
Tep chi Tin hoc ,'<1 Dieu klJie'n hoc, T.l7, S.l (2001),21-30

THE FAST ALGORITHM FOR FOUNDING NONPREEMPTIVE SCHEDULE
WITH SOME ON-TIME JOBS IN MINIMAL PROCESSING TIME

TRINH NHAT TIEN

Abstract. In [2[ we presented an O(n210gn) algorithm to determine a schedule with maximal number of
on-time jobs in minimal processing time for problem 11 Tj 12:: Uj in the case that release dates and due
dates are satisfied I, :S 12 :S ", :S In, where Ij := [Tj, dj] ; (i.e., Tj < Tk '* dj ~ dk).

In this paper, we would extend the above algorithm to determine a schedule of the same problem but
with any number of on-time jobs in minimal processing time. The time for this problem is O(n3.logn).

Tom t~t. Trong [2[ chung t6i cli trrnh bay th udt to an O(n2.logn) cle' xac dinh thai gian bie'u vo'i so luo'ng
IO'nnhfit cric c6ng v iec clung han va t hoi gian xrl'ly it nhit cho vin cle 11 Tj 12:: Uj, trong do Ij := [Tj, dj]'
ma Tj < Tk '* dj ~ dk.

Trong bai b ao nay, chung t6i mo rorig ket qui cii a th uat tcan tren cho bai to an x ay dtrng thO'i gian bie'u
cu a cling van cle nh u'n g so luo'ng cong v iec clung han la tuy y nhung thoi gian xd: 11 la it nhat.

1. SOME BASIC CONCEPTS

Some conceptions in the paper are presented in [2]. Now we would remind some concepts and
notations related to "job ", "realiztition" and "schedule ". The following data can be specified for each
job u:

- Tu is a release date, on which u becomes available for processing;
- d" is a due date, by which u should ideally be completed;
- tIL is a processing time (or length) of tz ,

We assume that the above data are nonnegative integers and are regarded as parameters of job
u . For convenience we will also use a concept "pre-fob" u; it is a pair (I,,, tu), where I" = [Tu, du] is
its active area. A pre-job u such that i; <:::: d., - T" is said to be a fob.

R" := [b,,, c,,] (bu is a starting time, C" is a completion time)
is said to be a realization of job u on machine. A job u is said to be completed on time (or a on-time
fob) if c" <:::: d,,; otherwise a job u is said to be late.

Let I, = iri, di] and I) = [r), d)] be active areas of corresponding jobs i and i, respectively. Then
the area Ii is said to be ahead of area Ij (or area Ij is behind area I;J and denoted by I, :S Ij if and
only if ri <:::: rj and d, ~ dj.

Similarly I, -< Ij if and only if I, :S Ij and I, 1- Ij. [B,G] := [MinTj,Maxdj] is said to be an
actiue area of the system; where B is a release date and G is a due date of it.

Let U=I Ul, U2, "., u.,} be a subset of jobs on the system. Suppose that S := {RUl' RU2' "., Rus} is
a set of realizations of corresponding jobs Ul, U2, .'" u, such that Ru, nRu) = 0, Vi Ie f i, f = 1,2, "., s.
Then S (or U:= 1 R",) is said to be a schedule on the set U of the system (or a schedule of the system).
U:=l R", is also said to be a processing area of the schedule S.

A realization Ru of job u in schedule S is written by R,,(S) or u(S) and sometime only by {u}.
In the paper we assume that Ru(S) C Iu, therefore the schedule S is regarded as a set of disjunctive
realizations of on-time jobs.

We note some following parameters of the schedule S:
- ~S := s is a number of realizations or a number of jobs;
- t.,,. := 2:::=1 t-; is a processing time (or a length);
- bs := Min {bu,} is a starting time;
- Cs := Max {c",} is a completion time;



22 TRINH NHAT TIEN

- [bs, cs] is an active area of schedule S.
Let u:= (Iu, ta) be a job, [X, Y] be a time area. We define a pre-job v:= (Iv, tv) on [X, Y] such

as I" = L; n [X, Yj, t ; = i; and we write v = u i [X, Yj.
For a set of jobs U = {Ul,U2, ... ,U.,}, we denote a set of pre-jobs on [X,Y] by U i [X,Y] =

{Ul i [X,Yj,U2 T [X,Yj, ... ,u., T [X,Y]}.
We say that a schedule S is in the area [X, Yj if its active area [bs, cs] 5;; [X, Y].
Note that we define a schedule only on the set of Jobs, not on a set of pre-jobs. A set of jobs

U = {Ul' U2, ... ,u,,}, which can create any schedule, is said to be a scheduled set. In this paper, the
such set contains all on-time jobs of the schedule. Sometime for schedule S having scheduled set
{Ul, U2, ... , u ,}, we also write S = {Ul, U2, ... , u.,}.

We denote problem [T] by following:
[T]: 1[ r, [L UJ , where UJ = 0 if CJ < dJ, UJ = 1 otherwise.
This problem means that the system has n Jobs with different release dates rJ, they are available

processing on one machine, we have to construct a nonpreemptive schedule with a minimal number
of late jobs (i.e., a maximal number of on-time jobs). We know that the problem is strongly NP-hard,
authors H. Kise , T. Ibaraki and H. Mine (1979) provided an O(n2) algorithm for problem [T] in the
case that release dates and due dates are similarly ordered ( i.e., rJ < r» => dJ ~ dk ). We like to
express this case by following:

[Kt]: 1[11 :5 12 :5 ... :5 In[Max L UJ , where UJ= 1 if CJ ~ dJ, UJ= 0 otherwise.
The problem is to build a nonpreemptive schedule with maximal number of on-time jobs.

Now we would pay attention to following special cases:
- -

[Tl]: 1]11 :5 12 :5 ... :5 In [Max L UJ and Min L UJ.tJ
The problem is to construct a nonpreemptive schedule with a maximal number of on-time jobs and
furthermore in minimal processing time. In ]2] we presented an O(n210gn) algorithm for the problem.

[T2]: 1[11 :5 12 :5 ... :5 In[ L UJ= sand Min L UJ.tJ .
The problem is to construct a nonpreemptive schedule with a fixed number of on-time jobs (i.e., s )
and furthermore in minimal processing time. In this paper, we extend the O(n210gn) algorithm in
[2] to solve the problem [T2].

2. A s-OPTIMAL SCHEDULE

We would remind some following concepts and notations presented in [2].
Let R; = rbi, Ci] and RJ = [bJ, cl] be realizations of corresponding jobs i and J, respectively. We

say that R, is ahead of RJ (or RJ is behind R;) and write R, :5 RJ if and only if they satisfy one from
two following conditions: 1) i == J and bi ~ bi; 2) it:- J and I, :5 Ii' Similarly we write R, -< RJ .

Let P = {Ul, U2, ... , urn} and Q = {Vl, V2, ... , vm} be schedules with the same number of jobs. We
say that P is ahead of Q (or Q is behind P) and write P :5 Q if and only if Ru.. :5 Rv., \j i = 1,2, ... , m.
Similarly we write P -< Q.

A schedule S = {Ul' U2, ... , urn} is said to be R-schedule in [X, Y] if it is in the area and realiza-
tions [bu." cu.] have following forms:
CUm = Min{dum,Y}; bUm = CUm -tum;

cu. = Min {dUil bU'+l
}; bu. = CU. - i«, \j i = m - 1,m - 2, ... ,2, 1.

Let P = {Ul,U2,""Up} and Q = {Vl,V2,""V'l} be R-schedules in [X,Y]. We say that Pis
R - better than Q and denote by P >-r Q +-t one of the following conditions satisfied:
(rd p> q (i.e., P has the number of jobs more than Q);
(r2) P = q and tI' < tQ (i.e., P has the processing time less than Q);
(r3) P = q and t r = tQ and bI' > bQ (i.e., P has the starting time later than Q);
h) p = q and t t- = tQ and bI' = bQ and Q :5 P (i.e., P is behind Q); With i=1,2,3,4, if P >-r Q in
the sense (ri), we write P >-r. Q.



THE FAST ALGORITHM FOR FOUNDING NONPREEMPTIVE SCHEDULE 23

We say that schedule S is R - best if and only if it is R-schedule having:
(rol) a maximal number of jobs completed on time;
(r02) a minimal processing time ts from schedules satisfying above condition;
(r03) a latest starting time bs from schedules satisfying above condition;

and it is
(r04) behind all schedules satisfying above condition.

In the case that the R-best schedule has only 1 job (i.e., 1 realization), we call it R-best
realization.

Let P = {Ul,U2, ... ,Up} be R-schedule in [Xp,Yp] and Q = {Vl,V2,""Vq} be R-schedule in
[XQ,YQ], where Yp:::; XQ, i.;« Iv1.

We define a operation, which is called R-connection and denoted by P EElT Q, to connect P to Q.
The result of the operation is schedule S, having following realizations:
[b1l, (S), c1l, (S)] = [b1l, (Q), cV, (Q)], V z = q, q - 1, ... , 1;
[bur. (S), cu" (S)], where cUI'(S) = Min {dup, bQ}; bu,. (S) = cUI'(S) - tu,.;
[bu,(S),cu,(S)], where cu,(S) = Min{du"bu'+l(S)}; bu,(S) = cu,(S) - t«

V t = p - 1, p - 2, ... , l.
A schedule S = {Ul, U2, ... , urn} is said to be L-schedule in [X, Y] if it is in the area and realizations

[bu, , cu,] have following forms:
bU1 = Max{X,rUl}; CUl = bUl + tUl;
bu, = Max{cU'_l' Tu,}; cu, = bu, + tu" Vi = 2,3, ... , m.

Let P = {Ul, U2, ... , up} and Q = {vi. V2, ""v'l} be L-schedules in [X, Y]. We say that P is
L-better than Q and denote by P :>-1 Q +-t one of the following conditions satisfied:
(11) p> q (i.e., P has the number of jobs more than Q);
(12) p = q and Cp < cQ (i.e., P has the completion time earler than Q);
(13) p = q and Cp = cQ and Cu, (P) :::; c1l, (Q), Vi = 1,2, ... , p - 1;
(14) P = q and Cu, (P) = c1l, (Q), Vi = 1,2, ... , p and P:::S Q (i.e., P is ahead of Q);

For i = 1,2,3,4, if P:>-I Q in the sense (Ii), we write P :>-1, Q.
We say that schedule S is L- best if and only if it is L-schedule having:

(101) a maximal number of jobs completed on time;
(102) a earlest completion time C.c,' from schedules satisfying above condition;
(103) a earlest completion time of realizations from schedules satisfying above condition;

and it is
(104) ahead of all schedules satisfying above condition.

Let P = {Ul,U2, ... ,Up} be L-schedule in [Xp,Yp] and Q = {Vl,V2, ... ,Vq} be L-schedule in
[XQ,YQ], where Yp:::; Xq, i.;« Iv1'

We define a operation, which is called L-connection and denoted by P EElI Q, to connect Q to P.
The result of the operation is schedule S, having following realizations:
[bu, (S), cu, (S)] = [bu, (P), [cu, (P)]' V i = 1,2, ... ,p;
[bv1 (S), CVl (S)], where bVl (S) = M ax{cp, TV,}; C1l1 (S) = bVl (S) + tv,;
[bv, (S), cv, ( S)], where b 11, (S) = Max {cv, _ 1 (S), Tv,}; C v, (S) = bv, (S) + tv" V i = 2, 3, ... , q.

We say that schedule S is s-optimal if and only if it is R-schedule having:
(od just s jobs completed on time;
(02) a minimal processing time ts from schedules satisfying above condition;
(03) a latest starting time b.') from schedules satisfying above condition;

and it is
(04) behind all schedules satisfying above condition.
Conclusion. According to the above conceptions, the s-optimal schedule is just R-best schedule
having s on-time jobs. Therefore solving problem [T2] is just determining the s-optimal schedule.

We call the schedule constructed by authors Kise, Ibaraki and Mine (1979) K-schedule. We call
their algorithm K-algorithm. We assume that this schedule has just m jobs, it is the maximal number
of on-time jobs.



24 TRINH NHAT TIEN

3. POSITION OF s-OPTIMAL SCHEDULE WITH K-SCHEDULE

Conclusion. Let U be a set of n jobs on system [T2L [E, C] be an active area of the system, let
K = {Xl, X2, ... , X",} be K-schedule, [b;{K), c;{K)] := [bx, (K), cx, (K)] be the realization x;{K). We
use some results in [2], for instance K-schedule is just L-best schedule.

We write following notions:

Uo = {Jobs u Ii I" -< Ixl}; Urn = {Jobs u II IXm ::S I,,}. (1)

U, = {Jobs u II Ix, ::S I" -< Ix,+J for t = 1,2, ...,m-1;
i.e., we can put in order n jobs from U to m + 1 following subsets:

[J, {I 2 "" }o UO' UO' ... ,UO ;

U { 2 "I} I II X I, UI, ... , UI ,W rere XI UI;

U { 2 n?} h I2 X2,U2,···,U2-, were X2 U2;

U { 2 n,} h . 1i == Xi) Ui , ... , Ui J were Xi == Ui ;

Urn, == {XrnJ U;fl,l ... , u;~m}, where Xrn == u;n;
where U = U« U Ul U U2 U ... U Urn; n = no + nl + n2 + ...+ nrn.
We write U;' = U, U Ui+l U Ui+2 U ... U Urn; n; = ni + ni+l + ni+2 + ...+ nrn.

The following lemmas and their proofs are similar as according lemmas in [2]:

Lemma 1. Let K = {XI,X2,""X",} be K-schedule, W = {WI,W2,""W.,} be s-optimal schedule. Let
sets of Jobs U, and other notions be such as (1). We have following result:

For k: = 1,2, ... , m - 1, if Uk contains Wi E W such that

CXk (K) S cWl (W) and s - U + 1) < m - k

Ui, doesn't contain any job W E W.

(2)

(3)

(4)

then
Uk doesn't contam a next Job Wi+l E W;

Lemma 2. The assumptions are the same as in the Lemma 1. We have following result:
For k = 1,2, ... , m - 1, 2j Uk U {xk+d contains Wi E W such that

bWl (W) < CXk (K) and J - 2 < k:
then

Uk - {xd doesn't contain a preceding Job wJ -1 E W;

(5)

(6)

Urn doesn't contain a Job wE W such that CW (W) < Cx", (K). (7)

Lemma 3. The assumptions are the same as in the Lemma 1. We have following result: There is
not any integer k (0 S k S m) such that Ui; - {xd contains 2 neighbouring Jobs wi, Wi+l E W.

Proof. By the contradiction, suppose that there is integer k (0 S k S m) smallest such that Ui; - {xd
contains 2 neighbouring jobs Wi, Wi+l E W. We consider 2 following cases:

- When cxk(K) S cw,(W). On the other hand, there is s - (J + 1) < m - k, That is in the
contradictory with Lemma 1.

- When CXk (K) > cWl (W). It means bWJ+I (W) < CXk (K). On the other hand, there is U + 1) -2 <
k. That is in the contradictory with Lemma 2.

Lemma 4. The assumptions are the same as in the Lemma 1. We have following result:

Wi E U; U Ui+1 U ... U Ui+m-., U {xi+m-.,+d, 'it = 1,2, ... , s - 1 (8)

and w., E U., U U.,+l U ... U Urn.

We can easily prove the lemma by the contradiction and the Lemma 3.



THE FAST ALGORITHM FOR FOUNDING NONPREEMPTIVE SCHEDULE 25

4. s'-OPTIMAL SCHEDULE

From result of Lemma 4 we define concept "s*-optima!" schedule related to the s-optimal sched-
ule.

Definition 1. Let K = {Xl, X2, ... , xm} be K-schedule, let sets of jobs U, and other notions be such
as (1). For d = 1,2, ... ,m, with q (1 -S q -S m - d + 1), we say that S is q* -optimai schedule on set
of jobs U(7 l' IB,Cj if and only if it is q-o ptim.al and has following form: S:= {Wd,Wcl+1, ""w'l+'l-d,
where

ui; E U, U U,+ 1 U ... U Ui + "- 2 U {Xi + tt r- d, Vi = d, d + 1, ... , d + q - 2 (9)

We see that s'-optimal schedule on set of jobs U; i IB, Cj is just s-optimal and so that we will
determine the such schedule.

Lemma 5. The assumptions are the same as in the Defiiiition. 1. We have [ollo unn.q result:
1) For d = 1,2, ..., m, with q (1 -S q -S m - d + 1), if S is q" -optimal schedule on set of jobs

U,; l IB, Cj then bX,l (K) -S bs.
2) If W is s" -optimal schedule then bK -S bw.

We can prove result 1;' by contradiction and by using definitions of q" -optimal schedule and
K-schedule. Result 2;' is the corollary of result 1;'
Definition 2. The assumptions are the same as in the Definition 1. For d = 1,2, ..., m, with
q (1 -S q -S m - d + 1), we define following concepts:

W,; := {W,;, W,f, ..., Wn is said to be a full set of q*-opt im al schedules on the set U,7 if and only
if it satisfies following conditions:

w,t is q* - optimal schedule on U,7 i IB, Cj (10)

W,~ is q* - optimal schedule on 0,7 l Ibw'-' + 1, CJ,
d

(11)

where bW,;-l is a starting time of schedule W,~-1, Vi = 2,3, ... ,p.

IJ,'f := {V,l, V}, ... , V,I} is said to be a infull set of q* -optimol schedules on the set U,7 if and only
if it satisfies following conditions:

v,f is q" - optimal schedule on (U,7 - {x,d) l' IB, Cj

V;; IS q" -optimal schedule on (U,; - {x,d) l' Ibv'-' + 1, Cj,
d

(12)

(13)

where bV'-' is a starting time of schedule V,;-l, Vi = 2,3, ... ,r.
d

1,i := (Wd, IJd) is said to be a pair of 2 se ts of q" - optimal schedules on set U,7·
Let R = {S 1, S2, ... , Sf'} be a set of R-schedules with the same num ber of jobs. We say that the

set has R-order if ts' < tS'+1 ; bs' < b.,,.,+ 1 ; s' ~ Si+1 , Vi = 1, 2, ... ,p - 1.

Proposition 1. The defined sets Wd and IJd have R-order.

Definition 3. With d (1 -S d -S s - 1), let 1,;' := (W,;, IJ,j) is a pair of 2 sets of q'-optimal schedules
on set U,7.

A:~:= {1,;', 1,;'+1' ... , 1,i+m- .•} is said to be a system of pairs of 2 sets (or a system) of q'-optimal
schedules on set U,7.

F d (d ) I A,,-l.- vi: J,,-1 J,,-1 } b t f ( - 1)'Lemma 6. or 1 -S -S s - 1 J et d+1'- d+1' d+2' ... , d+m-( .•-1) e a sys em 0 q -
optimal schedules on the set U,7+1'

Suppose that A:~ := {1,;', Jd+ l' ... , 1,;'+rn- .•} be a system of q' -optimal schedules on the set U~.
We have following conclusion:



26 TRINH NHAT TIEN

Every schedule from the system A;~has to contain any schedule from the system A:~~~as its
"ending part" with (q - 1) Jobs.

Corollary. The s" -optimal schedule has to contain any schedule from the system A; -I as its "ending
part" with (s - 1) Jobs.

5. ALGORITHM DETERMINING s'-OPTIMAL SCHEDULE

5.1. Main idea of algorithm

By the above results, our algorithm will construe ted by following steps:
- First determine K-schedule K = {XI, X2, ... , xm} by K-algorithm with time O(n2) or by Lawler's

algorithm with the time O(n.logn).
- Lemma 4 and Lemma 5 determine the position of the s-optirn al schedule W in comparise with

K-schedule. Here ifW = {WI,W2,""W.,} then

ui, E U, U Ui+1 U ... U Ui+rn-., U {xi+m-.,+d, Vi = 1,2, ... , s - 1; (14)

w., E U., U U.,+I U ... U Urn and b« S bw.
For d :~ s, s - 1, s - 2, ... ,2,1, put q := s - d + I .
To create W, we construct the system Al of all schedules, which could become W, these such

schedules equally have property (14). By Lemma 6, this system will created rec urssively by 3 following
algorithms:

1/ Algorithm SBASE will create the basic system A!, i.e., the system of I'-optimal schedules on
the set U;; one from these schedules will' become "an ending part" {w.,} of optimal schedule W.

2/ Procedure SSTEP will from the well-known system A:~~~of (q - 1)*-optimal schedules on the
set V~+ I determine a system A;~of q' - optimal schedules on the set U,7; one from these schedules will
become "an ending part" {WIl' Wd+l, ... , Wd+(.-IJ} of the optimal schedule W.

3/ Algorithm USE-SSTEP will from the basic system A! apply (s-l) times the procedure SSTEP,
'11 L . . I .,,2,,3 ".,-1 n» I " •. - {T' 1" 1" }we WI obt ain succ essivery systems. /1"_1' /1.,_2'"'' /12 ,/II' wnere /11'- JI, 2'"'' m-(.,-I) ,

1t = (Wi', Vj'). Suppose W: = {WI, W2, ... , WI'} then Wi is just the desirable s'-optimal schedule.

5.2. Some auxiliary procedures

1/ Procedure finds R-best realization on the set or jobs:
Let a set of jobs U = {xl, x2, ... , xk}, according to the definition of R-best schedule, we can

create a procedure to find R-best schedule with 1 job (i.e., R-best realization) {x} on U and write:
{x} :== RB-JOB( {xl, x2, ... , xk});

In the case the set is restricted by the time area IX, Y], we write:
{x} := RB-JOB({xl, x2, ... ,xk} r IX, V]);
Processing time of this procedure is O(k). We need note that, may be {xl, x2, ... , xk} r IX, Y] is

not a set of jobs, therefore there is not such {x}.

2/ Procedure connects a set of jobs to a schedule: JOB-SCHED(U,b,S;Z,K,p);

Input: - U = {xl,X2, ... ,xk} is the set of jobs such as Ix1 ::SIx2 ::S... ::SIxk;
- b is a starting time of the area time;
- S is R-schedule on the set of jobs {yl, y2, ... , yh} such as Ixk -< Iy1 ::SIy2 ::S... ::SIyh.

Output: - Z = {ZI' Z2, ... , Zp} is a set of R-schedules, every schedule Z, is created by R-connection
of R- best realization on U to S;

- K = {k I, k2' ... , kp} is a set index corres ponding to Z; p = ~Z .

Method: The algorithm applies the procedure RB-JOB to determine a R-best realization on U, if
there is the such realization then connects it to S.
Algorithm:



THE FAST ALGORITHM FOR FOUNDING NONPREEMPTIVE SCHEDULE 27

Begin
i := 1;
if there is {Xk1} := RB - JOB( {xl, x2, ... , xk} l' [b, bsll
then Zl := {Xk1} EElr Sand p:=1 else put Z := 0 and p:=O;
Repeat

2 := 2 + 1;
if there is {xk,}:= RB - JOB({Xki-1+l Xk'-1+2 ... xk} t Ib + 1 b.l)

1 "I I Zt-l ,S

then Zi := {xki} EElr Sand p :=i;
Until p < 2; (i.e., there is not {xk,} );

End.

Proposition 2. Let rki, dki, i», be parameters of Job Xki, i = 1,2, ... ,p. The procedure JOB-SCHED
gives following conclusions:
l. t», < tk2 < ...< tk,,; tk,::; tX1, "Ix) E U l' [b,bs];

tki ::; tx" "Ix) E U l' [bZi_1 + 1,b8], Vi = 2,3, ... ,p;
2. {xk,} is R-best realization of Job xk, l' [b,dk,], "12 = 1,2, ... ,p-1.
3. {xl,x2, ... ,xki} l' [bz, + 1,bsl is not a set of Jobs, Vi = 1,2, ... ,p-1.
4. Z = {Zl,Z2'''''Zp} has R-order.
5. The processing time of the procedure is O(k2), where k = ~U.

For simple we presented the procedure JOB-SCHED by the such method. Practically we use the
fast algorithm (for instance Quicksort or Heapsort) to sort realizations on U according to R- order,
then connect the realizations to S. This method needs only the time O( k .logk).

Proposition 3. For i = 1,2, ... ,p, let S tn JOB-SCHED be d-optimal schedule, then Zi is (d + 1)-
optimal schedule on corresponding set of Jobs and contains S as its "ending part".

3/ Procedure connects a set of jobs to a set of schedules: JOB-SCH EDU LES(U, b, R; Z, p)
Input: - U = {xl, x2, ... , xk} is the set of jobs such as Ix1 ::S Ix2 ::S ... ::S Ixk;

- b is a starting time of the area time;
- R = {S 1, S2, ... , sr} is the set of R-schedules having the same number of jobs on a set of jobs

{yl, y2, ... , yh} such as Ixk -< 1)/1 ::S 1)/2 ::S ... ::S 11Ih; where r = ~R.
Output: Z = {Zl, Z2, ... , Zp} is a set of R-schedules, every schedule Zi is created by R-connection of
R-best realization on U to S E R; where p = ~Z.

Method: The algorithm applies procedure JOB-SCHED r times.

Algorithm:

Begin
JOB-SCH ED( {xl, x2, ... , xk}, b, Sl; {zt, Z], ... , Z;,}, {ki, k§, ... , kf,,}, Pl);
if Pl = 0 then put bZ1 + 1 := b and k/~ := 1;

p 1 1

For 2 := 2 to r do
begin

JOB-SC H ED( {xk;'7~, , ... , xk}, bZi-1 + 1, s-, {Zl, Z~, ... , Z/~.}, {ki, k2, ... , k/\}, p;);
TJi-l t t

if Pi = 0 then put bz, := bZ'-l and k;, := k~,-:-_l;
1)i 1)1-1 I I 1

end;
Put Z .- {Zl Zl z: .Z2 Z2 Z2.. zr z: z: } (~f {Z Z Z } .

. - 11 21"" PI' 11 21"" P2"'" 11 21"" Pr - 1, 2,···, P ,

P := P1 + P2 + ...+ p-:
End.

Proposition 4. The procedure JOB-SCHEDULES give-s following conclusions:
l. tz,' < tz_.' < ...< tzi, Vi = 1,2, ... .r ;

, Pi



28 TRINH NHAT TIEN

2. bz' < bz' < ... < bz' < bZ'+l, \it = 1,2, ... .r:
1 2 111 1

3 Zi z: z: Zi+l \-J 1 2. 1 --< 2 --< ... --< 1', --< 1 , v t = , , ..., r;

Proposition 5. Let R m procedure JOB-SCHEDULES be the set of d-optimal schedules, then Z tS

the set of (d + I)-optimal schedules on corresponding sets of Jobs and every such schedule contains
corresponding Si ERas its "ending part JJ.

Proposition 6.
1. The number of schedules m the set Z is p:::; k + r, where k = UU, r = UR.
2. The processing time of procedure JOB-SCHEDULES is r.O(k.logk).

4/ Procedure unifies 2 sets of schedules, having R-order: UN fO N (P, Q, X, Y; T);
Input: - P = {PI, P2, ... , PI'} is a set of R-schedules, where PI >-r P2 >-r >-r PI';

- Q = {Ql, Q2, ... ,Q,J} is a set of R-schedules, where Ql >-r Q2 >-r >-r Q,,;
- [X, Y 1 is the time area.

Output:
T = {TI, T2, ... , Td is a set of R-schedules, where TI >-r T2 >-r ... >-r Ti ; t :::;p + q.

Method: The procedure is similar as unifying 2 ordered sets of integers.
The processing time of this procedure is O(p + q).

5.3. Main algor it.hms

Let K = {XI,X2, ... ,Xm} be K-schedule, let sets of jobs U, and other notions be such as (1).
There are 3 following main algorithms:

1/ Algor it.hm SBASE

a. Auxiliary procedure BASE: BASE(U, b; 1).
Input: U:= {XO,XI,x2, ... ,xk}; b is a integer.
Output: J:= (W, V) is the pair of 2 sets of 1* - optimal schedules on U,

W = {WI, W2, ... , Wp}, V = {VI,V2, ... , V,,}.
Method: The algorithm applies procedure RB-JOB to determine 1*-optimal schedule on U.
Algor-it hm:
Begin

i := 1;
if there is {xkl}:= RB-JOB({xO,XI,x2, ... ,xk} i [b,ell
then WI := {Xkl} and p := 1 else put W := 0 and p := 0;
Repeat

i:=i+l;
if there is {xk,} := RB-JOB( {xk,-dl, xk,-d2, ... , xk} r [bw'_l + 1,ell
then Wi := {xk,} and p := i;

Until p < t ; ( i.e., there is not {xk,} );

i := 1;
if there is {yiLl}:= RB - JOB({XI, x2,x3, ... ,xk} r [B, ell
then VI := {yiLl} and q :=1 else put V := 0 and q :=0 ;
Repeat

i := i + 1;
if there is {xh,} := RB-JOB( {Xh,-l+l, xiL,-d2, ... , xk} r [bV,_l + 1, ell
then Vi := {xiL,} and q := i;

Until q < i; (i.e., there is not {x",});
End;



THE FAST ALGORITHM FOR FOUNDING 0 PREEMPTIVE SCHEDULE 29

b. Algorithm SBASE:

Input: Ut, b;(K), for i=.s.s-L, ... ,m are the same as (1).

Output: A.~:= {~1, 1/+1, ... , 1,}J is the system of 1*-optimal schedules on set U:.
Method: The algorithm applies the procedure BASE (m - s + 1) times.

Algorithm: For ~:= s To m Do BASE(U;*,b;(K);J/);

Proposition 7.
1. A~ is Just the system of 1* -optimal schedules on U: .
2. ~W/ and ~V/ :s; n7, for i = s, s - 1, ... , m, where 1/ = (W/, V/).
3.1/ rs determined after the time O((n:)2).
4. Processing ttme of the algorithm is 2:;~'1-·'+1)O((n7)2).

By the method mentioned in the Proposition 2, 1/ is determined after the time O(n7.logn7),
therefore the algorithm SBASE needs only the time 2:;:'1-·,+1) O( n~ .lognn.

2/ Procedure SSTEP: S ST EP(A;~~~, A;~); d = s - 1,s - 2, ...,2,1.

I 11'l-I'_{1'I-l1'1-1 1'/-1 }' h f()*' l hdl he senput: Jld+1 d+l' d+2' ... , '/+"'-(11-1) IS t e system 0 q - 1 -optima sc e u es on t e set

U'~+I'
Output:
A;~:= {1,;', l,;'+l' ..., l,;'+m-l/) is the system of q'-optimal schedules on the set U,l'

Method: The algorithm applies procedure JOB-SGH EDU LES to connect jobs of UdUU,/+lU ... U
Ud+m-" U {Xd+m-dd to schedules of A;~~~, after that by procedure UNION to unify the created
sets of sched ules.

Algorithm:

Begin
For i := d To (d + m - s) Do
begin

JOB-SG HEDU LES(Ui, b,(K), Wi'~/; [, e);
JOB-SG H EDU LES(Ui - {x;}, B, W;';/; 9, g);
JOB-SGB EDU LES( {Xi+l}, B, V;';/;}{, h);
UN ION([,}{, bilK), G; W:,); UN ION(9,}{, B, G; v;');

end;
End;

Proposition 8. For d := s - 1,s - 2, ...,2,1 and q := s - d + 1:
b1. A:~ t s Just the system of q" -optimal schedules on the set U,7,
2, Fori=d,d+l, .. "d+m-s: ~W:, and~V:' :S;ni, whereni=ni+ni+l+ .. ,+nm,
, Th . f hi' h ,,,,d+m-'l O( l ) *3, e processitiq time 0 tea qorit m tS l..Ji=d ni' oqri, ,ni+ 1 .

3/ Algorithm USF,-SSTEP:

Input: A.; is the system of 1*-optt'mal schedules on U:,
Output: A;-l' A;-2: .. " A;-l, Al are the desirable systems of schedules.

Method: The algorithm applies procedure SSTEP (s-l) times with input A.~,
Algorithm: For d:=-=s - 1 DownTo 1 Do SSTEP(A:~~~, A:~);

Theorem 1. In the output of algorithm USE-SSTEP suppose
A" ,- {T,' 1" ,,' } T,' - (W V) d W - {WI W2 W"}1 ,- Jl' 2' .. " m-(,,-I) ,Jl - 1, 1 an 1 - , , .." ,
able s" -optimal schedule,

then Wi is Just the desir-



30 TRINH NHAT TIEN

Proof. By Proposition 7, A! is just the system of I*-optimalschedules on U;. By proposition 8, A;~is
the system of q* -op timal schedules on the set V~, for d = s - 1, s - 2, ... , 2, 1. Algorithm USE-SSTEP
applies procedure SSTEP (s - 1) times with input A!, by induction on d, we successively obtain the
following systems of schedules: A~_I' A;-2, ... , A;-l, Al, suppose Al := {1i', '2", ... , 1~'_("_1)}' 11..'=
(WI, Vrl and WI = {W 1, W2, ... , WI'}, then by definitions 2, 3, WI is just the desirable s" - optimal
schedule.

Theorem 2. Processing time of the algorithm USE-STEPD is (m - s + I).O(n210gn).

Proof. According to the proposition 8, the processing time of the procedure SSTEP is
L:I:(~"-.,O( ni .logni) .n7+1' for d = s - 1, s - 2, ... ,2,1.

Algorithm USE-SSTEP applies procedure SSTEP (s - 1) times, therefore time for this algorithm
IS .'l -1 <i+rn-.'! rn-,'j ,'1-1

L ( L O(ni .10gni).n;+I) = L (L O(nd+i.lognd+;).n~+i+l)
<1=1 i=<I i=O <1=1

m

:s; (m - s + 1)'(L O(nk.lognk).n~+I)·
k=1

(15)

Without loss of generality suppose that there is n;,,+1 = 0, we have following calculations:
rn Tn

L nk.(lognk) .n~+1 < (/ogn) '(L nk.nZ+l),
k=1 k=1

where rn rn Tn Tn

L nk.n~+1 = L(n~ - n~+l)·n~+1 = L n~.n~+1 - L(n~+1)2
k=l k=1 k=l k=1

m Tn 7n..

< L n~.n~ - L(n~+rl2 = L((n~)2 - (n~+1)2)
k=1 k=l k=1
( *)2 (*)2 (*)2 (,)2 ( *)2 (* )2 (*)2= n 1 - n2 + n2 - n3 + ...+ nm - n",+ 1 = n 1 .

The above calculations implies the proof.

Corollary. Main algorithm determines the optimal schedule of problem IT2) after the time (m - s +
I).O(n210gnJ, where m is the maximal number of on-time Jobs, s is the fixed number of on-time fobs
(s :s; m)j (i.e., O(n310gn)).

Conclusion. We know that m is the maximal number of on-time jobs, therefore the problem IT2)
is solved only if s :s; m. In the case s=m, the problem IT2) is just the problem ITI), according to the
above corollary the time for this case is O(n210gn).

Acknowledgement. I wish to express my deep gratitude to Faculty of Mathematics and Computer
science, University van Amsterdam, where the paper was written.

REFERENCES

11) K. R. Baker, Introduction to Sequencing and Scheduling, Wiley, New York, 1974.
12) Trinh Nhat Tien, An O(n2/ogn) for a nonpeemptive schedule on one machine, Journal of Com-

puter Science and Cybernetics 15 (1) (1999) 66-76.

Received July 14, 2000

Hanoi, Faculty of Technology,
Vietnam National University,
144 Xuan Thuy, Cau Giay, Hanoi, Vietnam.


