
T,!-p chi Tin lioc va Dieu khien hoc, T.17, S. 1 (2001), 1-9

PARAMETRIC EXTRAPOLATION AS A PARALLEL METHOD
IN MATHEMATICAL PHYSICS

DANG QUANG A

Abstract. In recent years we have developed a parallel method for mathematical physics problems. It is the
method of parametric extrapolation. In this paper we give an overview of our results concern ing this method
for constructing parallel algorithms for some problems of mathematical physics.

Torn tlit. Trong nh iing narn gan day ch ung toi d a ph at trie'n mot ph u'o'ng ph ap song song gili mot so bai
torin bien cii a v at Iy - toano Do la ph tro'rig ph ap ngoai suy theo t ham so. Bai b ao nay Ii tc!ng qu an cac ket
quti nghien ctru cii a chung toi lien quan den ph u'o'ng ph ap nay de' xfiy du'ng cac th ufit toan song song giai
mot so bai to.in bien cho ph trong trlnh elliptic cap hai va cap bon o· rnu'c vi phfm cling nh ir o· rmrc roi r ac.

1. INTRODUCTION

Now, coping with large-scale problems of physics, mechanics, oceanology, meteorology, hydrol-
ogy, ... one has to use parallel computing systems in order to reduce computation time. For this
reason it should construct paralell methods and algorithms for the problems to be realized on the
parallel systems. For the parallel solution of boundary value problems (BVPs) for partial differential
equations three main directions can be distinguished: approaches based on "parallelism across the
problem", "parallelism across method" and on "parallelism across steps". Among the directions,
the second approach of method-parallelism received much attention. Here it is worth to mention
the domain decomposition methods and the parallel splitting up methods. In recent years we have
developed an another parallel method for mathematical physics problems. It is the method of para-
metric extrapolation. In this paper we give an overview of our results concerning this method for
constructing parallel algorithms for some problems of mathematical physics.

2. THE IDEA OF THE METHOD

2.1. From the method of parametric correction of difference schemes ...

The idea of the method is originated from the method of parametric correction of difference
schemes proposed by Belotserkovskij and his colleagues [3] in 1984. Their goal then was to solve
the conflict between the stability and high order approximation of difference schemes for hyperbolic
problems and to increase the effectiveness of iterative processes for second order elliptic problems.
In order to do this for each BVP they constructed a manifold of difference schemes .depending on
two or more parameters instead of one as it was usually done before. Due to this manifold of
difference schemes they could get new properties of the difference scheme which is a appropiat e linear
combination of basic difference schemes. Speaking roughly, the idea of the method of parametric
correction of difference schemes is that a "good" difference scheme may be obtained in the result of
combining "bad" ones by the suitable selection of parameters. The realization of this method leads
to the concept of the generalized difference scheme as a combination of the basic difference schemes
with some weights, which was discussed in [4] and applied for studying discontinuous solutions of
the wave equation in [5]. The results of computation in the latter paper allows to conclude that the
consideration of a family of difference schemes constructed by special way not only opens a possibility
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to increase the effectiveness of difference scheme but also reaches more adequacy of discrete model
to the phenomena studied. Indeed, it is proposed to construct the discrete model of continuous
media from several discrete models, each of those is not adequated to the continuous model. But the
difference between the discrete models is organized so that they may be controlled. The family of
these models due to their constructive character may be made rational and when being considered as
a new model can possess new properties which each separate model does not have. For this reason
the method of parametric correction of difference schemes is considered as a new principle in the
construction of discrete models in mechanics of continuous media.

The method of parametric correction of difference schemes were used by ourselves in [7] for
constructing generalized difference schemes quasimonotone and having high order of accuracy for
some equations and systems. It is in the latter paper, the conflict between the stability and high
order approximation solved not completely in [3] was solved fully. But the problem, in which we
are interested most, is the construction of efficient iterative methods for solving BVPs for elliptic
equations on both differential and difference levels.

2.2.... To the parameter extrapolation method

Below we present the idea of the parameter extrapolation method for a general equation.
Let A be a linear symmetric, positive definite operator in a Hilbert space H. Consider the

equation
Au = I, f E R(A) (1)

This equation may be solved by known iterative methods with the rate of convergence depend-
ing on the ratio M [rri , Here M and m are maximal and minimal eigenvalues of the operator A,
respectively. In the case, where H is of infinite dimension and 0 is the limit point of the spectrum
of the operator, in general one has not obtained or obtained very bad results of the convergence rate
of the methods. In order to overcome this difficulty, and also to increase the convergence rate of the
iterative processes, we propose instead (1) to solve some perturbed problems

(A + eP'[u; = f (2)

where P is a linear symmetric, positive definite operator suitably selected for every specified operator
A. Then, we extrapolate by the parameter e the solutions of (2), i.e., take the combination

N+l

ir L IkUe/k

k=l

(3)

with Ik chosen as follows (-1)N + 1- k kN + 1

Ik = k!(N + 1- k)!

be an approximate solution of (1). For the error of the approximate solution we have the estimate

IIUC - u*11 :::; CeN+1
.

This result is obtained with the help of the expansion
N

* '\' k N+l
Ue = U + ~ e Vk + e We

k=l

where u" is the solution of the original equation (1), v» are elements of H independent of e , We IS

uniformly bounded in e, N is an integer depending on A.
The mentioned above fact is proved in [10].
Thus, the direct solving of (1) is replaced by solving N perturbed problems (2) with the param-

eters elk, (k = 1, ... , N). These problems may be solved simultaneously on processors of parallel
computers. The advantage of this method is that known iterative methods applied directly to (1)
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are slowly converged, even may be, are deverged, while known iterative methods applied to (2) will
converge fastly with the rate of geometric progression.

Comment 1 (Tikhonov regularization). The equation (2) in some sense is the Tikhonov regu-
lariz~d equation for (1) (for Tikhonov regularization see e.g. [28]). Here we extrapolate its solution
depending on the regularization parameter for obtaining the solution of the original equation (1).

Comment 2 (Richardson extrapolation). In the proposed method, the extrapolation is perfomed
by a small parameter introduced into the original equation in order to make some perturbation.
Differently from this, the well-known Richardson extrapolation (see, e.g. [23]) is by the stepsize of
discretization of differential problem. Due to this extrapolation the order of accuracy of difference
scheme is increased. It is possible to be realized with the help of the asymptotic error expansions to
finite difference schemes.

In the following sections we shall summarize results of using the method of parametric extrapo-
lation for some problems on differential and difference levels. It should be noticed that for differential
problems, in order to apply this method, the most tmportant step is the reduction of the problems
under consideration to an equation unih. a symmetric, positive definite and completely continuous
in a Hilbert space. Therefore, in Sections 2 and S we only sketch how to reduce original BVPs to
corresponding operator equations tn Hilbert space.

3. THE DIRICHLET PROBLEM FOR SECOND ORDER ELLIPTIC EQUATION
WITH DISCONTINUOUS COEFFICIENTS

Let 0 be a bounded domain in the m-dimensional Eucledean space R'" with Lipshitz boundary
S. Denote by 0+ a proper subdomain of 0 with boundary r, LI the outward normal to r.

Consider the boundary value problem (BVP)

m a au
Lu =L aXi (aiJ(x) ax) = f(x), x E o\r,

t,J=l

a(x) ~ 6 > 0,

[u]r = 0, [:~] r = 0, uls = <1>,

(4)

where [u]r is the jump of u through r : [u]r = u+ - u-, u± (xl = u(x), x E o±,
conormal derivatives of u± .

By the introduction of a boundary operator K, defined as follows

K: g-,[w]r,

where 9 is a boundary function defined on r ,w is the solution of the problem

Lu = 0, x E O\r, wls = 0,

~~: lr = g, [~~t= 0,

the problem (4) is reduced to the operator equation

Kg = F,

(5)

(6)

here F is a function depending linearly on f and <1>.There was proved that Kis a linear, symmetric,
positive definite and completely continuous in the space L2(r). Instead of solving (6), we consider
perturbed equation

(K + d)g, = F, (7)

where I is the identity operator.
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This equation is lead from the perturbed problem

LUe = f(x), x E OW, uel8 = <1>,

aU-:-1 [ ] [aUe]E:-- + 'Ue r = 0, -- = 0,av+ r av r

The simple iterative method applied to (7) is converged with the rate of geometric progression,
while the iterative method of Osmolovskij & Rivkind [24] for the original problem (4) only is con-
vereged with the rate O(l/NQ), where N is the number of iterations, a is a number depending on
the smoothness of the solution. It is interesting that the realization of the iterative method for (6)
and for (7) leads to the successive solution of a sequence of BVP in each of the subdomains, where
the Neumann condition on the interface is step by step made more precise.

(8)

Comment 3 (domain decomposition methods). The proposed above method is applicable for
the problem where the domain ° consists of two sub domains which except for the interface have
their proper boundary. Thus, the approximate solution is constructed by the extrapolation of the
solutions found by a domain decomposition method. It should be notice that at present domain
decomposition methods attract great attention from many researchers (see c.f. [2, 21, 22, 26, 29])
due to the needs to solve BVPs in geometrically complicated domains. Besides the way of making
the Neumann boundary values more precise on the interface as in our work [12], many other authors
proposed to do so with the Dirichlet boundary values or alternatively exchange the Neumann and
Dirichlet boundary values.

Comment 4 (boundary element methods). After reducing the original and the associated
perturbed problems to boundary operator equations we don't intend to solve them by numerical
methods, for example, boundary element methods, but only use them as means for studing the
convergence of iterative process for BVPs.

4. BVPs FOR BIHARMONIC, BIHARMONIC TYPE AND
TRIHARMONIC EQUATIONS

4.1. Solving BVPs for the fourth order differential equation by the reduction of them to BVPs for
the second order equations with the aim to use a lot of efficient algorithms for the latter ones attracts
attention from many researchers. Namely, for the biharmonic equation t::.2u = f with the Dirichlet
boundary condition, there is intensively developed the iterative method, which leads the problem to
two problems for the Poisson equation at each iteration (see e.g. [20,25]). But unfortunately, in these
works the convergence rate of the iterative process either was not obtained [20] or is very low, namely,
is of order 0(1/ N), where N is the number of iterations [25]. In order to elaborate faster algorithms
for the biharmonic equation, in [8] first time we applied the parameter extrapolation technique to this
equation. For reducing the Dirichlet problem for the biharmonic equation to a boundary operator
equation we defined the boundary operator via Green functions as was done in [6]. The result of
computation implemented in [9] confirmed the advantage of the parametric extrapolation technique.

4.2. The technique for reducing BVP for biharmonic equation to boundary operator equation in the
mentioned above papers is improved in our further works when being applied to a mixed BVP for
the biharmonic equation [16] and for BVPs for biharmonic type equation [13-15]. Below we briefly
demonstrate this technique for the Dirichlet problem

Lu == t::.2u - at::.11,+ bu = f(x), x E 0, (9)

aUIulr = 11,0, av I'= Uv·

Here ° is a bounded domain in Rm, t::. is the Laplace operator, a 2: 0, b 2: 0.

4.2.1. Suppose that a > ° and
a2 - 4b 2: 0, (10)
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We introduce boundary operator B by the formula

aUIBvo = av r '

where Va is a function defined on I', U solves the problems

L2v = 0, x E 0, vir = vo,
Ll U = v, x E 0, ulr = O.

Here L1, L2 are the factors in the factorization of L , whose formulae are given III [131. Then the
problem (9) is reduced to the operator equation

Bvo = F, (11)

with B = B* > 0 and completely continuous in L2 (f), linearly expressing through Uo, uv, f. Rather
than (11) we solve the perturbed equation

(E + oI)voo = F, 0 > 0 (12)

This equation is obtained from the perturbed problems

LUh == !::::.2un- a!::::.u6+ bUn = f(x), x E 0,

u"lr =Uo, 0 (~!::::.U6 - u6) I + aU"1 = UV'
J-L r av r

where J-L = ~(a + Ja2 - 4b).
It should be emphasized that the simple iteratation method for the equation (12) is convergent

with the rate of geometric progression and is realized by solving a sequence of BVPs for second order
equations, while the iterative method for the biharmonic type equation (9) in [11is not proved to be
convergent.

4.2.2. Now consider the case, where and the condition (10) is not satisfied. For brief we set Uo =
Uv = O.

We introduce a mixed domain-boundary operator B, defined by the formula B: w ---> Bw,
where

w=(~), BW=(b~~lr),
D + bu

u is the function found from the problems

!::::. v - av = D, x EO, v Ir = vo ,

!::::.u= v, x E 0, ulr = o.
It was proved that B = B* > 0 and B is bounded in the space L2(f) x L2(0)and has expansion
B = Eo + h, where Eo = B(~ > 0 is completely continuous, h is a projector on L2(0), namely,

I2w = (~) .
Then the BVP is reduced to the operator equation

Bw= F, (13)

here for brevity we omit the concrete expression of F. If apply any iterative method immediately, for
example, the two-layer iterative scheme to (13) then we can not say anything about its convergence.
Hence, instead of (13) we consider the equation

(B + OJdW60 = F, ,0< 0 < 1

where II is a projector on L2(f) , i.e. I1w = (v~») .
(14)
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We have B + 5I, 2: Bi, + 5I 2: 5I Consequently, two-layer iterative scheme for (14) will be convergent
with the rate of geometric progression.

The perturbed problem (14) is lead from the original problem, where the boundary condition ~~ Ir = 0

is replaced by (5~u + ~~)Ir= O.

4.3. The technique for reducing BVP to boundary operator equation in order to apply the method of
parametric extrapolation recently found a new application [18] for the following triharmonic problem

~3U = j(x), x E ft,

auluk = 0, av r = 0, ~ulr = o.

For this problem we introduce a boundary operator B defined on boundary functions by the formula

aulBvu, = - av r'

(15)

where Wo is a function defined on rand u solves the problems

~w= 0, x E ft, wlr = wo,
~v= w, x E ft, vir = 0,

~u = v, x E ft, uk = o.
Then the problem (15) is reduced to the operator equation

Bwo = F, (16)

with B = B* > 0 and completely continuous in L2 (I'}, F linearly expressing through j. The
perturbed equat ion of (15) is obtained from the corresponding perturbed BVP

~3U6 = j(x), x E ft,

(
aU6 2) Iu6k = 0, l:1uolr = 0, av - 51:1 Uo r= 0,

and the realization of the iterative method for it leads to the solution of three Dirichlet problems for
the Poisson equation.

Comrnerrt 5 (perturbation of boundary condition). The essential difference from the method
of parametric correction of difference schemes [3- 5, 7], where the difference operator approximating
a differential equation is made perturbed, is that in our works [13, 14-16, 18] we consider a family
of BVPs with one perturbed boundary condition. Hence, after the reduction of them to boundary
operator equation we obtained a family of boundary operator equations depending on a parameter
and the extrapolation is performed by this parameter.

5. ACCELERATING THE CONVERGENCE RATE OF ITERATIVE METHODS
FOR SOLVING GRID EQUATIONS AND DEGENERATE SYSTEM

OF ALGEBRAIC EQUATIONS

5.1. The design of fast algorithms for large-scale systems of linear algebraic equations is a very actual
problem attracting great attention from both mathematicians and engineers. These large systems
usually arise in the result of discretization of BVPs for two- or three-dimensional elliptic equations
on thin grids. There are a lot of works concerning this problem (see e.g. monographs [22, 27] and
references therein). In [10, 11, 17] we proposed to use the method of parametric extrapolation for
accelerating the convergence rate of well-known iterative methods. The matter is as follows.
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Consider the operator equation
Au = j ( 1a)

in the N-dimensional Eucledean space with A = A* ~ 01, 0 > O.For solving this equation one usually
constructs two-layer iterative schemes of the form [27]

B Yk+1 - Yk + AYk = i, k = 0,1, ...
Tk+1

where B is easily invert able operator and is energetic equivalent to A:

(17)

i1B~A~i2B, i2~i1>0.

Then the rate of convergence of (15) depends on the ratio ~ = idi2
For this purpose one starts from an operator R = R* > 0 energetic equivalent to A :

c1R < A < c2R, C2 ~ C1 > O.

For accelerating the iterative process we propose to solve (2) rather than (la) with P chosen
specifically as follows:

Case 1. If R = R1 + R2, R~ = R1, R1R2 cI R2R1 we choose P = R1R2 and apply the alternating
triangles method to (2).

Case 2. If R = R1 + R2, R~ = R1, R; R2, RIR2 = R2R1 we choose P = R1R2 and apply the
alternating directions method to (2).

Case 3. If R = R1 + R2 + R3, Ri = Ri, RiRJ = RJRi, : i, J' = 1,2,3 we choose P = RIR2 +
R2R3 + R1R3 + YhR1R2R3, where h is the grid step for discretization of differential problems, and
then apply the alternating directions method to (2). The detailed proof and examples illustrating
the effectiveness of the proposed method are presented in papers [10, 11].

In the case, where A is degenerate operator, restricting ourselfes in the image of A, [Irn A), we
also obtained analogous results concerning iterative processes for the normal solution of [La] (see
[17]) .

Comment 6. The use of the method of parametric extrapolation does not exclude the possibility
of using other fast methods for systems of linear algebraic equations. Moreover, its efficiency will be
increased if combine it with one of the fast methods for the perturbed system (2).

5.2. For finding the normal solution of a system of linear algebraic equations [La] with symmetric,
nonnegative degenerate matrix A in the case of consistency some authors used a simplified Tikhonov
regularization method, namely, the method of shifting spectrum, i.e. they consider the system

(A + aI)u" = f. (18)
This system has a unique solution and when a tends to zero this solution approaches to the normal
solution. But the problem of estimating computational work for obtaining an approximate solution
with a given accuracy has not been considered yet. Theoretically, in order to obtain a good approx-
imation of the normal solution we must choose a small enough. But when it is very small then the
matrix Ais ill-conditioned. Therefore, if the size of the system is large enough, for solving the system
we should use iterative methods and then the iterative methods converge very slowly. It implies that
for obtaining an approximate solution to the normal solution with a given accuracy a very great
computational work should be carried out. In the case if the size of the system is so small that
direct methods for (23) can be applied the experiments show that when a is less than a threshold the
result of computation is oscillating. In order to achieve the normal solution of the system (la) with a
given accuracy E; spending the possibly minimal computational cost we propose to use the method of
extrapolation by the regularization parameter a (see [19]). We have obtained the following estimate

IWE - u*11 ak+1

Ilu*11 ~ Ak+1' (19)
m'n
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where u* is the normal solution, UC is the extrapolated solution by k: + 1 solutions of (18), Arnin is
the smallest eigenvalue of A. From this estimate we establish that if applying the simple iterative
method [22, 27] to (18) then for achieving the normal solution of [La] with the given accuracy e by
using the parametric extrapolation we reduce the computational amount G times in comparison with
using only one shifted equation (18),

G = [(k + l)(k: 2)ck/(k+1) ].

In the case if the system (la) is inconsistent then the solution of (18) does not approximate the
normal solution. Nevertheless, we proved that extrapolating k + 1 solutions of (18) with parameters
a./f (j = 1, ... , k + 1) we get an approximation of the normal solution with the estimate

IlUe - u'll a.k-"----:.,----;.,----"-< -
Ilu'll - A~nin

Remark. In the case when the matrix A is not symmetric the Tikhonov regularization leads to the
solution of the system

(A* A + a.I)ua = A* f (20)
Using the extrapolation by the parameter a. we obtained the same result as (19) for both consistent
and inconsistent systems (la).

6. CONCLUDING REMARK

The major work in the realization of the method of parametric extrapolation is the parallel
solution of the perturbed problem with some various values of the parameter, each on a processor.
The computation of the extrapolated solution as a combination of the perturbed solutions is only the
last simple work. Thus, the degree of parallelization of the method is very high.

Acknowledgement. We wish to thank an anonymous referee for his valuable comments and sug-
gestions which improved the paper.
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