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THE RELATIONSHIP BETWEEN DIRECT DETERMINATION
AND FD-GRAPH

HO THUAN, NGUYEN VAN DINH

Abstract. The notion of direct determination was introduced by D. Maier [5] to study the structure of
minimum covers. Using direct determination he showed that it is possible to find covers with the smallest
number of FDs (Functional Dependencies) in polynomial time. In [2], G. Ausiello et al. presented an approach
which is based on the representation of the set of FDs by FD-graph (considered as a special case of the
hypergraph formalism introduced in [7]). Such a representation provides a unified framework for the treatment
of various properties and for the manipulation of FDs.

In this paper, we establish the relation between FD-graph and direct determination, and prove some
well-known and new properties concerning direct determination.

T6m tih. Khii niem zdc Clinh iru c tiep dii. diro'c trlnh bay bO'i D. Maier [5] d€ nghien ciru cau true cic ph d
cue tie'u. SIl' dung khai niem nay, ong dii. chl ra rhg c6 the' tlm dtroc cac phi vo'i s5 phu thuoc ham 111.it
nh~t trong thOi gian da tlnrc. Trong [2], G. Ausiello va cac tic gii khic dii. dira ra m9t each tii!p c~n m&i
tren CO' s<Ybie'u di~n t~p cac phu thui?c ham b~ng mi?t FD-d'O th] (xem nhir mi?t tnrong ho-p d~c bi~t cda
sieu d'Oth], diroc gi&i thieu trong [7]). Cach bie'u di~n nhir v~y cho m9t khung thOng nha:t d€ xu' ly nhieu
tinh cMt khac nhau va thao tic tren cac FD.

Trong bai bao nay, chung toi xac dinh m5i lien h~ giira FD-d'O th] va khii niem xac Clinh iru c titp, chirng
minh m9t so tinh cMt quen bii!t va nhii:ng tinh ch~t m6i lien quan dgn khii ni~m nay.

1. BASIC NOTIONS AND RESULTS

In this section we recall some notions and results which will be needed in the sequel. The reader
is required to know the basic notions of the relational model and functional dependency [8]. As usual,
we will only consider sets of FD in natural reduced form [4] and we assume that all attributes are
chosen from some fixed universe O. That means for any F = {Xi -+ Yi Ii= 1,2, ... , m}

Xi n Yi = 0, Vi = 1,2, ... ,mj

Xi-:j=Xjfori-:j=jj

Xi, Yi ~ 0, Vi = 1,2, ... ,m.

Let F+ be the closure of F, i.e. the set of all FDs that can be inferred from the FDs in F by
repeated application of the Armstrong's axioms [1].

Definition 1.1.

'(a) Two sets F1, F2 of FDs over 0 are said equivalent, written Fl == F2 if Fl + = F2 +. IT Fl == F2
then Fl is a cover for F2 and vice versa.

(b) A set F of FDs is nonredundant if there is no proper subset F' of F with F' == F. Fl is a
nonredundant cover for F2 if Fl is a cover for F2 and Fl is nonredundant.

(c) Let F be a set of FDs over 0 and let X -+ Y be a FD in F. Attribute A E 0 is said extraneous
in X -+ Y if

((F \ {X -+ Y}) u {X \ A -+ Y \ A})+ = F+.
(d) Two set of attributes X and Y are equivalent under a set of FDs, written X +--+ Y, if X -+ Y

and Y -+ X are in F+.
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'r Definition 1.2. [5] Given a set of FDs F with X -> Y in F+. X direct determines Y under F,
writt~n X ~ Y if (X -> Y) E [F \ EF(X)]+, where EF(X) is the set of all FDs in F with left sides
equivalent to X. That is, no FDs with left sides equivalent to X are used to derive X -> Y.

Definition 1.3. [5] A set of FDs F is minimum if there is no set G with fewer FD than F such that
G=F. '

Theorem 1.1. [5] Given equivalent minimum set of FDs F and G

IEF(X)I = IEa(X)1 for any X.

Thus the size 'of equivalence classes in EF is the same for all minimum F with the same closure
(where EF is the collection of all non empty EdX)).

Definition 1.4. [2] Given a set of FDs on 0, the FD-graph GF = (V, E) associated with F is the
graph with node labeling function w : V -> P(o) and are labeling function w' : E -> {O, 1} such
that:

(i) for every attribute A E 0, there is a node in V labeled A (called simple node);
(ii) for every dependency X -> Y in F where IXI > 1, there is a node in V labeled X (called a

compound node);
(iii) for every dependency X -> Y in F where Y = AI ... Ak, there are arcs labeled 0 (full arcs)

from the node labeled X to the nodes labeled AI, ... , Ak ;
(iv) for every compound node i in V labeled Ail ... Aip there are arcs labeled 1 (dotted arcs) from

the node i to all simple nodes (component nodes of i) labeled Ail, ... , Aip •

The set of full arcs (dotted arcs, respectively) is denoted Eo (EI' respectively).

Example 1.1. Given a set of attributes ° = {A, B, C, D, E, F, H}, let F be a set of FDs over 0,
F = {A -> BCF, C -> D, FBD -> H, BD -> E} the corresponding FD-graph GF = (V, E) is
shown in Fig. 1.1.
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Fig. 1.1. An FD-graph

Definition 1.5. [2] Given an FD-graph GF = (V, E) and two nodes i,j E V, a (directed) FD-path
(i, j) from i to j is a minimal subgraph GF = (V, E) of GF such that i,l' E V and either (i, j) E IE
or one of the following possibilities holds:
(a) j is a simple node and there exists a node k such that (k, j) E E and there is an FD-path (i, k)

included in GF (graph transitivity).
(b) j is a compound node with component nodes ml, ... ,mr and there dotted arcs (j, md, ... , (j, mr)

in GF and r FD-paths (i, ml), ... ,(i, mr) included in GF (graph union).
Further more, an FD-path (i, j) is dotted if all its arcs leaving i are dotted; otherwise it is full.

Example 1.2. For the FD-graph of the Example 1.1: (a) full FD-path (A, E), (b) full FD-path
(A, D), and dotted FD-path (F BD, E) are given in Fig. 1.2.
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Fig. 1.2. FD-paths

Definition 1.6. [2]
(a) The closure of an FD-graph GF = (V, E) is the graph GF + = (V, E+), labeled on the nodes

and on the arcs, where the set V is the same as in GF, while the set E+ = (E+)o U (E+h is
defined in the following way
(E+h = {(i, j) I i,j E V and there exists a dotted FD-path (i, j)};
(E+)o = {(i, j) I i,j E V, (i, j 1. (E+h and there exists a full FD-path (i, j)}.

(b) Two nodes i, j in an FD-graph are said equivalent if the arcs (i, j) and (j, i) both belong to the
closure of GF. Further more, a node i of GF is said to be equivalent to node j of GF where GF
is a cover of GF (i.e. F+ = F+) if i, j are equivalent in some cover of GF.

(c) Given two FD-graphs GFl , GF.; GF. is a cover of Gr, if F2 is a cover of Fl .
(d) An FD-graph GF is nonredundant if F is nonredundant.

Theorem 1.2. [2] Let GF = (V, E) be the FD-graph associated with the set F of FDs, and let
GF + = (V, E+) be its closure. An arc (i, j) is in E+ if and only if w(i) ---+ wU) is in F+.

Theorem 1.3. [2] A nonredundant FD-graph GF = (V, E) is minimum if and only if it has no
superfluous node.

Recall that a node i E V is superfluous if there exists a dotted FD-path (i, j) where j is a node
of V equivalent to i.

2. DIRECT DETERMINATION AND FD-GRAPH

In this section, we establish the relation between FD-graph and direct determination by proving
some well-known and new properties of direct determination.

First it is worth giving a few comments on the definition of an FD-graph.

Remark 2.1. Definition 1.4 is reasonable and concise in the sense that the FD-graph GF includes
all the "meaning part" of the closure of the set of FDs. On the other hand, with the formalism of
FD-graph, we can provide a simple and unified treatment of all properties of sets of FDs.

Following the definition of a FD-graph, it is clear that every compound node has at least one
outgoing full arc. However, according to the necessity, we can freely add to an FD-graph some new
coumpound nodes without outgoing full arcs if it makes easy to prove a certain required property.

So, a natural way is to think that an FD-graph GF = (V, E) associated with F is defined by
Definition 1.4 precisely to an arbitrary finite number of different compound nodes which do not
correspond to the left side of any FD in F, together with the dotted arcs from each of them to their
corresponding component nodes.

Definition 2.1. [2] Given an FD-graph GF = (V, E) and a node i E V with at least a full outgoing
arc. A strong component of GF with representative node i is a maximal set of pairwise equivalent
nodes which contains i, denoted by SC(i). Notice that every node in SC(i) has at least one full
outgoing arc.

The following lemma is obvious.
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Lemma 2.1. Given an FD-graph GF = (V, E), a node i E V, its corresponding strong component
SC(i) and two nodes i, k such that j is equivalent to i. (i not necessarily belong to SC(i), i.e. j can
be a compound node without outgoing full arc that we add it to the FD-graph. The same situation
can happen with the node k too).

Then w(j)"'!'" w(k) if and only if there exists a dotted FD-path (1, k) containing no full outgoing
arc from any node of SC(i).

In other words, the dotted FD-path (1, k) contains 'no intermediate node that is node of SC(i).

I h f k f . I" . (. SC(i) k)n t at case, or sa e 0 szmp zczty, we wnte J --f'-I' •

Example 2.1. Given {1 = ABC DEI H, F = {A -+ BCH, BC -+ A, AD -+ EI, EA -+ ID}. It is
easy to verify that:

EF(AD) = {AD -+ EI, AE -+ DI} and BCD •....•AD.

The corresponding FD-graph GF with an added node BCD (without outgoing full arc) is shown
in Fig. 2.1.
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Fig. 2.1. FD-graph with added node BCD

We have
SC(il) = {iI, i2} where w(id = AD, W(i2) = EA,

we find that
BCD"'!'" H

and
BCD"'!'" AD.

Lemma 2.2. Given an FD-graph GF = (V, E), two equivalent nodes i,J' E V and iq, J~ are two
nodes equivalent to i and j respective/yo

. SC(i) . . sC(j) . SC(i)
If (Zq --r--+ Jq) and (Jq --r--+ k) then (Zq --r--+ k).

. . SC(i) . . sC(j) .
Proof. By mergmg two FD-paths (Zq ---r--> Jq) and (Jq ---r--> k) appropriately at compound nodes of

J~ which are intermediate nodes of the FD-path (iq ~ k) we obtain the FD-path (iq ~ k).
In other words, from w(i) •....•w(iq), w(j) •....•w(J~) and w(iq) ...!.., w(J~), w(jq) ...!.., w(k), we have

w(iq)"'!'" w(k).

Notice that the above lemma corresponds to [5, Lemma 5].

Example 2.2. Take up again Example 2.1 (Fig. 2.1), we have BCD"'!'" AD and AD"'!'" H.
Since A is the unique component node of AD that is an intermediate node on the FD-path
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SC(id) . .AD -t-+ H , we will merge two FD-paths (BCD, AD) and (AD, H) at A to obtain the FD-path

(BCD, H) such that BCD -4 H.

Lemma 2.3. Given an FD-graph GF = (V, E), i E V is a node having at least one outgoing full arc
and io is equivalent to i (io can be an added node to the FD-graph without outgoing full arc). Then

h . . SC(') h h (' SC(i) ')t ere ex~sts JEt suc t at to ---t--+ J .

Proof. Suppose that io ¢:. SC(i). Otherwise, take i == io and the lemma is proved. Consider the
dotted FD-path (io, i). In the case there is no intermediate node in (io, i) that is node of SC( i) then
i is the node to be found.

Otherwise, suppose that il E SC(i) is an intermediate node of (io, i). Now we have only to
consider the FD-path (io, il). Repeat the above reasoning for (io, il)' Finally, we will find the

. d' h h (' SC(i) ') 0require J suc t at to ----r--+ J .

Notice that the above lemma corresponds to [5, Lemma 6].

Lemma 2.4. Let GF = (V, E), be a minimum FD-graph (i.e. F is minimum), and i E V is a node

with at least one outgoing full arc. Then in SC(i) there exist no ii, 12j i, =1= i2 such that (il ~ i2)'

Proof. Assume the contrary that there exist is, 12 E SC(i), il =1= 12 such that there is a dotted FD-
path from il to J2' Since i. is equivalent to J2' il is a superfluous node. We arrive to a contradiction.
(See Theorem 1.3). 0

Notice that the above lemma corresponds to [5, Lemma 7].

Lemma 2.5. Given two nonredundant FD-graph GFl = (VI, El), GF• = (V2' E2), wherein GF1
is a cover of Grc- Let il and i2 be two equivalent nodes in VI and V2, respectively, with at least
one outgoing full arc, (p2, q2) be a full arc of E2 with P2 =1= S02)(i2).H If (iI, P2) E E2 +, then

sc(l)(id
, (pz --T-+ q2)'

Proof. Since (iI, P2) E E2 +, by Theorem 1.2, there exists a FD-path in GFl from il to pz. Now assume
the contrary that the FD-path in GFl from P2 to q2 has an intermediate node il E SC(l)(il). The
presence of the FD-path (iI, i1) shows that P2 is equivalent to iI, i.e. P2 E SC(2) (i2), a contradition.

o
Theorem 2.6. With the same assumptions as in Lemma 2.5, if we replace in Gr, all nodes belonging
to so» (il) together with their corresponding outgoing arcs by all nodes in S02) (i2) together with
their corresponding outgoing arcs, then the new FD-graph is a cover of GFl'

Proof. We have only to prove that for every full arc (iI, kl) E El with i, E SC(1) (it) there exists a
FD-path (iI, kl) in the new FD-graph. By Lemma 2.5 we have just the required result. 0

Remark 2.2. Theorem 2.6 can be formulated in another form as follows:
If Fl! Fz are nonredundant and equivalent sets of FDs, then

r, == {Fl \ EF, (X)} U EFl (X) == {F2 \ EFl (X)} U EF, (X).

Let us close the paper with the following useful proposition:

Proposition 2.7. Let U -+ W be an FD in F+ and let X -+ Y be an FD in F that participates in
the Armstrong's derivation sequence for U -+ W. Then we have:

U -+ X, UY -+ W E (F \ {X -+ Y})+.

Sc(l) and SC(2) refer to GFl a.nd GF" respectively
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Proof. Let GF = (V, E) be the FD-graph associated with F. From U -+ W in F+ it follows that
there is an.F'Dvpath (i, j) from i to i, whfre w(i) = U, wU) = W. Since X -+ Y E F takes part in
the derivation sequence for U -+ W, the nodes p and q with w(p) = X and w(q) = Yare intermediate
nodes on (i, j). It is clear that the FD-paths (i, p) and (q, j) contain no outgoing full arc from node
p. 0

Example 2.3. Reconsider the Example 2.1 (Fig. 2.1). We have BCD -+ H E F+, (BC -+ A) E F
participates in the derivation sequence for BCD -+ H.

It is clear that:
BCD -+ BC E (F \ {BC -+ A})+ and corresponds to the FD-path (BCD, BC);
BCDA -+ HE (F \ {BC -+ A})+ and corresponds to the FD-path (BCDA, H).

CONCL USIONS

An FD-graph approach for the representation of functional dependencies (FDs) in relational
databases. It also supports the studies of FDs. This approach allow a homogeneous treatment of
several problems (closure, minimization, etc.)' which leads to simpler proofs and, in some cases, more
efficient algorithms than in the current literature. Therefore, the studies of FD-graph is a middle step
to further study Database Hypergraphs in which directed hyperedges represent FDs and undirected
hyperedges represent the join dependency.
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