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SOME PROPERTIES OF CHOICE FUNCTIONS

BINA RAMAMURTHY, VU NGHIA, VU DUC THI

Abstract. The family of functional dependencies plays an important role in the relational database. The
main .goal of this paper is to investigate choice functions. They are equivalent descriptions of family of
functional dependencies. In this paper, we give some main properties related to the composition of choice
functions.

T6m t~t. H9 cac phu thuoc ham dong vai tro quan trong trong CO" sO-dir li~u quan h~. Muc Wlu cda cluing
toi Ill. nghien C1111 v"ecac ham chon. Cac ham chon Ill. cac mo ta tu'ong dirong cda ho cac phu thuoc ham.
Trongbal bao nay chiing tc5itrlnh bay m9t so cac tinh cMt co-bin lien quan dgn cac ham chon.

1. INTRODUCTION

The motivation of this study is equivalent descriptions of family of functional dependencies (FDs).
FDs play an significant role in the implementations of relational database model, which was defined by
E. F. Codd. Up to now, many kinds of databases have been studied, such as object oriented database,
deductive database, distributed database, inconsistent database ... For details, see [18]' [19], [1], [20]
and [17]. However, relational database is still one of the most powerful databases. One of the most
important branches in the theory of relational database is that dealing with the design of database
schemes. This branch is based on the theory of FDs and constraints. Armstrong observed that FDs
give rise to closure operations on the set of attributes. And he shows that closure operation is an
equivalent description of family of FDs, that is, the family of all FDs satisfying Armstrong axiom
stated in next section. That the family of FDs can be described by closure operations on the at-
tributes'set plays a very important role in theory of relational database. Because this representation
was successfully applied to find many properties of FDs, studying those properties of closure opera-
tions is indirect way of finding that of the family of FDs. Besides closure operations, there are some
other representations of family of FDs. Such as, the closed sets of a closure form a semilattice. And
the semilattice with greatest elements give an equivalent description of FDs. The closure operations,
and other equivalent descriptions of family of FDs have been studied widely by Armstrong [2], Beeri,
Dowd, Fagin and Statman [4], Mannila and Raiha [16].

2. BASIC DEFINITIONS

Let us give some formal definitions that are used in the next sections. Those well-known concepts
in relational database given in this section can be found in [2], [3], [4], [8], [10] and [20]. A relational
database system of the scheme R( al, ... ,an) is considered as a table, where columns correspond to the
attributes ai's while the row are n-tuples of relation r. Let X and Y be nonempty sets of attributes
in R. We say that instance r of R satisfies the FD if two tuples agree on the values in attributes X,
they must also agree on the values in attributes Y. Here is the formal mathematical definition of
FDs.

Definition 2.1. Let U = {al' ... , an} be a nonempty finite set of attributes. A functional dependency
is a statement of the form A -+ B, where A, B ~ U. The FD A -+ B holds in a relation R =
{hl' ... , hm} over U if Vhi, hj E R we have hda) = hj(a) for all a E A implies hdb) = hj(b) for all
bE B. We also say that R satisfies the FD A -+ B.

Let FR be a family of all FDs that hold in R.

.s
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Definition 2.2. Then F = FR satisfies
(1) A -+ A E E;
(2) (A -+ B E F, B -+ C E F) '* (A -+ C E F)j
(3) (A -+ BF, A ~ C, D ~ B) '* (C -+ D E F)j
(4) (A -+ B E F, C -+ D E F) '* (A u C -+ BuD E F).

A family of FDs satisfying (1)-(4) is called an f-family over U.

Clearly, FR is an f-family over U. It is known [2] that if F is an arbitrary f-family, then there
is a relation Rover U such that FR = F.

Given a family F of FDs over U, there exists a unique minimal f-family F+ that contains F. It
can be seen that F+ contains all FDs which can be derived from F by the rules (1)-(4).

Definition 2.3. A relation scheme s is a pair (U, F), where U is a set of attributes, and F is a set
of FDs over U.

Denote A-t = {a: A -+ {a} E F+}. A+ is called the closure of A over s.
It is clear that A -+ B E F+ iff B ~ A+ .
Clearly, if s = (U, F) is a relation scheme, then there is a relation Rover U such that FR = F+

(see [2]).

Definition 2.4. Let U be a nonempty finite set of attributes and P(U) its power set. A map
L : P( U) -+ P( U) is called a closure operation (closure for short) over U if it satisfies the following
conditions:
(1) A ~ L(A) (Extensiveness Property];
(2) A ~ B implies L(A) ~ L(B) (Monotonicity Property];
(3) L(L(A)) = L(A) (Closure Property).

Let s = (U, F) be a relation scheme. Set L(A) = {a: A -+ {a} E F+}, we can see that L is a
closure over U.

Theorem 2.1. [2] If F is a f-family and if LF = {a : a E U and A -+ {a} E F}, then LF is a
closure. Inversely, if L is a closure, there exists only a f-family F over U such that L = LF, and
F = {A -+ B: A, B ~ U, B ~ L(A)}.

Let L ~ P(U). L is called a meet-irreducible family over U (sometimes it is called a family of
members which are not intersection of two other members) if A, B, C E L, then A = B n C implies
A = B or A = C.

Let I ~ P(U)' U E I, and A, BEl '* An BEl. I is called a meet-semilattice over U. Let
M ~ P(U).

Denote M+ = {nM' : M' ~ M}. We say that M is a generator of I if M+ = I. Note that
U E M+ but not in M, by convention it is the intersection of the empty collection of sets.

Denote N = {A E I: A =1= n{A' E I: A c A'}}.
In [8] it is proved that N is the unique minimal generator of I.
It can be seen that N is a family of members which are not intersections of two other members.
Let L be a closure operation over U. Denote Z(L) = {A: L(A) = A} and N(L) = {A E Z(L) :

A =1= n{A' E Z(L) : A C A'}}. Z(L) is called the family of closed sets of L. We say that N(L) is the
minimal generator of L.

It is shown [8] that if N is a meet-irreducible family then there is a closure L such that N is the
minimal generator of it.

Theorem 2.2. [2] There is an on-to-one correspondence between meet-irreducible families and
f -families on U.
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Theorem 2.3. [8] There is a 1-1 correspondence between meet-irreducible families and meet- semi-
lattices on U.

Definition 2.5. Let M ~ P(U). M is called a Sperner system over U if A, BE M, then A is not a
subset of B.

Definition 2.6. Let U be a non empty finite set of attributes. A family M = {(A, {a}) : A c U, a E
U} is called a maximal family of attributes over R iff the following conditions are satisfied:
(1) a¢. A.

(2) For all (B, {b}) E M, a E B and A < B imply A = B.
(3) :l(B, {b}) EM: a ¢. B, a =I b, and La U B is a Sperner system over R, where La {A

(A, {a}) EM}.

Remark 2.1.
-It is possible that there are (A, {a}), (B, {b}) EM such that a =I b, but A = B.
- It can be seen that by (1) and (2) for each a E U, La is a Spernersystem over U. It is possible

that La is an empty Sperner system.
- Let U be a non empty finite set of attribute and P(U) its power set. According to Definition 2.6

wecan see that given a family Y ~ P(U) xP(U) there is a polynomial time algorithm deciding whether
Y is a maximal family of attribute over U. Let L be a closure over R. Denote Z(L) = {A: L(A) = A}
and M(L) = {(A, {A}) : A ¢. A, A E Z(L) and B E Z(L), A ~ B, A¢. B imply A = B}. Z(L) is
called the family of closed sets of L. It can be seen that for each (A, {a}) E M (L), A is a maximal
closedset which doesn't contain a. It is possible that there are (A, {a}), (B, {b}) E M(L) such that
a 1b, but A = B.

The following theorem which shows that closure operations and maximal families of attributes
determine each other uniquely.

Theorem 2.4. [13] Let L be a closure operation over U. Then M(L) is a maximal family of attributes
over U. Conversely, if M is a maximal family of attributes over U, then there exists exactly one closure
operation Lover U so that M(L) = M, where for all B E P(U)

{
n A

H(B) = ~~A

if 3A E L(M) : B ~ A,

otherwise,

and L(M) = {a: (a, {a}) EM}.

Now, we introduce the following concept

Definition 2.7. Let Y E P(U) x P(U). We say that Y is a minimal family over U if the following
conditions are satisfied:
(1) V(A,B)'(A',B') E Y: A c B ~ U, A c A' implies B c B', A c B' implies B ~ B'.
(2) Put U(Y) = {B : (A, B) E Y}. For each B E U(Y) and C such that C c B and there is no

B' E U(Y) : C c B' c B, there is an A E L(B) : A ~ C, where L(B) = {A: (A, B) E Y}.

Remark 2.2.
- U(U(Y).
- From A c B' implies B ~ B', there is no a B' E U(Y) such that A c B' c B and A = A'

implies B = B'. '
- Because A c A' implies B c B' and A = A' implies B = B', we can be see that L(B) is a

Sperner system over R and by (2) L(B) =I 0.
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,~,
Let I be a meet-semilattice over R. Put M*(I) = {(A,B) : ::JC E I such that A c C,

A f- n{C : C E I, A c C}, B = n{c : C E I, A c C}}. Set M(I) = {(A, B) E M*(I) :
there does not exist (A', B) E M*(I) such that A' C A}.

Theorem 2.5. [13] Let I be a meet-semilattice over U. Then M(I) is a minimal family over U.
Conversely, if Y is a minimal family over U, then there is exactly one meet-semilattice I so that
M(I) = Y, where 1= {C < R: V(A,B) E Y: A ~ C implies B ~ C}.

Let Z be an intersection semilattice on U and suppose that H C U, H ¢. Z hold and Z U {H}
is also closed under intersection. Consider the sets A satisfying A E Z, H c A. The intersection of
all of these sets is in Z therefore it is different form H. Denote it by L(H). H c L(H) is obvious.
Let H(Z) denote the set of all pairs (H, L(H)) where He U, H tf. Z, but Z U {H} is closed under
intersection. The following theorem characterize the possible sets H (Z):

Theorem 2.6. [7] The set {(Ai, B;) Ii= 1-+ m} is equal to H(Z) for some intersection semilattice
Z tf/ the following conditions are satisfied:

Ai C e. ~ U, Ai i= u. ,
Ai i= Aj implies either B, ~ Aj, or Aj ~ B, ,

Ai ~ Bj implies Bi ~ n, ,
for any i and C C U satisfying Ai C C C B; (Ai i= C i= Bd there is a j such that either C = Aj or
Aj C C, e, ¢. c, C ¢. n, all hold.

The set of pair (Ai, Bi) satisfying those condition above is called an extension. Its definition is
not really beautiful but it is needed in some application. On the other hand it is also an equivalent
notion to the closures:

Theorem 2.7. [7] Z -+ H(Z) is a bijection between the set of intersection semilattices and the set
of extensions.

Definition 2.8. Let U be a nonempty finite set of attributes and P(U) its power set. A map
C: P(U) -+ P(U) is called a choice function, if every A E P(U)' then C(A) ~ A.

U is interpreted as a set of alternatives, A as a set of alternatives given to the decision-maker to
choose the best and C(A) as a choice of the best alternatives among A.

Let L be a closure operation, we define C and H associated with L as follows:

and

C(A) = U - L(U - A),

H(A)=AnL(U-A).

(*)

(**)

We can easily prove that C(A) and H(A) are two choice functions. And we name C(A) choice
function-I (for short, CF-I), and H(A) choice function-II (for short, CF-II).

Theorem 2.8. The relationship like (*) is considered as a 1-1 correspondence between closures and
choice functions, which satisfies the following two conditions:
For every A, B ~ U,
(1) If C(A) ~ B ~ A, then C(A) = C(B) (Out Casting Property),
(2) If A ~ B, then C(A) ~ C(B) (Monotonicity Property).

Theorem 2.9. The relationship like (**) is considered as a 1-1 correspondence between closures and
choice functions, which satisfies the following two conditions:
For every A, B ~ U,
(1) If H(A) ~ B ~ A, then H(A) = H(B) (Out Casting Property),
(2) If A ~ B, then H(B) n A ~ H(A) (Heredity Property).
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We also note that both C and H uniquely determine the closure L as the following

L(A(= U - C(U - A) and H(A) = Au L(U - A).

For every A <;;; U, the sets C(A) and H(A) form a partition of A, that is, C(A) U H(A) = A, and
C(A) n H(A) = 0.

Theorem 2.10. There is a 1-1 correspondence between CFs - I and closure operations on U.

Theorem 2.11. There is a 1-1 correspondence between CFs - II and closure operations on U.

3. RESULT

First of all, we are giving the formal definition of composition of functions.

Definition 3.1. Let f and 9 be two functions (e.g closure operations, CFs - I, or CFs - II) on U, and
we determine a map T as a composition of f and 9 the following:

T(X) = f(g(X)) = f.g(X) = fg(X) for every X <;;; U.

In this section we are going to answer one question: given many CFs- II, what can be said about
the composition of those CFs - II. We will soon see that

Theorem 3.1. Let HI and H2 be CFs - II on U, then composition HIH2 and H2Hl are a CFs - II
on U, and HIH2 = H2Hl = HI n H2 .

However, to achieve this results, we necessarily prove those following lemmas and propositions.

First we need to prove the following proposition

Proposition 3.1. Let HI and H2 be CFs - II on U, then for all X <;;; U, HdX)nH2(X) is a CF- II on U.

To prove HI n H2 is a CF - II, we need to prove the following.

Lemma 3.1. Let Ll and L2 be closure operations on U, then for all X <;;; u, LdX) n L2(X) tS a
closure operation on U.

Proof·
Assume L, and L2 be two closure operations on U, then for all X <;;; u, it is easy to obtain

that X <;;; LdX) n L2 (X) since X <;;; LdX) and X <;;; L2 (X). Now, to prove the Monotonicity
Property of i, n L2, for every X <;;; Y, we have LdX) <;;; LdY) and Lz(X) <;;; L2 (Y). Therefore,
LdX)nL2(X) <;;; LdY) nL2(Y), so L, nL2 satisfies Monotonicity Property. Then, we have to prove
Closure Property of t., n L2. We always have X <;;; LdX) n L2 (X) <;;; LdX). Using Monotonicity
Property of L1, we attain LdX) <;;; LdLdX)nL2(X)) <;;; Ll(LdX)) = LdX). That means LdX) =
LdLdX) n L2(X)), Similarly, we attain that L2(X) = L2(LdX) n L2(X)), Therefore, LdX) n
L2(X) = LdLdX) n L2(X)) n L2(LdX) n L2(X)), That is, t., n L2 satisfies Closure Property, so
L, n L2 is a closure on U. The proof is completed.

Nowwe are moving on proving Proposition 3.1.

Proof of Proposition 3.1. Assume HI and H 2 be CFs - II on U, then for all X <;;; U, we have
Hl(X) = X n LdU - X), and H2(X) = X n L2(U - X), with L, and L2 two closure operations
corresponding to HI and H2 respectively. Thus HdX)nH2(X) = (XnLdU-X))n(XnL2(U-X)) =
X n LdU - X) n L2(U - X). However, due to Lemma 3.1, LdU - X) n L2(U - X) is a closure
operation, that is, there exists a closure operation L3 such that L3 (U - X) = Ld U - X) nL2 (U - X).
Thus, C1(X) n C2(X) = X n L3(U - X) = C3(X), with C3 is a CF - II corresponding to L3. The
proof is completed. ~-

Before proving Theorem 3.1, we need to prove the follows.
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Lemma 3.2. Let HI and H2 be CFs - II on U, then
1) HIH2 = H2H1H2.
2) H2Hl = H1H2H1.

Proof. Assume HI and H2 be CFs- II on U. Then for all X ~ U, HdX) = X n LdU - X) and
H2(X) = X n L2(U - X), with Ll and L2 two closure operations corresponding to HI and H2
respectively. HIH2(X) = HdH2(X)) = X n L2(U - X) n LdU - X n L2(U - X)) ~ X. Due
to Heredity Property of CFs- II for H2, we obtain H2(X) n HIH2(X) ~ H2(H1H2(X)). By using
H1H2(X) = HdH2(X)) ~ H2(Xl, we attain HIH2(X) ~ H2(H1H2(X)) ~ HIH2(X). Hence
HIH2(X) = H2(HIH2(X)l, that is, HIH2 = H2H1H2. Similarly, we obtain H2Hl = H1H2H1. The
proof is completed.

Lemma 3.3. Let HI and H2 be CFs - II on U, then following is equivalence:
(1) HI ~ H2 j

(2) HIH2 = HI.

Proof·
(1) -+ (2). Assume HI and H2 be CFs-II on U and HI ~ H2. Since HI is a CF-II, HI must satisfy
Out Casting property: if HdX) ~ Y ~ X, then HdX) = Hl(Y). Therefore, we have HI ~ H2 or
HdX) ~ H2(X) ~ X for every X ~ U, so HdH2(X)) = HdX) or we conclude that HIH2 = HI.
(2) -+ (1). Assume HI and H2 be CFs-II on U and HIH2 = HI. Since HI and H2 are CFs-II,
according to definition of choice function, we have HIH2 ~ H2, but HIH2 = HI, so we have HI ~ H2.
The proof is completed.

Easily, we obtain the following Corollary.

Corollary 3.1. If H is a CF - II on U, then H H = H.

Proof of Theorem s.i. Assume HI and H2 be CFs-II on U. Then for all X ~ U, H2(X) ~ X.
Due to Heredity Property of CF - II for HI, we obtain H dX) nH 2 (X) ~ HI (H 2 (X)). Besides that,
HdH2(X)) < H2(X) ~ X, we obtain HI n H2(X) ~ H1H2(X) ~ x. By Proposition 3.1, HdX) ~
H2(X) is a CF-II. Using Out Casting Property for HI n H2, we achieve HI n H2(H1H2(X)) =
HI n H2(X) or HdHIH2(X)) n H2(HIH2(X)) = HI n H2(X). Due to Corollary 3.1, we obtain
HdHIH2(X)) = HIHdXl, and Lemma 3.2, we obtain H1H2(X) = H2HIH2(X). Therefore, we
obtain that HIH2(X) = HI n H2(Xl, that is HIH2 = HI n H2. That means HIH2 is a CF- II.
Similarly, we obtain H2Hl = HI nH2 and H2Hl is a CF- II. The proof is completed.
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