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SOME RESULTS ABOUT RELATIONS IN THE RELATIONAL DATAMODEL

VU DUC TEl

Abstract. We introduce the concepts of minimal family of a relation. First, we show the algorithm finding a
minimal family of a given relation. After that, we prove that the time complexity of finding a minimal family
of a given relation is exponential in the number of attributes.

Tom t~ t. Trong bai nay chung t6i trinh bay ho t6i thieu cda mo t quan h~. Chung t6i dua r a t huat to an
tlm ho toi thieu cd a mot qu an h~ cho trurrc, sau do chirng minh dQ ph ire tap cd a v iec tirn ho toi thieu cd a
mot quan h~ cho triro'c tu5.n theo lud t so mil doi voi s6 hrcng cac thuQc tinh.

1. INTRODUCTION

The relational datamodel which was introduced by E. F. Codd is one of the most powerful
database models. The basic concept of this model is a relation. It is a table every row of which
corresponds to a record and every column to an attribute. Because the structure of this model is
clear, simple and mathematical instruments can be applied in it, it becomes the theoretical basis
of database models. Semantic constrains between sets of attributes play very important roles in
logical and structural investigations of the relational datamodel both in practice and design theory.
Important among these constraints is functional dependency.

This paper gives some results about computational problems related to relations.
Let us give some necessary definitions and results that are used in next section. The concepts

given in this section can be found in [1,2,4,6,7,8,161.
Let R = {ai, ... , an} be a nonempty finite set of attributes. A functional dependency (FD) is a

statement of the form A --+ B, where A, BE R. The FD A --+ B holds in a relation r =: {hi, ... , hm}

over R if Vhi, hi E r we have h;(a) = h](a) for all a E A implies h;(b) = h](b) for all b E 13. We also
say that r satisfies the FD A --+ B.

Let F; be a family of all FDs that hold in r . Then F = F; satisfies
(1) A --+ A E F,
(2) (A --+ BE F, B --+ C E F) ==> (A --+ C E F),
(3) (A --+ B E F, A <.;;: C, D <.;;: B) ==> (C --+ D E F),
(4) (A --+ B E F, C --+ D E F) ==> (A U C --+ BuD E F).

A family of FDs satisfiding (1) - (4) is called an J-family (sometimes it is called the full family)
over R.

Clearly, F; is an J-family over R. It is known [11 that if F is an arbitrary J-family, then there
is a relation rover R such that F; = F.

Given a family F of FDs, there exists a unique minimal J-family F+ that contains F. It can be
seen that F+ contains all FDs which can be derived from F by the rules (1) - (4).

A relation scheme s is a pair (R, F), where R is a set of attributes, and F is a set of FDs over R.
Denote A+ = {a : A --+ {a} E F+}. A+ is called the closure of A over s. It is clear that A --+ B E F+
iff B < A+

Clealy, if s = (R, F) is a relation scheme, then there is a relation rover R such that F; = F+
(see [1]). Such a relation is called an Armstrong relation of s.

Let R be a nonempty finite set of attributes and P(R) its power set. The mapping H : P(R) --+

P(R) is called a closure operation over R if for A, BE P(R), the following conditions are satisfied:
(1) A <.;;: H(A),
(2) A < B implies H(A) <.;;: H(B),
(3) H(H(A)) = H(A).
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Let s = (R, F) be a relation scheme. Set H.,(A) = {a: A ---> {a} E F+}, we can see that H., is a
closure operation over R.

Let r be a relation, s = (R, F) be a relation scheme. Then A is a key of r (a key of s) if
A .....•R E F; (A ---> R E F+). A is a minimal key of r(s) if A is a key of r(s) and any proper subset
of A is not a key of r(s).

Denote K; (K.,) the set of all minimal keys of r (s).
Clearly, tc., K., are Sperner systems over R, i.e. A, B E x, implies A g; B.
Let K be a Sperner system over R. We define the set of antikeys of K, denoted by K-1, as

follows:
K-1 = {A c R: (B E K) ==> (B g; A) and (A C C) ==> (::3B E K)(B S;; C)}.

It is easy to see that K-1 is also a Sperner system over R.
It is known IS] that if K is an arbitrary Sperner system over R, then there is a relation scheme

s such that K., = K.
In this paper we always assume that if a Sperner system plays the role of the set of minimal keys

(antikeys), then this Sperner system is not empty (doesn't contain R). We consider the comparison
of two attributes ;J.S an elementary step of algorithms. Thus, if we assume that subsets of Rare
represented as sorted lists of attributes, then a Boolean operation on two su bsets of R requires at
most IRI·elementary steps.

Let L S;; P(R). L is called a meet-irreducible family over R (sometimes it is called a family of
members which are not intersections of two other members) if V A, B, C E L, then A = B nC implies
A = A or A = C.

Let IS;; P(R), REI, and A, BEl ==> An BEl. I is called a meet-semilattice over R. Let
M S;; P(R). Denote M+ = {nM' : M' S;; M}. We say that M is a generator of I if M+ = I. Note
that R E M+ but not in M, by convention it is the intersection of the empty collection of sets.

Denote N = {A E I: A i= n{A' E I : A C A'}}.
In IS] it is proved that N is the unique minimal generator of I.
It can be seen that N is a family of members which are not intersections of two other members.
Let H be a closure operation over R. Denote Z(H) = {A : H(A) = A} and N(H) = {A E

Z(H) : A i= n{A' E Z(H) : A C A'}}. Z(H) is called the family of closed set s of H. We say that
N (H) is the minimal generator of H.

It is shown [5] that if L is a meet-irreducible family then L is the minimal generator of some
closure operation over R. It is known 11] that there is an one-to-one correspondence between these
families and f -families.

Let r be a relation. Denote At = {a : A ---> {a} E F, }. Then r is a Boyce-Codd normal form
(BCNF) relation if VA S;; R : At = A or At = R.

Let r be a relation over R. Denote E; = {Ei] : 1 :S i < J :S Irl}, where Ei] = {a E R : hila) =

hJ(a)}. Then E; is called the equality set of r.
Let T; = {A E P(R) : ::lEi] = A, jJEp'l : A C EI"J. We say that T; is the maximal equality

system of r .

Let r be a relation and K a Sperner system over R. We say that r represents K if K, = K.
The following theorem is known 17].

Theorem 1.1. Let K be a non-empty Spernet system and r a relation over R. Then r represents K
iff K-1 = TrJ where T; 2S the man mal equality system of r.

Let s = (R, F) be a relation scheme over R, K., is a set of all minimal keys of s. Denote by K:;l
the set of all ant.ikeys of s. From Theorem 1.1 we obtain the following corollary.

Corollary 1.2. Let s = (R, F) be a relation scheme and r a relation over R. We say that r represents
s if Kr = K.,. Then r represents s iff K.: 1 = 'I';; where T; is the maximal equality system of r.

In 16] we proved the following theorem.
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Theorem 1.3. Let T = {hl, ... , hm} be a relation, and Fan f-family over R. Then F; = F iff for
every A < R

{
n e., if 3EiJ E s, :A <;;; Ei} ,

HdA) = AR~Ei)

otherwise,
where HF(A) = {a E R : A -> {a} E F} and E; is the equality set of r.

Theorem 1.4. 13] Let K = {Kl, ... , Km} be a Sperner system over R. Set s
{Kl -> R, ... ,Km -> R}. Then K., = K.

(R, F) with F =

2. RESULTS

In this section we introduce the concepts of minimal family of a relation. We show that the time
complexity of finding a minimal family of a given relation is exponential in the number of attributes.

Now we introduce the following concept.

Definition 2.1. Let T be a relation over Rand F; a family of all FDs that hold in r. Put A;: = {a :
A -> {a} E Fr}. Set Zr = {A: A = An. Then M(Zr) is called the minimal family of T.

We construct a following exponential time algorithm finding a minimal family of a given relation.

Algorithm 2.2.
Input: a relation r = {hl, ... ,hm} over R.
Output: a minimal family of T.

Step 1: Find the equality set E; = {Ei} : 1 ::; i < J ::;m}.
Step 2: Find the minimal generator N, where N = {A E E, : A =I n{B E E; : A c B}}.
Denote elements os N by Al, ... , At.
Step 3: For every B <;;; R if there is an Ai (1 ::; i ::; t) such that B <;;; Ai, then compute

C = n Ai and set B -> C. In the converse case set B -> R.
D~A.
Denote by T the set of all such functional dependencies.
Step 4: Set F = T-Q, where Q = {X -> YET: X -> Y is a redundant functional dependency}.
Step 5: Put M(Zr) = {(B,C) : B -> C E F}.

According to Theorem 1.3 and definition of M(Zr), Algorithm 2.2 finds a minimal family of T.

It can be seen that the time complexity of Algorithm 2.2 is exponential in the number of at-
tributes.

Proposition 2.3. Given a BCNF relation rover R. The time complexity of finding a minimal family
of r is exponential in the number of elements of R.

Proof. From a given BCNF relation r we use Algorithm 2.2 to construct the minimal family of T. By
definition of BCNF, we obtain

M(Zr) = {(B,C): B -> C E Fr} = {(B,R): B E Kr}.
Let us take a partition R = Xl U··· U Xm U W, where IRI = n, m = In/3]' and IXil = 3 (1 ::;

t::; m).
Set M = (K-l) -1, i.e. K-l is a set of minimal keys of M, we have:
M = {C : ICI = n - 3, C n Xi = 0 for some i} if IWI = 0,
M = {C: ICI = n-3, CnXi = 0 for some i (1::; i::; m-1) or ICI = n-4, Cn(XmuW) = 0}

if IWI = 1.
M = {C: ICI = n-3, CnXi = 0 for sorne z (1::; i::; m) or ICI = n-2, CnW = 0} if IWI = 2.
It is clear that 31n/4) < IK-11, IMI ::; m + 1.
Denote elements of M by Cl, ... , Ct. Construct a relation r = {ho, b«, ... , ht} as follows:
For all a E R ho(a) = 0, for i = 1, ... , t
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h;(a) = { ~

Because class of BCNF relations is a special subfamily of the family of relations over R, the next
corollary is obvious.

Corollary 2.4. The time complexity of jindisu; a minimal [amils, of a given relation r t s exponential
m the number of attrib-utes.
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