sufficient conditions for consistency. Under fairly

general assumptions the limits and the summations in Egs. (4.11a) and (4.11b) can be substituted
with expectations [5]. Consequently the Eqgs. (4.11a) and (4.11b) become

Ep* (k)ph(k) =R has rank (n, + ng, + 1), (4.12a)
Ep* (k)r" (k) = 0. (4.12b)

The estimator given by Eq. (4.10) is called the eztended template function estimator. By making
particular choices of the template function vector p(k) and of the prefilter F'(¢g~*) different estimators
can be obtained [8]. Under the following various assumptions, the general estimator (4.10) reduces
to sonle well-known estimation schemes.



SYSTEM PARAMETER ESTIMATION METHODS USING TEMPLATE FUNCTIONS 7

i) With m = (nq +np + 1), F(g7*') = 1, p(k) = H(q)p(k), p(k) being a template function vector,
(Q being irrelevant) it reduces to the basic template function method (3, 8].

ii) With m = (n, +n, + 1), F(g7') = 1, p(k) = H(q)z(k), 2(k) being an vector of instruments,
(Q being irrelevant) it reduces to the ordinary instrumental variable method [5,6,9].

iii) With m = (nq+n,+1), F(g~') = H (¢ 1), p(k) = 2(k), 2(k) being an vector of instruments,
(Q being irrelevant) it is an instrumental variable method with prefiltered data [9].

iv) WithQ =1, F(qg~') = H (¢7'),plk) = H (g7 ")p(k), it is the optimal instrumental variable
method [5,6].

In the forthcoming analysis it is assumed that the vector of template functions p(k) can be chosen
such that the vector of conjugate functions ¢*(k) is independent of the disturbance r(t) for k > t¢.
As the most common template functions used in practice are chosen to be linearly dependent on
the input signal, the above assumption is trivially fulfilled. Note that due to this assumption the
consistency condition (4.12b) is automatically satisfied, and that the matrix R in Eq. (4.12a) becomes

R = Ep* (k)ph (k). (4.13)
The results (4.12) and (4.13) will occasionally be referred in the following sections.

5. THE OPTIMAL TEMPLATE FUNCTION ESTIMATOR

The vector of template functions p(k) and the prefilter F(¢~*) can be chosen in many ways. They
must fulfill the regularity conditions given in (4.12) in order to give consistent parameter estimates.
The choice of the template functions and of the prefilter will also influence the accuracy of the
parameter estimates. The interesting question is how to choose the template function vector p(k)
and the prefilter F/(g”!) to achieve the best accuracy of the parameter estimates. There are different
ways of expressing the accuracy. Under some weak conditions the parameter estimates obtained with
the extended template function method are asymptotically Gaussian distributed. The covariance
matrix of this distribution can then be used as a measure of the accuracy. In this section it will be
shown that this matrix can be optimized with respect to the vector of template functions p(k), to
the prefilter F(¢~!) and to the matrix Q. The asymptotic distribution of the parameter estimates
obtained is given in the following theorem.

Theorem 2. Consider the system described by Eqs. (2.1)-(2.4) and the extended template function
estimator given by Eq.(4.10). Let *(k) be the vector of conjugate functions satisfying the conjugate
equation. (4.7a) with g(k) = p(k). Assume that (Al)-(A4) and (4.12)- (4.13) are satisfied. Then the

~

estimate 0 15 asymptotically Gaussian distributed with
VN@ -0)/x &5 N (0, P), (5.1)
where P 1s the covariance matriz given by
P = P(p,F,Q)
= (R"QR)"'RTQ[EF (¢~ )H (¢ )" (k) F (¢ ") H (¢ V)¢’ " (k)|QR(RTQR) " (5.2)
and where R 1s defined in (4.13).
The theorem is proved following the method of proof of Theorem 4.1 in [6].

Next, it is interesting to find the optimal variablesp°®(k), F°(q~') and Q° of the template function
vector p(k), of the prefilter F(¢~!) and of the matrix @ which give the maximum achievable accuracy.
In other words, the variables p°(k), F°(¢~!) and @° have to be found such that

P, F°,Q°) < P(p, F,Q) (5.3)

for all p(k), F(q~!) and Q fulfilling the required conditions. The relation (5.3) means that the
difference P(p, F,Q) — P(p°, F°,Q°) is nonnegative definite.
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This optimation problem can be solved by using the following theorem.

Theorem 3. Consider the covariance matriz P(p, F,Q) given by (5.2). Assume that (Al)-(A4) and

(4.12) are satisfied. Then .

P(p, F,Q) > E[B(k)F" (k)] ", (5.4)

where (k) = H™'(q~')@(k) and the vector (k) is defined by Eq.(2.11). Moreover, equality in (5.4)
holds if and only +f p(k) = (RT Q) 'KB(k), where K is a constant and nonsingular matriz and p(k)
denotes the vector of template functions defined in (4.4).

Proof. Note that the inverse in (5.4) exists since A(z) and B(z) are coprime and u(k) is persistently
exciting of order (n, + ny + 1), cf. (A2), (A3) and (2.14). Introduce the notation a(k) = RT Qp(k).
Then it can be written
R'QR=R"QEp" (k)F(q~')p" (k) = R"QEp" (k)F(q*)@" (k)
=R'QEp" (k)L(¢~")H (q~")@" (k) = R"QE[L(q)p’ (k)] [H (¢~ ")&" (k)]
= R'QEp(k)B" (k) = Eo(k)B" (k)

and

k)F(a ' )H(q ")e' " (k)]QR =

K)L(a o' (k)] QR = R"Q{E[¢" (k) L(¢~)] L(a 1) " (k) }QR
k)L(a  )e' " (k)| QR = RTQ[Ep(k)L(¢ *)p' T (k)|QR

P (k)" |QR = RTQ[E(L(q)¢’ (k)p” (k)" |QR

"]QR = R7Q[Ep(k)p" (K)|QR = Ea(k)aT (k).

I

%,
26 L
&
—_
)
=
oo R
Ql

—

Thus, Eq. (5.2) can be rewritten as
Plp, 1,Q) = [Ea(k)f" (k)] " [Fa(ka (k)] [EA(Ra" (k)]

Since the matrix @ is assumed to be positive definite and R of full rank it follows that the matrix P
given by Eq. (5.5) is positive definite. Therefore, the relation (5.4) implies

- (5.5)

EB(K)B” (k) — [EB(k)e" (k)] [Ea(k)a" (k)] [Ea(k)f" (k)] > . (5.6)
Since
E [ﬁm |7 (k)™ ()] > o, (5.7)

it follows easily that (5.6) is true.
If a(k) = KB(k), with K nonsingular, then equality holds in (5.6). Conversely, if equality holds, then
a(k) = KB(k) with .

K = [B(k)a ()] [Ea(k)a ()] " (5.9

Replacing a(k) = RTQp(k) implies Theorem 3 has been proved.

It follows from Theorem 3 that with K = RTQ the optimal vector of the template function to be
found 1is

p°(k) = H (¢~ ")@(k). (5.9)

This means in particular that the dimension of the template function vector is equal to the number of
the system parameter to be estimated, i.e., m = (n, +n, +1). Then the matrix @ does not influence
the corresponding estimate (4.10). In the following it will be taken as the unit matrix Q° = I.

With Q° = I and with ¢* (k) satisfying the required assumptions mentioned above, the extended
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template function estimator (4.10) reduces to

- []?N:lp*(k)pﬁ(k)}_l [ép*(k)zf(k)} (5.10)

Now, consider the conjugate equation (4.7a) with g(k) = p°(k) = H (¢ ")@(k). It can be
rewritten as

L(q)p" (k) = H™ (¢~ ")o(k), (5.11)

co * + & AL " T
where L(q) = 1+1l1g+ - +lewqg®, ¢ (N+1) =9 (N+2)=---=0, @ (k)=[<pl(/c),...,<pm(lc)] )
This equation gives the condition for obtaining the lower bound (5.4) of the covariance matrix. It

may have several solutions ¢* (k) depending on the prefilter F(g7'). Two convenient solutions are
given in the following propositions.

Proposition 1. With the choice F{(q ') = H (g7 '), the conjugate equation (5.11) does have the
solutton given by

p1°(k) = H (¢~ (k). (5.12)
Proof. With FP(q~*) = H !(¢!), it follows that
Li(y)=F (g )H (¢ ") =1

According to Lemma 1 the conjugate operator is

Thus, (5.12) is the solution of Eq. (5.11).

It is clear that with the prefilter F?(¢™!) and the solution ¢}°(k), the consistency conditions
(4.12) are satisfied and the matrix R defined in (4.13) is positive definite.

Corresponding to the optimal choice of the template function vector p°(k) and the prefilter
F? (g™ '), the system parameter estimate (5.10) can be shown to be the following:

P - [Z H-l(q-l)sa(k)H—l(q—l)pT(k)]_ [ZHl(q*)qa(k)H*(ql)y(k) L (513)

Proposition 2. With the choice F§(q™*) = 1, the solution of the conjugate equation (5.11) is given
by .
vy (k) = H ' () H (¢~ ")p(k). (5.14)

Proof. With F3(g™!) = 1, the operator Ly(q™!) is

Ly(¢7) = F5(q " )H(¢ ') = H(¢™1).

Using Lemma 1 the conjugate operator is found to be

Thus, (5.14) is the solution of Eq. (5.11).

Corresponding to the optimal choice of p°(k) and Fy(q~'), the following system parameter
estimate is obtained from Eq. (5.10).

b, = [ZH_l(q)Hl(q‘l)'ﬁ(k)PT(k)y {Z H™ ' (q)H (¢ Helk)y(k) (5.15)
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Remark 1. The estimate (5.13) is identical with the optimal instrumental variable estimator proposed
in [5,6]. The optimal instruments chosen by that method can be seen as the solution of the conjugate
equation (5.11) with the optimal template function vector p°(k) and the prefilter FP (g™ 1).

Remark 2. Both the prefilter and the vector of template functions demand the knowledge of the true

system parameters which are unknown a priori. Fortunately, it is possible to adaptively update these
estimates as the estimation continues.

Remark 3. It 1s worth noting that there is no need to use additional template functions, i.e. to take
the dimension of the template function vector larger than the number of the system parameters to
be estimated, as far as optimal accuracy is concerned. ’

Remark 4. The first optimal estimate (5.13) relies heavily on the existence of a prefilter, while the
second optimal estimate (5.15) does not require this. The computation of (5.15) requires both forward

and backward filtering operations. However, the estimate (5.15) is not more involved computationally
than (5.13).

6. ESTIMATION OF THE NOISE PARAMETER VECTOR

The parameter vector B* of the ARMA noise model C' and D given by Eq. (2.3) can be estimated
by reference to 9(k), the estimated value of the disturbance v(k) in (2.1). Instead of (2.3) we will use
the following ones:

Cw = Db, (6.1)

where ¥ can be computed by

Aa—1a

v=y—A Bu. (6.2)
Let us use the noise estimation model corresponding Eq. (4.22):
Ce = D, (6.3)

where € is the prediction error.

As © is a consistent estimate of the output error, a consistent estimate ﬁ of the noise parameters
B* can also be obtained. The estimate B can be found by applying the variational and conjugate
equation methods presented in [7]. This method leads to the following iterative algorithm:

A s A N o AT
Bivs =B~ [0, (0 W (90)] 90, (€6 ) <o, (6.4)
where ¥;, (7,97 = [—s;,eF,...,—SK;eF,s}VaF, ...,s;:,daF]“ & =0, W =08

7. A MULTISTEP ALGORITHM

On the basis of the results presented in the previous sections, a multistep algorithm for the
parameter identification of the overall system (2.5) can be now proposed. It can be described simply
in the following manner:

Step 1. The parameters of the polynomials A and B in the basic system model (2.1) are estimated

using the solution (3.6). By choosing the template function matrix P a consistent estimate  is
obtained.

Step 2. Given the estimate 6 from Step 1, an estimate ® of the noise v is computed as in Eq. (6.2)
and the parameters of the ARMA noise model are estimated by reference to ¥ using the iterative
algorithm (6.4). As the result a consistent estimate B can also be obtained.
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Step 3. Compute the optimal template function vector (5.9) using 0 from Step 1 and B from Step
2, solve the conjugate equation (5.11) with a particular choice of the prefilter and compute then the
estimate of #* by Eq. (5.10). As the result the optimal estimate 8pr of 8 is obtained.

Step 4. Using 0opr from Step 3 in the computation of # by Eq. (6.2), Step 2 can be repeated. It
could be expected that the estimate B in Step 4 will be more accurate than that of Step 2.

Remark 5. An algorithm very closely related to the multistep procedure was presented in [5,6].
In that algorithm @ is computed by an arbitrary instrumental variable method in Step 1 and B is
determined in Step 2 by the extended matrix method or by the prediction error method. Step 3 in
the multistep algorithm proposed above is more general than that given in [5,6]. They are identical
only for a particular choice of the prefilter (see Proposition 1 and (5.13)).

8. CONCLUSION

In this paper we have developed a new parameter estimator for correlated noise systems by using
template functions and conjugate equations. The so-called extended template function estimator has
been developed on the basis of the conjugate equation theory. The parameter estimates obtained
with such extended template function methods are proved to be Gaussian distributed under some
weak conditions. The covariance matrix of this distribution is given explicitly and it used as measure
of the accuracy. It has been shown that this matrix can be optimized with respect to the vector of
template functions and to the prefilter and that an optimal vector of template functions really do
exist. With the optimal choice of the template function vector and of the prefilter, the proposed
extended template function estimator reduces to the optimalinstrumental variable estimator. The
optimal template function vector and prefilter obtained depend upon the unknown system dynamics
and noise characteristics. Some approximate schemes must therefore be used when implementing the
optimal template function method. A multistep algorithm consisting of four simple steps has been
proposed to estimate the system parameters and the parameters describing the noise characteristics.

APPENDIX

Proof of Theorem 1

Multiplying both sides of (4.3b) with @7 (k) and of (4.7a) with e(k), subtracting one from another
and summing the final result from k = 1 to N one obtains from the left-hand side according to the
definition of the conjugate operators

> ik L{g™Y)elk) = Y L(g)p; (k)e(k) =0 (9.1)

k=1

and from the right-hand side

N N N
Z o5 (k) [y" (k) — oF (k)3 — >0l o5 (0)[y7 (k) = oF (0] = D" pi(R)=(k).  (9:2)
It follows from (9.1), (9.2) and (4.4) that
N
53, > 03 (k) [vF (k) — £F (0)F] = 0. (93)

Eq. (9.3) implies Theorem 1 has been proved.
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