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THE FAST ALGORITHM FOR FOUNDING NONPREEMPTIVE SCHEDULE
WITH SOME ON-TIME JOBS IN MINIMAL PROCESSING TIME

TRINH NHAT TIEN

Abstract. In [2] we presented an O(nz.logn) algorithm to determine a schedule with maximal number of
on-time jobs in minimal processing time for problem 1| r; |Z U, in the case that release dates and due
dates are satisfied I} < I < ... X I,,, where [; := [r]-, dJ-] ; (e, rj < 1 = dj < dg).

In this paper, we would extend the above algorithm to determine a schedule of the same problem but
with any number of on-time jobs in minimal processing time. The time for this problem is O(ns.logn).

Tém tit. Trong (2] ching t3i di trinh bay thuit toin O(n?.logn) d€ xic dinh thdi gian bidu véi s8 luong
16n nhit cdc cong viée ding han va thoi gian xd 1y it nhit cho van dé 1| r; | U, trong dé I, := [r;, d;]
ma T; < T = d]‘ < dk.

Trong bai bdo niy, ching t6i m& réng két qud cda thuit todn trén cho bai toan xay dung thoi gian bidu
cda cing vin dé nhung s&8 lwong céng viéc ding han 14 tuy y nhung thoi gian xd- Iy 1a {t nhat.

)

1. SOME BASIC CONCEPTS

Some conceptions in the paper are presented in [2]. Now we would remind some concepts and
notations related to “ob”, “realization” and “schedule”. The following data can be specified for each
job wu:

- ry 1s a release date, on which u becomes available for processing;
- d, is a due date, by which u should ideally be completed;
-ty 1s a processing tume (or length) of u.

We assume that the above data are nonnegative integers and are regarded as parameters of job
u. For convenience we will also use a concept “pre-job” u; it is a pair (I, t,), where I, = [ry, d,] is
its active area. A pre-job u such that t, <d, — r, is said to be a job.

Ry := |by,cy] (by 1s a starting time, c,, is a completion time)
is said to be a realization of job u on machine. A job u is said to be completed on time (or a on-time
job) if ¢,, < d,,; otherwise a job u is said to be late.

Let I; = [r;, d;] and I; = [r;, d;] be active areas of corresponding jobs ¢ and 7, respectively. Then
the area I; is said to be ahead of area [; (or area [; is behind area L) and denoted by I; < I; if and
only if r; < r; and d; < d;.

Similarly I; < I; if and only if I; < I; and I; # I;. [B,C| := [Minr;, Maxd;] is said to be an
active area of the system; where B is a release date and C'is a due date of it.

Let U={u;,us,...,u,} be a subset of jobs on the system. Suppose that S := {Ry,, Ry,,..., Ry, } is
a set of realizations of corresponding jobs uy, us, ..., u, such that Ry, ﬂRul =0, Vi#£ 31,7 =1,2,...,8.
Then S (or |JI_, Ry,) is said to be a schedule on the set U of the system (or a schedule of the system).
U:_, Ru, 1s also said to be a processing area of the schedule S.

A realization R, of job u in schedule S is written by R,(S) or u(S) and sometime only by {u}.
In the paper we assume that R, (S) C I, therefore the schedule S is regarded as a set of disjunctive
realizations of on-time jobs.

We note some following parameters of the schedule S:

- S := s is a number of realizations or a number of jobs;
-ty =y :_, ty, is a processing time (or a length);

- bg = Min {b,, } is a starting time;

- cg := Max {c,, } is a completion time;
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- [bs,cg] is an active area of schedule S.

Let u := ([y,t,) be a job, [X, Y| be a time area. We define a pre-job v := (I,,t,) on [X, Y] such
as I, = I, N [X,Y], ty =ty and we write v = u 1 [X,YI‘

For a set of jobs U = {uy,uz,...,u,}, we denote a set of pre-jobs on [X,Y] by U 1 (X,Y] =
{ur 1[X,Y],uz 1 [X,Y],..,us T [X, Y]}

We say that a schedule S is in the area [X,Y] if its active area [bg,cs] C [X,Y].

Note that we define a schedule only on the set of jobs, not on a set of pre-jobs. A set of jobs
U = {uy, ug, ...,u,}, which can create any schedule, is said to be a scheduled set. In this paper, the
such set contains all on-time jobs of the schedule. Sometime for schedule S having scheduled set
{u1, ug, ..., uys}, we also write S = {uy, ug,...,u,}.

We denote problem [T] by following:

[T]: 1| r; |>-U; , where U; =0 if ¢; < dj, U; = 1 otherwise.

This problem means that the system has n jobs with different release dates r;, they are available
processing on one machine, we have to construct a nonpreemptive schedule with a minimal number
of late jobs (i.e., a maximal number of on-time jobs). We know that the problem is strongly NP-hard,
authors H. Kise, T. Ibaraki and H. Mine (1979) provided an O(n?) algorithm for problem [T] in the

case that release dates and due dates are similarly ordered ( i.e., r; < rp = d; < di ). We like to
express this case by following:

K1]: 1|, < I <...<I,|Maz}, (}j , where [}j: 1if ¢y <dy, (—JJ: 0 otherwise.
The problem is to build a nonpreemptive schedule with maximal number of on-time jobs.

Now we would pay attention to following special cases:

[T1]: 1 < Iz < ... < I,|Max > Ujand Min)  U,.t; .
The problem is to construct a nonpreemptive schedule with a maximal number of on-time jobs and
furthermore in minimal processing time. In [2] we presented an O(n?logn) algorithm for the problem.

(T2): 1|y < I, < ... < I,| S U,;= s and Min Y Ut
The problem is to construct a nonpreemptive schedule with a fixed number of on-time jobs (i.e., s )

and furthermore in minimal processing time. In this paper, we extend the O(n?logn) algorithm in
(2] to solve the problem [T2].

2. A s-OPTIMAL SCHEDULE

We would remind some following concepts and notations presented in [2].

Let R; = [b;,¢;] and R; = [b;, c;| be realizations of corresponding jobs ¢ and j, respectively. We
say that R; is ahead of R; (or R; is behind R;) and write R; < R; if and only if they satisfy one from
two following conditions: 1) ¢ = 7 and b; < by; 2) © # 7 and [; < I;. Similarly we write R; < R; .

Let P = {uy,us,...,u;} and Q = {vy,va,...,v,, } be schedules with the same number of jobs. We
say that P is ahead of Q (or Q is behind P) and write P < Q if and only if R,,, < R,,, V2 =1,2,...,m.
Similarly we write P < Q.

A schedule S = {uj, us, ..., u,, } is said to be R-schedule in [ X, Y] if it is in the area and realiza-
tions [by,, ¢y, | have following forms:
ca,, =Mind{dy_ ;¥ }sbu  —icu,, —tu;

e = Min{dg. bu. ., 1 b = oo, = tan Yi=m— Lim—2,. 2 L

Let P = {u;,us,..,u,} and Q = {vy,v2,...,v,} be R-schedules in [X,Y]. We say that P is

R - better than Q and denote by P >, Q < one of the following conditions satisfied:

(r1) p> q (i.e., P has the number of jobs more than Q);

(r2) p=gqand tp <ty (i-e., P has the processing time less than Q);

(r3) p=qand tp =ty and bp > by (i.e., P has the starting time later than Q);

(r4) p=gqand tp =ty and bp = by and Q < P (i.e., P is behind Q); With i=1,2,3,4, if P >, @ in
the sense (r;), we write P >, Q.
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We say that schedule S is R — best if and only if it is R-schedule having:
(ro1) a maximal number of jobs completed on time ;
(roz) a minimal processing time tg from schedules satisfying above condition;

(ros) a latest starting time bg from schedules satisfying above condition;
and 1t 1s
(rog) behind all schedules satisfying above condition.

In the case that the R-best schedule has only 1 job (i.e., 1 realization), we call it R-best
realization.

Let P = {uy,uz,...,u,} be R-schedule in [Xp,Yp] and Q = {vi,v2,...,u,} be R-schedule in
[XQ,YQ], where Yp < X | L 5.0,

We define a operation, which is called R-connection and denoted by P&, @, to connect P to Q.
The result of the operation is schedule S, having following realizations:
b0, (), €0, (S)] = [bu, (Q), 0, (@), ¥ 5 = gy g — 1, . 1
[bup(S'), cup(S)], where cuﬂ(S) = Min{dup, bot; bup(S) = cup(S) = s
[bu,(S), cu, (S)], where ¢y, (S) = Min{d,,, buir (8) )5 0w, (8) = ¢4, (S) — tu,,

Vi=p—1,p—2,..,1

A schedule S = {uy, us, ..., u,, } is said to be L-schedule in [X,Y]ifit is in the area and realizations
[by,, cu,] have following forms:
bu, = Max {X, 7y, }; cuy = buy + tuy;
bu; = Max{ew; s 7, Y500, = b, + buy Y3=12,8,...,m.

Let P = {uy,us,...,up} and Q = {vy,v2,...,v,} be L-schedules in [X,Y]. We say that P is

Fors =1,2,3,4, if P >, Q in the sense (l;), we write P >, Q.
We say that schedule S is L-best if and only if it is L-schedule having:
(lo;) a maximal number of jobs completed on time;
(loz) a earlest completion time cg from schedules satisfying above condition;
(log) a earlest completion time of realizations from schedules satisfying above condition;
and 1t is
(log) ahead of all schedules satisfying above condition.
Let P = {uy,uz,...,u,} be L-schedule in [Xp,Yp| and Q@ = {v;,v2,...,9,} be L-schedule in
(X, Yql, where Yp < X, , L, = I,.
We define a operation, which is called L-connection and denoted by P &; Q, to connect Q to P.
The result of the operation is schedule S, having following realizations:
[bu. (S)’ Cuy (S)] = [bu; (P): [Cu‘ (P)]) Yio=12..,5
[65,(S), co, (S)], where b,,(S) = Maz{cp,ry,}; co, (S) = by, (S) + tu,;
[by, (S), cu, (S)], where by, (S) = Max {cy,_, (S), 70, }; 0, (S) = b0, (S) + t0,, V 1 =2,3, ..., q.
We say that schedule S is s-optimal if and only if it is R-schedule having:
(01) just s jobs completed on time;
(02) a minimal processing time tg from schedules satisfying above condition;
(03) a latest starting time bg from schedules satisfying above condition;
and it is
(04) behind all schedules satisfying above condition.
Conclusion. According to the above conceptions, the s-optimal schedule is just R-best schedule
having s on-time jobs. Therefore solving problem [T2] is just determining the s-optimal schedule.
We call the schedule constructed by authors Kise, Ibaraki and Mine (1979) K-schedule. We call
their algorithm K-algorithm. We assume that this schedule has just m jobs, it is the maximal number
of on-time jobs.
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3. POSITION OF s-OPTIMAL SCHEDULE WITH K-SCHEDULE

Conclusion. Let U be a set of n jobs on system [T2], [B,C| be an active area of the system, let
K = {z,,25,...,2,,} be K-schedule, [b;(K),c;(K)] := [b,,(K),c., (K)] be the realization z;(K). We
use some results in [2], for instance K-schedule is just L-best schedule.

We write following notions:
Up = {gobs u || I, < Iz, }; Uy = {gobs u || I, <L} (1)

U; = {jobs u || 7 P o Iz‘ﬂ} for 1=1,2,...,m—1;
l.e., we can put in order n jobs from U to m + 1 following subsets:

- L 2 nQ
(]() - {u()yu()v ey Ug )
_ 2 n ..
Uy ={z,ui,...,u}"}, where z; = u};
Us = {z2,u3,...,us*}, where z5 = u;
- 2 n e
Uy = {zi,u?,...,ul"}, where z; = u};
_ 2 Ny R
Um = {Inm Uppyy ooy um"}) where Tin = Uy,

where U = UyUU, UU,U...UU,,; n=ng+n, +ng+..+n,,.
We write U = U; UU; 4, UU; 12 U...UU,, ; nl=n;+ni41 +njia+ ...+ ngy,.
The following lemmas and their proofs are similar as according lemmas in [2]:

Lemma 1. Let K = {z,, 20, ..., T, } be K-schedule, W = {w;, wa,...,w,} be s-optimal schedule. Let
sets of jobs U; and other notions be such as (1). We have following result:
For k=1,2,...m — 1, 1f Ux contains w; € W such that

cor (K) < cw, (W) and s—(j+1)<m—k (2)

th
o Ux doesn’t contain a nezt job w,;4; € W, (3)
Uy doesn’t contain any job we W. (4)

Lemma 2. The assumptions are the same as in the Lemma 1. We have following result:
Fork=1,2,...m—1, 1f U U {zk41} contains w; € W such that

by, (W) < cs(K) and 7 —2<k (5)

th
o Ur — {zk} doesn’t contain a preceding job w;_; € W, (6)
U,, doesn’t contain a job weEW such that cy (W) < c., (K). (7)

Lemma 3. The assumptions are the same as in the Lemma 1. We have following result: There us
not any integer k (0 < k < m) such that Uy — {zx} contains 2 nerghbouring jobs w;, wjy, € W.

Proof. By the contradiction, suppose that there is integer k (0 < k < m) smallest such that U — {zx}
contains 2 neighbouring jobs w;, w;+; € W. We consider 2 following cases:

- When c¢,, (K) < ¢y, (W). On the other hand, there is s — (5 + 1) < m — k. That is in the
contradictory with Lemma 1.

- When ¢, (K) > ¢y, (W). It means by, ,, (W) < ¢, (K). On the other hand, there is (1+1)-2<
k. That is in the contradictory with Lemma 2.

Lemma 4. The assumptions are the same as in the Lemma 1. We have following result:
Wy 6U{UUi+1U...UUi+,n_,‘ U{£i+7",—n+l}; Vz——— 1,2,“.,3— 1 (8)
and w, € Uy U Usipq U o Wil

We can easily prove the lemma by the contradiction and the Lemma 3.
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4. s'-OPTIMAL SCHEDULE

From result of Lemma 4 we define concept “s*-optimal” schedule related to the s-optimal sched-
ule.

Definition 1. Let K = {z;, z5, ..., z,,} be K-schedule, let sets of jobs U; and other notions be such
as (1). For d = 1,2,...,m, with ¢ (1 < ¢ <m —d+ 1), we say that S is ¢*-optimal schedule on set
of jobs U; 1 [B,C]if and only if it is g-optimal and has following form: S := {wy, Wit 1, ..., Watq—1},
where

w; ET; Ui Vi Ul gog Udgiggei1}y Yi=didt10d+g—2 (9)
and Wi+ q—1 & U(1+,1_1 U Ud+t[ U sl U,,,_.

We see that s*-optimal schedule on set of jobs U/ 1 [B, C] is just s-optimal and so that we will
determine the such schedule.

Lemma 5. The assumptions are the same as in the Definition 1. We have following result:

1) Ford = 1,2,...mywith q¢ (1 <qg<m—d+1), +f S1is qg"-optimal schedule on set of jobs
Uj1[B,C] then b, (K) < bs.

2) If Wis s*-optumal schedule then bg < by .

We can prove result 1/. by contradiction and by using definitions of g*-optimal schedule and
K-schedule. Result 2/. is the corollary of result 1/.

Definition 2. The assumptions are the same as in the Definition 1. For d = 1,2,...,m, with
q(1<qg<m-—d+1), we define following concepts:

Wi = (Wiwz ., WP} is said to be a full set of g*-optimal schedules on the set U if and only
if it satisfies following conditions:

W, is ¢" — optimal schedule on U; 1 [B,C]| (10)

«

W} is ¢' — optimal schedule on U} 1 lby:-1 +1,C], (11)
d

where b, -1 is a starting time of schedule W;_l, V4= 2; 3 ueeiDs

d
Vi={V},VZ, ...,V]} is said to be a infull set of ¢"-optimal schedules on the set U if and only
if it satisfies following conditions:

V} is ¢" — optimal schedule on (U; — {z4}) 1 [B,C]| (12)
Vi is g¢"-optimal schedule on (U] — {z4}) 1 [bvt.-l +1,C], (13)
where b,,.-1 is a starting time of schedule Vj_l, Vo =23, 07

7! = (Wa, Va) is said to be a parr of 2 sets of ¢*-optimal schedules on set Uj.
Let R = {S*,S2%,...,57} be a set of R-schedules with the same number of jobs. We say that the
set has R-order if tg: < tgi+1  bg < bgitr; S* <X S Vi=12...,p—1

Proposition 1. The defined sets Wy and V4 have R-order.

Definition 8. With d (1 <d <s—1), let 7/ := (W], V]) is a pair of 2 sets of ¢*-optimal schedules
on set Uj.

AL = 87 Tz == 7l m_,} is said to be a system of pairs of 2 sets (or a system) of ¢*-optimal
schedules on set U .

Lemma 6. Ford (1<d<s—1), let ﬂ:’l;i = {Z;’;ll, Z;’;;, . Zi";fl_(kl)} be a system of (¢ — 1)*-

optimal schedules on the set Uy, .

Suppose that A% = {F], ZLU sy (2’_“”_”} be a system of ¢*-optimal schedules on the set Uj.

We have following concluston:
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Every schedule from the system A% has to contain any schedule from the system A:’lli as ts
“ending part” with (¢ — 1) jobs.

Corollary. The s*-optimal schedule has to contain any schedule from the system ﬂ;ﬁl as its “ending
part” with (s — 1) jobs.

5. ALGORITHM DETERMINING s*-OPTIMAL SCHEDULE
5.1. Main idea of algorithm

By the above results, our algorithm will constructed by following steps:
- First determine K-schedule K = {z,, z,, ..., z,,} by K-algorithm with time O(n?) or by Lawler’s
algorithm with the time O(n.logn).

- Lemma 4 and Lemma 5 determine the position of the s-optimal schedule W in comparise with
K-schedule. Here if W = {w), wa,...,w,} then

w; € U; U Ui+1 U...u Ui+TIL—.‘l U {Ii+7n—3+l}a Vi=1,2,...,s — 1; (14)

wy €U, UU,4 1 U...UU, and bg < bw.
Ford:=s,s—1,s—2,...,2,1, put g:=s —d+ 1.
To create W, we construct the system A} of all schedules, which could become W, these such

schedules equally have property (14). By Lemma 6, this system will created recurssively by 3 following
algorithms:

1/ Algorithm SBASE will create the basic system 4!, i.e., the system of 1*-optimal schedules on
the set U;; one from these schedules will become “an ending part” {w,} of optimal schedule W.

2/ Procedure SSTEP will from the well-known system ﬂ:ll;ll of (¢ — 1)*-optimal schedules on the
set Uy, determine a system A’ of g*-optimal schedules on the set Uj; one from these schedules will
become “an ending part” {wq, wyi1, oy Wit (s—1)} of the optimal schedule W.

3/ Algorithm USE-SSTEP will from the basic system A} apply (s—1) times the procedure SSTEP,
we will obtain successively systems: A2 | A% . .. Ay"', A%, where A3 = {7, 75, .. f,;_(s_”},
A= (W, V). Suppose W) = {W! W2 .. WP} then W' is just the desirable s*-optimal schedule.

5.2. Some auxiliary procedures

1/ Procedure finds R-best realization on the set of jobs:

Let a set of jobs U = {z',z2,...,2%}, according to the definition of R-best schedule, we can
create a procedure to find R-best schedule with 1 job (i.e., R-best realization) {z} on U and write:
{z} :== RB-JOB({z!, 2%, ..., z*});

In the case the set is restricted by the time area [X, Y|, we write:

{z} := RB-JOB({z!, 7%, ...,5*} 1 [ X, Y));

Processing time of this procedure is O(k). We need note that, may be {z*, z%, .., z¥} 1 [X,Y] is
not a set of jobs, therefore there is not such {z}.

2/ Procedure connects a set of jobs to a schedule: JOB-SCHED(U,b,S;2Z,K,p);
Input: - U = {z',z2%,...,z*} is the set of jobs such as I,1 < I;2 < ... < Lx;

- b 1s a starting time of the area time;

- S is R-schedule on the set of jobs {y',y?,...,y"} such as Ijx < Iy < L2 < ... < L.
Output: - Z = {Z,, Z>,...,Z,} is a set of R-schedules, every schedule Z; is created by R-connection
of R-best realization on U to S;

- K ={ky, ka,...,k,} is a set index corresponding to Z; p = §Z.
Method: The algorithm applies the procedure RB-JOB to determine a R-best realization on U, if
there is the such realization then connects it to S.

Algorithm:
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Begin
1= 1
if there is {zF'} := RB — JOB({z', 22, ..., 2%} 1 [b, bs])
then Z, := {z*1} ®, S and p:=1 else put Z := @ and p:=0;
Repeat
gr=a+ L
if there 1s {:ck‘} :=RB — JOB({zk"1+l,zk‘*l+2, ...,zk} T bz, , +1,bs])
then Z; i= {zk‘} @, S and p :=i;
Until p < ¢; (i.e., there is not {z*'} );
End.

Proposition 2. Let r,, dk,, tk, be parameters of job z**, 1 = 1,2,...,p. The procedure JOB-SCHED
guves following conclustons:
i 8 by <lgy <. < tk,,;' tk, < tx], Vol e U 1 [b,bg],‘
b, < tx7, Vol e U 1 [bzikl e l,bg], Y= 2,3, sy 0
2. {z%'} us R-best realization of job z*+ 1 [b,dg,], Ye=1,2,....,p— 1.
3. {z',z%,.. 2"} 1 [bz, + 1,bs] 1s not a set of jobs, Vi=1,2,...,p— 1.
4. Z ={Z\,Z2,...,Z,} has R-order.
5. The processing time of the procedure is O(k?), where k = {U.

For simple we presented the procedure JOB-SCHED by the such method. Practically we use the
fast algorithm (for instance Quicksort or Heapsort) to sort realizations on U according to R-order,
then connect the realizations to S. This method needs only the time O(k.logk).

Proposition 3. Fori = 1,2,...,p, let S n JOB-SCHED be d-optimal schedule, then Z; 1s (d + 1)-

optimal schedule on corresponding set of jobs and contains S as tts “ending part”.

3/ Procedure connects a set of jobs to a set of schedules: JOB-SCHEDULES(U,b,R; Z,p)
Input: - U = {z!,22,...,2%} is the set of jobs such as I,1 < I,z < ... < Lx;
- b is a starting time of the area time;
- R ={8*% 8% .. 8"} is the set of R-schedules having the same number of jobs on a set of jobs
{y',v? .., y"} such as Lk < Iy < I» < ... < I ; where r=4{R.
Output: Z ={Z,, 25, ...,Z,} is a set of R-schedules, every schedule Z; is created by R-connection of
R-best realization on U to S € R; where p = 2.
Method: The algorithm applies procedure JOB-SCHED r times.
Algorithm:
Begin
JOB-8CHED[{z> 5% wez® by 18§28 | 225 v Zlfl}, {hdudo s s kll”},pl);
if p; = 0 then put bZ; +1:=band /cll)1 = 1z ’
For 7 := 2 to r do
begin
JOBfSCHED({zk”t—l yoory BN, Bgtet 1, 8% {28, 28y Zzi‘}! {1 e, kz,'},pi);
if p; = 0 then put by, :=b -1 and k}, := kiff i
i Pk i i—1

end;

Put Z = {2}, Z4, .., B 22,22, 22 i B0, By 20} {20, 2y o B}

pL)
p:=p1+p2z+ ...+ pr;
End.

Proposition 4. The procedure JOB-SCHEDULES gives following conclustons:
Ltz <tz <..< tzs ¥i =1,2, w7
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2. bZ; < bZé AP < bz;’ < bZ;+1, Nz = 1,2,...,7‘}.
3.2} < Z3 < ..=Z} < Z\™, Vi=1,2,..,r;

Proposition 5. Let R n procedure JOB-SCHEDULES be the set of d-optimal schedules, then Z 1is

the set of (d + 1)-optimal schedules on corresponding sets of jobs and every such schedule contains
corresponding S* € R as 1ts “ending part”.

Proposition 6.
1. The number of schedules in the set Z vs p < k +r, where k = jU, r = §R.
2. The processing time of procedure JOB-SCHEDULES vs r.0(k.logk).

4/ Procedure unifies 2 sets of schedules, having R-order: UNION (P, Q,X,Y; T);
Input: - P = {Py, P5, ..., P,} is a set of R-schedules, where P, >, P, >, ... >, Py

- 0 ={Q1,Q2,...,Q,} is a set of R-schedules, where Q| >, Q2 >, ... >, Q;

- |X,Y] is the time area.
Output:

T ={T\,Ts,...,T;} is a set of R-schedules, where T}, =, Th >, ... =, T}, t < p + q.
Method: The procedure is similar as unifying 2 ordered sets of integers.

The processing time of this procedure is O(p + q).

5.3. Main algorithms

Let K = {z,,z2,...,z,,} be K-schedule, let sets of jobs U; and other notions be such as (1).
There are 3 following main algorithms:

1/ Algorithm SBASE

a. Auxiliary procedure BASE: BASE(U,b; 7).

Input: U := {z°,z*,2%,...,2%} ; b is a integer.

Output: 7 := (W, V) is the pair of 2 sets of 1* — optimal schedules on U,
W — {Wl,Wg, "'?Wl’}’ V = {Vl,VQ, ceey ‘/‘I}
Method: The algorithm applies procedure RB-JOB to determine 1*-optimal schedule on U.
Algorithm:
Begin
N
if there is {z*!} := RB-JOB({z", =%, =2, ..., z*} 1 [b, C])
then W, := {z*1} and p := 1 else put W := @ and p := 0;
Repeat
1:=1+ 1;
if there is {z*'} := RB-JOB({zF -+ zk-172 2k} 1 by, , + 1,C))
then W; := {z*} and p := j;
Until p <1 ; ( i.e., there is not {z*} );
=
if there is {y"!} := RB — JOB({z!,22,2°,...,2z*} 1 [B, C])
then V, := {y"*} and q :=1 else put V := 0 and q :=0 ;
Repeat
i =g+ 1
if there is {z**} := RB-JOB({z"-1*1 gh-172 2%} 1 [by,_, + 1,C])
then V; := {z"} and q := j;
Until ¢ < ¢; (i.e., there is not {z"});
End;
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b. Algorithm SBASE:

Input: U}, b;(K), for i:s,s—l .,m are the same as (1).

Output: A, :={F', 7} |, ..., %.} is the system of 1*-optimal schedules on set U?.
Method: The algorithm applies the procedure BASE (m — s + 1) times.
Algorithm: For ¢ :=s To m Do BASE(U},b;(K); 7*);

1

Proposition 7.

1. AL ¢s just the system of 1*-optimal schedules on U .

2. 4WS and §V}! < nf, fori=s,5—1,...,m, where 7! = (W:,V}).
3. 71 is determined after the time O((n})?).

4. Processing time of the algorithm 1s E(m e O((n?)?).
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By the method mentioned in the Proposition 2, ! is determined after the time O(n;.logn}),

therefore the algorithm SBASE needs only the time E e wl) O(n}.logn}).

2/ Procedure SSTEP: SSTEP(A4 1, A%); d=s—1,5 -2

d+ 1 2,1

g eeny by

Input: ﬂ:ll;ll = {_7‘1”+11, 7{21+21, LG FL q—l)} is the system of (¢ — 1)*-optimal schedules on the set

d+m—(
Url+ 1
Output:

AL =R F] % fi+1)' 5 .7:;’+m_,1) 1s the system of ¢"-optimal schedules on the set U.

Method: The algorithm applies procedure JOB—-SCHEDULES to connect jobs of UyUUy4 1 U...U
Uitm—s U{Zdsm—s+1} to schedules of A:’l;i, after that by procedure UNION to unify the created

sets of schedules.

Algorithm:
Begin
For ¢ :=d To (d + m —s) Do
begin
JOB-SCHEDULES (U;,b;(K), w;‘rf,f €);
JOB-SCHEDULES(U; — {z:}, B, w;gf,g 9);
JOB-SCAEDULES({z;1.}, B, VI ' ¥, h);

UNION (&, 4, b:(K),C; W), UNION (G, X, B,C; V),
end;

End;

Proposition 8. Ford:=s—1,5s—2,..,2,1 and ¢g:=s—d+ 1:
bl. A% s just the system of q* -optimal schedules on the set Uj.

2. Fori=d,d+1,..,d + m—s: {W! and V! < n}, where n} =n; + nip1 + ... + np.

3. The processing time of the algorithm 1s Z:l;;"ﬂl O(ni.logn;).n; .

3/ Algorithm USE-SSTEP:

Input: A! is the system of 1*-optimal schedules on Uj.

Output: A2, A% ,, ..., A", A} are the desirable systems of schedules.
Method: The algorithm applies procedure SSTEP (s-1) times with input Al.

Algorithm: For d := s — 1 DownTo 1 Do SSTE'P(A:IHll, AL);

Theorem 1. In the output of algorithm USE-SSTEP suppose

=R 5 (*—1)}1 Fr= (Wi, V) and Wy = {W1 W2 .. WP}, then W' 1s just the desir-

m—
able s* -optimal schedule.
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Proof. By Proposition 7, A} is just the system of 1*-optimal schedules on U. By proposition 8, Al is
the system of ¢"-optimal schedules on the set U}, for d = s — 1,5 —2,...,2, 1. Algorithm USE-SSTEP
applies procedure SSTEP (s — 1) times with input A}, by induction on d, we successively obtain the
following systems of schedules: A2_, A3_,, ..., A3™', A}, suppose A} == {7, %, ..., 7;_(3_1)}, =
(W, V1) and W, = {W' W2, . W?}, then by definitions 2, 3, W is just the desirable s* — optimal

schedule.

Theorem 2. Processing time of the algorithm USE-STEPD 1s (m — s + 1).0(n?logn).
Proof. According to the proposition 8, the processing time of the procedure SSTEP is
Z;[;;”““ Ofn;.logn;)n;,  ford=58—1,5—2,...;2, 1.
Algorithm USE-SSTEP applies procedure SSTEP (s— 1) times, therefore time for this algorithm

is $—1 d+m—s m—s s—1
Z( Z O(n;.logn;).n; ) = Z (Z O(natilognati).ny iy)
d=1 1i=d 1=0 d=1
= (m~s+1).(z O(ny.logni).ny ). (15)

k=1

Without loss of generality suppose that there is n;, ,, = 0, we have following calculations:

m m

Z ni.(logng).mg | < (logn).(z NETiii )
k=1

k=1
where m m m m
% - * * * * * * 2
Z NNy = Z(”k = Mey1) Nigy = Z N -Mpeyp1 — Z(’%H)
k=1 k=1 k=1 k=1
m m m
<D oneni = o (mid)? = D (1) — (nig)?)
k=1 k=1 k=1

= (n1)* = (n3)* + (n3)” = (n3)* + .. + (ny,)* = (ngny1)® = (n])*
The above calculations implies the proof.

Corollary. Main algorithm determines the optimal schedule of problem |T2] after the time (m — s +

1).0(n?logn), where m is the mazimal number of on-time jobs, s is the fized number of on-time j0bs
(s <m); (i.e., O(n’logn)).

Conclusion. We know that m is the maximal number of on-time jobs, therefore the problem [T2]
is solved only if s < m. In the case s=m, the problem [T2] is just the problem [T1], according to the
above corollary the time for this case is O(n%logn).
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