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THE RELATIONSHIP BETWEEN DIRECT DETERMINATION
AND FD-GRAPH

HO THUAN, NGUYEN VAN DINH

Abstract. The notion of direct determination was introduced by D.Maier [5] to study the structure of
minimum covers. Using direct determination he showed that it is possible to find covers with the smallest
number of FDs (Functional Dependencies) in polynomial time. In [2], G. Ausiello et al. presented an approach
which is based on the representation of the set of FDs by FD-graph (considered as a special case of the
hypergraph formalism introduced in [7]). Such a representation provides a unified framework for the treatment
of various properties and for the manipulation of FDs.

In this paper, we establish the relation between FD-graph and direct determination, and prove some
well-known and new properties concerning direct determination.

Tém tdt. Khii niém zdc dink truc tiép di dwgc trinh bay bdi D. Maier [5] d€ nghién ciu ciu tric cic phd
cuc tidu. St dung khai niém niy, éng di chi ra ring c6 thé tim dwoc céc phd véi s6 phu thudc ham 13 it
nhit trong thoi gian da thic. Trong [2], G. Ausiello va céc tdc gid khic di dwa ra mdt cich tiép cin méi
trén co s& bidu dién tip cic phu thuéc ham bing mdt FD-dd thi (xem nhw mdt trwdmng hop dic biét cda
siéu dd thi, duwoc giéi thidu trong [7]). Cich bi€u dién nhuw viy cho mdt khung thdng nhdt d€ xd Iy nhidu
tinh chit khac nhau va thao tic trén céc FD.

Trong bai bdo nay, ching t6i xdc dinh mdi lién hé giira FD-d0 thi va khai niém zdc dinh truc tiép, ching
minh mét s§ tinh ch&t quen biét vd nhing tinh chit méi lién quan dén khéi niém nay.

1. BASIC NOTIONS AND RESULTS

In this section we recall some notions and results which will be needed in the sequel. The reader
is required to know the basic notions of the relational model and functional dependency [8|. As usual,
we will only consider sets of FD in natural reduced form [4] and we assume that all attributes are
chosen from some fixed universe (2. That means for any F = {X; — Y; |+ =1,2,...,m}

XY =10, Vo= 1.2, m;
X; # X, forv # g5
X, Y, CQ, Vi=1,2,...,m.

Let F* be the closure of F, i.e. the set of all FDs that can be inferred from the FDs in F' by
repeated application of the Armstrong’s axioms [1].

Definition 1.1.
(a) Two sets Fy, F; of FDs over (1 are said equivalent, written F; = Fy if FRt=FRtT IF=F
then F; is a cover for F, and vice versa.

(b) A set F of FDs is nonredundant if there is no proper subset F' of F with F' = F. F; is a
nonredundant cover for F, if F is a cover for F; and F) is nonredundant.

(c) Let F be a set of FDs over {1 and let X — Y be a FD in F. Attribute A € Q is said eztraneous
in X —-Yif
4 (F\{X =YY U{X\ A4~V \4))* = F*.

(d) Two set of attributes X and Y are equivalent under a set of FDs, written X < Y, if X =Y
and Y — X are in F*.
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Definition 1.2.[5] Given a set of FDs F' with X — Y in F*. X direct determines Y under F,
written X = Y if (X = Y) € [F\ Er(X)|", where Ep(X) is the set of all FDs in F with left sides
equivalent to X. That is, no FDs with left sides equivalent to X are used to derive X — Y.

Definition 1.3. [5] A set of FDs F is minimum if there is no set G with fewer FD than F' such that
G=PF.

Theorem 1.1. [5] Given equivalent minimum set of FDs F and G

|Er (X)| = |Ba(X)| for any X.

Thus the size of equivalence classes in £ is the same for all minimum F with the same closure
(where Ef is the collection of all non empty Er(X)).

Definition 1.4. [2] Given a set of FDs on (2, the FD-graph Gr = (V, E) associated with F is the
graph with node labeling function w : V — P((1) and are labeling function w' : E — {0, 1} such
that:

(1) for every attribute A € Q, there is a node in V labeled A (called simple node);

(ii) for every dependency X — Y in F where |X| > 1, there is a node in V labeled X (called a
compound node);

(iii) for every dependency X — Y in F where Y = A; ... Ay, there are arcs labeled 0 (full arcs)
from the node labeled X to the nodes labeled Ay, ..., Ax;

(iv) for every compound node % in V labeled A;, ... A;, there are arcs labeled 1 (dotted arcs) from
the node 2 to all simple nodes (component nodes of ¢) labeled A4;,,..., 4;, .

The set of full arcs (dotted arcs, respectively) is denoted Eo (E1, respectively).

Example 1.1. Given a set of attributes ! = {A, B,C,D,E, F, H}, let F be a set of FDs over (1,
F ={A— BCF,C — D, FBD — H, BD — E} the corresponding FD-graph Gr = (V, E) is
shown in Fig. 1.1.

-———7—>E
\ //
4

c—>D

Fig.1.1. An FD-graph

Definition 1.5. [2] Given an FD-graph G = (V, E) and two nodes 4,7 € V, a (directed) FD- path
(4, 5) from 7 to 7 is a minimal subgraph Gr = (V, E) of G such that 1,5 € V and either (3, j) € E
or one of the following possibilities holds:
(a) 7 is a simple node and there exists a node k such that (k, 5) € E and there is an FD-path (3, k)
included in GF (graph transitivity).
(b) 7 is a compound node with component nodes my, ..., m, and there dotted arcs (3, m1), ..., (4, m)
in Gr and r FD-paths (i, m;),..., (¢, m,) included in G (graph union).
Further more, an FD-path (z, 5) is dotted if all its arcs leaving 7 are dotted; otherwise it is full.

Example 1.2. For the FD-graph of the Example 1.1: (a) full FD-path (A, E), (b) full FD-path
(A, D), and dotted FD-path (FBD, E) are given in Fig. 1.2.
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Fig.1.2. FD-paths

Definition 1.6. [2]

(a) The closure of an FD-graph Gr = (V, E) is the graph Grt = (V, E*), labeled on the nodes
and on the arcs, where the set V is the same as in Gr, while the set Et = (Et)o U (EY); is
defined in the following way

(E*)1 ={(z, )| %,7 € V and there exists a dotted FD-path (1, 7)};
(Et)o ={(1,7)|%,7 €V, (¢, 7 ¢ (ET): and there exists a full FD-path (3, 5)}.

(b) Two nodes %, j in an FD-graph are said equivalent if the arcs (¢, 7) and (7, 1) both belong to the
closure of Gr. Further more, a node 1 of G is said to be equivalent to node j of Gz where Gz
is a cover of Gp (i.e. Ft = 7+) if 7, 7 are equivalent in some cover of Gp.

(c) Given two FD-graphs Gr, , Gr,; GF, is a cover of G, if F; is a cover of Fj .

(d) An FD-graph GF is nonredundant if F' is nonredundant.

Theorem 1.2. (2] Let Gr = (V, E) be the FD-graph associated with the set F of FDs, and let
Grt = (V, E*) be its closure. An arc (1, 7) is in ET if and only if w(z) — w(j) 1s in F7T.

Theorem 1.3. [2] A nonredundant FD-graph Gr = (V, E) 1is minimum if and only if it has no
superfluous node. )

Recall that a node 7 € V is superfluous if there exists a dotted FD-path (7, ) where j is a node
of V equivalent to 3.

2. DIRECT DETERMINATION AND FD-GRAPH

In this section, we establish the relation between FD-graph and direct determination by proving
some well-known and new properties of direct determination.

First it is worth giving a few comments on the definition of an FD-graph.

Remark 2.1. Definition 1.4 is reasonable and concise in the sense that the FD-graph G includes
all the “meaning part” of the closure of the set of FDs. On the other hand, with the formalism of
FD-graph, we can provide a simple and unified treatment of all properties of sets of FDs.

Following the definition of a FD-graph, it is clear that every compound node has at least one
outgoing full arc. However, according to the necessity, we can freely add to an FD-graph some new
coumpound nodes without outgoing full arcs if it makes easy to prove a certain required property.

So, a natural way is to think that an FD-graph Gg = (V, E) associated with F is defined by
Definition 1.4 precisely to an arbitrary finite number of different compound nodes which do not
correspond to the left side of any FD in F, together with the dotted arcs from each of them to their
corresponding component nodes.

Definition 2.1. [2] Given an FD-graph Gr = (V, E) and a node ¢ € V with at least a full outgoing
arc. A strong component of Gr with representative node z is a maximal set of pairwise equivalent
nodes which contains 7, denoted by SC(z). Notice that every node in SC(z) has at least one full
outgoing arc.

The following lemma is obvious.
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Lemma 2.1. Giwven an FD-graph Gr = (V, E), a node 1 € V, its corresponding strong component
SC(2) and two nodes j, k such that j is equivalent to i. (5 not necessarily belong to SC(z), 1.e. 7 can
be a compound node without outgoing full arc that we add it to the FD-graph. The same situation
can happen with the node k too).

Then w(j) = w(k) if and only if there ezists a dotted FD-path (5, k) containing no full outgoing
arc from any node of SC(4).

In other words, the dotted FD-path (7, k) contains no intermediate node that 1s node of SC(z).

In that case, for sake of ssmplicity, we write <j S_C/Lt;) lc>.
Example 2.1. Given Q= ABCDEIH, F = {A— BCH,BC — A, AD — EI, EA— ID}. It is

easy to verify that:
Ep(AD) = {AD — EI, AE — DI} and BCD « AD.

The correspondmg FD-graph Gr with an added node BC D (without outgoing full arc) is shown
in Fig. 2.1.

Fig.2.1. FD;graph with added node BCD

We have
SC(s1) = {1, 12} where w(z1) = AD, w(iz) = EA,
we find that
BCD =~ H
and
BCD =+ AD.

Lemma 2.2. Giwen an FD-graph Gg = (V, E), two equivalent nodes 2,7 € V and 14, j, are two
nodes equivalent to 1 and j respectively.

SC(4) SC(7)

If (ig = ]q) and (j, —— k) then (i, sl

—— k).
. SC(i) . . 8C(s) )
Proof. By merging two FD-paths <2q —— ]q> and <jq —— k) appropriately at compound nodes of
) so(
Jq Which are intermediate nodes of the FD-path (jq §—C—/(iz k> we obtain the FD-path <zq —f(l)' lc).

In other words, from w(z) « w(i,), w(s) <« w(j,) and w(iy) = w(z,), w(sy) = w(k), we have
w(iy) = w(k). '
Notice that the above lemma corresponds to [5, Lemma 5].

Example 2.2. Take up again Example 2.1 (Fig. 2.1), we have BCD = AD and AD % H.
Since A is the unique component node of AD that is an intermediate node on the FD-path
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SC(41) 5 ;
(AD =~ H), we will merge two FD-paths (BCD, AD) and (AD, H) at A to obtain the FD-path
(BCD, H) such that BCD =+ H.

Lemma 2.3. Giwven an FD-graph Gr = (V, E), 1 €V 1s a node having at least one outgoing full arc
and to 15 equivalent to 1 (o can be an added node to the FD-graph without outgoing full arc). Then

there ezists j € SC(i) such that (io S—Cf(—')> 7)-

Proof. Suppose that 19 ¢ SC(z). Otherwise, take 7 = 7o and the lemma is proved. Consider the

dotted FD-path (1o, 1). In the case there is no intermediate node in (i, 1) that is node of SC(z) then
i is the node to be found.

Otherwise, suppose that 1; € SC(z) is an intermediate node of (i, 2). Now we have only to
consider the FD-path (z9, ;). Repeat the above reasoning for (ip, 71). Finally, we will find the

required 7 such that (%o E(_’), 7) .

Notice that the above lemma corresponds to [5, Lemma 6].

Lemma 2.4. Let Gp = (V, E), be a minimum FD-graph (iv.e. F 1is minimum), and © €V s a node

: : ; . ; e 5o . . SC(7) .
with at least one outgoing full arc. Then in SC(z) there ezist no ji1, J2; J1 # J2 such that <]1 —/(—')r _72>.

Proof. Assume the contrary that there exist 71,72 € SC(z), j1 # 72 such that there is a dotted FD-
path from 71 to j2. Since 7 is equivalent to j2, 71 is a superfluous node. We arrive to a contradiction.

(See Theorem 1.3). O
Notice that the above lemma corresponds to [5, Lemma 7|.

Lemma 2.5. Given two nonredundant FD-graph Gr, = (V1, E1), Gr, = (Va, E3), wherein GF,
15 a cover of Gp,. Let 11 and i3 be two equivalent nodes in Vi and V3, respectively, with at least
one outgoing full arc, (pz, g2) be a full arc of Ep with py # SC?)(i3).0*) If (i1, p2) € E;™, then

()
R PRY

Proof. Since (11, p2) € E,*, by Theorem 1.2, there exists a FD-path in G, from 1; to p;. Now assume
the contrary that the FD-path in G, from p; to gz has an intermediate node j; € SC(*)(1;). The
presence of the FD-path (j;, 7;) shows that p, is equivalent to 1;, i.e. p; € SC(?)(33), a contradition.

O

Theorem 2.6. With the same assumptions as tn Lemma 2.5, 1f we replace in GF, all nodes belonging
to SC1V (3,) together with their corresponding outgoing arcs by all nodes in SC1?) (i) together with
their corresponding outgoing arcs, then the new FD-graph 1s a cover of GF,.

Proof. We have only to prove that for every full arc (ji, k1) € E; with 5; € SC(})(4;) there exists a
FD-path (j;, k1) in the new FD-graph. By Lemma 2.5 we have just the required result. O

Remark 2.2. Theorem 2.6 can be formulated in another form as follows:
If Fy, F, are nonredundant and equivalent sets of FDs, then

Fy ={F1\ Er,(X)} U Ep, (X) = {F2\ Er,(X)} U EF, (X).
Let us close the paper with the following useful proposition:

Proposition 2.7. Let U — W be an FD in F* and let X — Y be an FD in F that participates in
the Armstrong’s derivation sequence for U — W. Then we have:

U— X, UY W e (F\{X—Y}+.

SC(1) and SC(?) refer to GF, and GF,, respectively
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Proof. Let Gr = (V, E) be the FD-graph associated with F. From U — W in F™ it follows that
there is an,FD-path (7, 7) from ¢ to 7, where w(z) = U, w(j) = W. Since X — Y € F takes part in
the derivation sequence for U — W, the nodes p and ¢ with w(p) = X and w(g) = Y are intermediate
nodes on (z, 7). It is clear that the FD-paths (, p) and (g, j) contain no outgoing full arc from node
p. O

Example 2.3. Reconsider the Example 2.1 (Fig. 2.1). We have BCD — H € F*, (BC — A) € F
participates in the derivation sequence for BCD — H.
It is clear that:
BCD — BC € (F \ {BC — A})* and corresponds to the FD-path (BCD, BC);
BCDA — H € (F\ {BC — A})* and corresponds to the FD-path (BCDA, H).

CONCLUSIONS

An FD-graph approach for the representation of functional dependencies (FDs) in relational
databases. It also supports the studies of FDs. This approach allow a homogeneous treatment of
several problems (closure, minimization, etc.), which leads to simpler proofs and, in some cases, more
efficient algorithms than in the current literature. Therefore, the studies of FD-graph is a middle step
to further study Database Hypergraphs in which directed hyperedges represent FDs and undirected
hyperedges represent the join dependency.

REFERENCES

[1] Armstrong W.W., Dependency structures of database relationships, Information Processing 74,
North Holland Publishing Company, 1974, 580-583.

(2] Ausiello G. et al., Graphs algorithms for functional dependency manipulation, J. ACM 30
(1983) 752-766.

(3] Fagin R., Ling Ling Yan, Renee J. Miller, and Laura M. Haas, Data-driven understanding
and refinement of schema mappings, Proc. 2001 ACM SIGMOD Symposium, Santa Barbara,
485-496.

[4] Ho Thuan, Contribution to the Theory of Relational Database, Tanulmanyok, 184/1986, Bu-
dapest, Hungary.
[5] Maier D., Minimum covers in the relational database model, J. ACM 27 (1980) 664-674.

(6] S. Nguyen, D. Pretolani, and L. Markenzon, Some path problems on oriented hypergraphs,
Theoretical Informatics and Applications (Elsevier-Paris) 32 (1998), No. 1,2, 3.

[7] Saccé D., Closures of database hypergraphs, J. ACM 32 (1985) 774-803.

(8] Ullman Jeffrey D., Principles of Database and Knowledge-Base Systems, Computer Science
Press, USA, 1989.

Recewved October 25, 2001
Ho Thuan, National Institute of Information Technology, Hanos.
Nguyen Van Dinh, United Nations International School of Hanos.



