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PARAMETRIC EXTRAPOLATION METHOD FOR DEGENERATE
SYSTEM OF LINEAR ALGEBRAIC EQUATIONSl

DANG QUANG A

Abstract. In this paper we propose an extrapolation method by a spectrum shift parameter for solving
degenerate system of linear algebraic equations. An estimate of the computational work for achieving the
normal solution with a given accuracy as well as the advantages of the method are shown theoretically and
on examples.

T6m t~t. Trong bai nay chung t5i de xuat phiro'ng ph ap ngoai suy theo tham s6 dich chuygn ph5 M giii
h~ phtro-ng trlnh dai s6 tuyen tinh suy bien, trrrc hro'ng kh6i hrong tinh toan c'an thiet M dat dtro'c nghiem
chu.rn tltc v&i d9 chinh xac cho triro'c cling nhir tinh iru vi~t ctia phirong phap du'o'c chi ra bhg ly thuydt
va b~ng cac vi du.

1. INTRODUCTION

In mathematical physics besides boundary value problems with unique solutions we also meet
problems having infinite set of solutions, for example, the Neumann problem for elliptic equation. Af-
ter discretization of this problem by variational methods we get a system of linear algebraic equations
(SLAE) with a symmetric, nonnegative matrix. The system usually is nonconsistent because due to
the errors of computation of the right-hand side of differential equation the consistence condition may
be not satisfied. In order to overcome this defect one introduced the concept of generalized solution
and elaborated regularization methods for constructing a stable normal solution (see e.g. [11,12]).
But the problem of estimating computational work for obtaining an approximate solution with a
given accuracy has not been considered by researchers. It should be noticed that the authors often
consider SLAE without any special structure which arise when processing experimental data.

In this paper we shall treat the system with a symmetric, nonnegative matrix. Our attention
will be drawn to the problem of reduction of computational work for getting an approximate normal
solution with a given accuracy. The method to be used is the extrapolation technique of solutions of
systems with shifted spectrum. This method especially has a great advantage when being performed
on parallel computer. The parametric extrapolation technique was used in our earlier works [1-4].

In some sense, this work is a continuation of our previous one [4], where we considered the
alternating directions method for solving degenerate system of grid equations.

2. PREl-IMINARIES

Let us consider the system

Au. = I, (2.1)

where A is n X n matrix, IE R" and

detA = O. (2.2)

We will regard (2.1) as an operator equation in the space H = H" As usual, we denote by KerA
and ImageA the kernel and the image of A, respectively, and by A * the conjugate operator for A. It
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is well known that there holds the following decomposition

H = KerA* EEl ImA.

From(2.3) it follows that the solvability condition of the equation (2.1) in H is

11. KerA*.

(2.3)

(2.4)

Suppose that I = j + I, where j E ImA, I E Ker A * . Then, if I =1= ° the system (2.1) is nonconsistent.
In this case one introduced the concept of generalized solution.
An element u E H is called a generalized solution of (2.1) if it satisfies one of the following

equivalent problems:

Au= j,
A*Au = A*/,

IIAu - III = min IIAv - III·
vEH

(2.5)
(2.6)
(2.7)

Generalized solutions of (2.1) always exist and are defined with the accuracy to an element of KerA.
The generalized solution of the system (2.1) with minimal norm is called the normal solution of it.
This normal solution is unique. Notice that the normal solution of (2.1) is orthogonal to KerA.
For this reason in [10] Tikhonov takes this condition to be the definition of the normal solution of
degenerate system.

Now we consider the case when the matrix A is symmetric and nonnegative, i.e. A = A* ~ 0, in
this case (2.3) become

H = KerA EEl ImA (2.8)

and the consistency condition of (2.1) is I 1. KerA. The Tikhonov regularization method

min(IIAu - 1112 + allul12
)

uEH

for finding the normal solution leads to the equation

(A2 + aI)ua = AI (2.9)

where I is the identity operator.
To solve this SLAE with a given accuracy when n is rather large presents itself a time-consuming

work because the spectral range of A2 is very large even when the spectral range of A is not very
large. Therefore, instead of the usual regularization equation (2.9) for the consistent system (2.1)
Tikhonov [10]' Fadeeva [5] and Molchanov [7] used the simplified regularization method. Namely,
they considered the equation

(A + aI)ua = I. (2.10)

It is the method of shifting the spectrum of A. The necessary and sufficient conditions for regularizing
degenerate SLAE by the general shifting spectrum method are presented in [8].

Below we develop the shifting spectrum method in combination with the parametric extrapolation
technique in order to reduce the computational amount required for solving the system (2.1).

3. CASE OF CONSISTENT SYSTEM

In this section we consider (2.1) under the assumptions that the matrix A is symmetric, degen-
erate, nonnegative and the consistency condition is satisfied.

Let e1, e2, ... , en be the orthonormal basis of H consisting of the eigenvectors of A and ° = Al =
.1.2 = ... = Am < Am+ 1 ~ ... ~ An be the corresponding eigenvalues. For convenience we denote
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Am in = Am+1 and Amax = An. Then we can expand
n

(3.1)

with Ci = (I, ei). Due to the consistency condition we have

Ci = 0, i = 1, ... , m. (3.2)

We seek the solution of (2.1) in the form
n

Ua = L::a~a)ei'
i=l

(3.3)

From (2.10) we derive
(a) _ Ci

ai - Ai + Q' i· = 1, ... , n. (3.4)

Taking into account (3.2) we have

(3.5)

In the same way we find the normal solution of (2.1)

(3.6)

Hence, we have n
* ~ Ci

Ua - U = -a ~ A'(A' Q) ei·
i=m+1 ' ,+

Therefore,

L::n ct Q *Ilua - u*11= Q 2 < -Ilu II·
i=171+1 Ai (Ai + Q)2 - Am in

(3.7)

From this estimate it is seen that the deviation of Ua from the normal solution u* depends on the
chosen regularization parameter Q and the smallest positive eigenvalue Amin of A. If Amin or certain
its estimate is known, then theoretically, the more Q is smaller the more accurately Ua approximates
u", But from the view of computation, when Q is too small then condition number of the matrix
A + QJ is too large and direct solution methods for the system (2.1) on computer may give bad result
even run-time error may occur. Also, in this case well-known iterative methods are convergent very
slowly even may be not convergent. Therefore, the following question arises: How to find the normal
solution with given accuracy spending possibly minimal computational amount? Below this problem
will be solved with the help of the parametric extrapolation technique.

Theorem 3.1. For any k ~ 1 the solution of the regularized equation (2.10) may be expanded in the
form

k

* + ~ i + k+1Ua = U ~ Q Wi WA Q ,

i=l

(3.8)

where u* is the normal solution of (2.1), Wi, (i = 1, ... , k) are elements of H independent of Q, and

IIu* IIIlwAII < Ak+1 ' (3.9)
m,n

Amin being the smallest positive eigenvalue of A.
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Proo]. The proof of the theorem follows directly from (3.5)' (3.6) using the Taylor expansion of the
function l/(A + a) in the neighbourhood of the point a = o.

Now we put
k+l

UE = L "IiUa/i,
i=1

(3.10)

where Ua/i is the solution of (2.10) with the regularization parameter a/i and
(_l)k+l-iik+l

"u = i!(k+1-i)!
(3.11)

Using Theorem 3.1 it is easy to show

Theorem 3.2. There holds the estimate

IWE - u* II ak+l"--~....."..---'-'< --.
IIu* II - A~~~

(3.12)

Remark. In (3.10) taking k = 1 and
a2

"11 = a2 - al

al

"12 = al - a2

for two distinct values al =I a2 we get
E al a2U = ua2 - Ua1 •

al - a2 al - a2

It is the combination which was selected by Fadeeva in [5] although there was not obtained any
estimate for error. In the case if the size of the system (2.1) is too large to solve it by direct
methods one should use iterative methods (see [9]). Then the gain of the parametric extrapolation
in computational amount is great. We show this, for example, for the simple iteration method.

Theorem 3.3. The number of iterations needed for achieving the normal solution of (2.1) with the
relative accuracy e when applying the simple iteration method to the alone regularized equation (2.10)
tS

N = 0 5 Amax 1 1a . ---In-
Amin e c

(3.14)

while this number is

) Amax 1 In ~ .N; = 0.25 (k + l)(k + 2 ~ c1/(k+l) e
Am1n

(3.i5)

if using the parametric extrapolation technique (3.10)' (3.11). Therefore,
extrapolation in comparison with the simple spectrum shift method is

G= 2 _1
(k + l)(k + 2) ck/(k+1)

the gain of the parametric

(3.16)

Proof. It is well-known [9] that the number of simple iterations for achieving an approximation Uaa
for the solution Ua of (2.10) with the relative accuracy e, i.e., Iluaa - uall/lluall < e is

1 1
Na = 0.5 - In -. (3.17)e c

where a
e = Amax + a

From the estimate (3.7) it follows that for Uaa approximate U* with the relative accuracy e we must
choose a = cAmino Then we have
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Hence, from (3.17) we get (3.14).
Now, if we construct the extrapolation solution by (3.10), (3.11) then for achieving UE with the

relative accuracy e we must take a = .Aminc1/(k+1. With the chosen value of a we can calculate the
number of iterations needed for solving (3.10) with the accuracy e

.Amax 1 1
N = 0.5 -.- 1/(H1} In - ..Amm e e

Therefore, the total number of iterations for k+ 1 regularized equations with the parameters a, a/2, ... ,
a./(k + 1) is

Ne = (1 + 2 + ... + (k + l))N = 0.5 * (k + l)(k + 2)N.
Taking into account the expression of N we obtain the formula (3.15). Therefore, the gain of the
extrapolation method measured by G = NalNe will be calculated by (3.16).

Thus, the theorem is proved.

Remark. If using the Chebyshev iterative method instead of the simple one then we get a similar
result as stated in Theorem 3.3, where in (3.16) instead of ck/(H1) it should be ck/2(H1}.

By the formula (3.16) we calculated the following table.

k e G

2 10-3 16
2 10-4 77
3 10-4 100
3 10-6 3162

which shows the gain of the extrapolation method.

In the case if the size of the system (2.1) is small direct methods can be used and the com-
putational time is not significant. In this case, using the extrapolation method we can achieve an
approximate solution with high accuracy for not too small values of a. We show this fact on exam-
ples, where we take k = 2, and therefore, the coefficients Ii in (3.10) are 11 = 0.5, ,2 = -4 and
13 = 4.5. The computation was performed by the software MATLAB 5.3 using the function u = A\b
for the solution of Au = b and the long format. The experiment was performed for the regularization
parameter a. = 1O-t, (t = 1, 2, 3, 4, 5). The results are tabulated for the order m of the relative
error e = IIU:~~IIs: lO-m , where u = Ua, m = ma for the simple shifted equation (2.10) and
u = U", m = me for the extrapolated solution (3.3).

Example 1

A ~ [-} ~~ -} 1 f ~ [ !:1
In this case the system (2.1) has the normal solution

u" = (-1/3, 2/3, -1/3)'
and the results of computation are the following

t 1 2 3 4 5

m. 1 2 3 4 5

me 5 8 11 10 10
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Example 2. Matrix A
Example 1, namely,

(aij) is of the sizes 11 X 11 and as the same tridiagonal struc ture as in

f = (h), {
-1,h= 2

i = 1,11
otherwise

aii = { ~:
i = 1,11
otherwise

ai,i+l = -1, i = 1, ... ,10

ai-l,i = -1, i = 2, ... ,11

ai,j = 0, otherwise

In this case the system (2.1) has the normal solution

u* = (15, 15, 14, 12,9,5,0, -6, -13, -21, -30)'

and the result of computation is the following

t 1 2 3 4 5-
t 1 2 3 4 5

m. 0 1 2 3 4

me 1 4 7 10 11

4. CASE OF NONCONSISTENT SYSTEM

In this section we also assume that the matrix A is symmetric, degenerate, nonnegative but the
system is not consistent. In this case it is easy to verify that the normal solution of (2.1) also is

n Ci
'" - '" -eiu - ~ Ai

i=m+l

(4.1)

but the solution of the equation (2.10) is
m n

c· c·
Ua = L~ei+ L --'-ei.

0: ).i + 0:
i=l i=m+l

(4.2)

Notice that Ua can not be regarded as an approximate of the normal solution u". As in Section 3 it
is easy to prove the following

Theorem 4.1. For any k ~ 2 the solution of the regularized equation (2.1O) may be expanded in the
form

k-l

1- '" . kUa = u" + - f + ~ o:'Wi + WAo: ,
0: i=l

(4.3)

where u* is the normal solution of (2.1), j is the projection of f onto KerA, Wi, (i = 1, ... , k - 1) are
elements of H independent of 0:, and

IIWAII s lIu*11
).k '

min

(4.4)

Amin being the smallest positive eigenvalue of A.

Now, suppose 0:1, 0:2, ... , O:k+l are distinct positive numbers. Consider the following system for
Il,/2'''',lk+l
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k+1L 1j = 0,
j=laj

k+1
L 1j = 1, (4.5)
j=l

k+1
La~"lj = 0, I = 1,2, ... , k - l.
j=l

It is possible to verify the following

Lemma. The system (4.5) has a unique solution

" 1 TIk+1
~j"cl -;;-; i=l ai

11 = - .
TI#/(aj - ad

In the particular case, when aj = 0./ J" U = 1,2, ... , k + 1) we have

(4.6)

= (_ )k+/( (k + l)(k + 2) -l) lk
11 1 2 I! (k + 1 - l)! . (4.7)

From the above lemma and Theorem 4.1 we get the following

Theorem 4.2. Let 11 (I = 1,2, ... , k + 1) be given by the formula (4.7). Then for the extrapolation
solution

k+1
UE = L 1iUo:/i,

i=l
(4.11)

where UO:/i is the solution of (2.10) with the regularization parameter a/i we have the estimate

(4.12)

Note that in the case if the system (2.1) is not consistent then the combination of k+ 1 solutions
of (2.10) with parameters 0./ j approximates the normal solution u" only with the accuracy of order
ci . It completely fits to the fact mentioned above that an alone solution of (2.1) does not give an
approximation to u*. Analogously as in Section 3 we have the following estimate of computational
amount for getting the normal solution with a given accuracy.

Theorem 4.3. The number of iterations needed for achieving the normal solution of the nonconsistent
system (2.1) with the relative accuracy e by the extrapolation method when applying the simple iteration
method to each of the k + 1 system with shifted spectrum (2.10) is

( ) ( )
Amax 1 1

N, = 0.25 k + 1 k + 2 -- ~/k In-
Amin e e
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