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Tóm tắt. Sai số phân loại bất đối xứng là loại sai số trong đó có sự thỏa hiệp giữa tỷ lệ dương tính
giả và tỷ lệ âm tính giả của bộ phân loại nhị phân. Nó được sử dụng rộng rãi gần đây nhằm giải quyết
bài toán phân loại nhị phân mất cân đối, ví dụ phương pháp thúc đẩy bất đối xứng (asymmetric
boosting) trong máy học. Tuy nhiên, cho đến nay, mối quan hệ giữa sai số bất đối xứng thực nghiệm
và sai số bất đối xứng tổng quát chưa được giải quyết triệt để. Các cận cổ điển của sai số phân loại
thông thường (sai số đối xứng) không dễ được áp dụng trong trường hợp mất cân đối, vì tỷ lệ dương
tính giả và tỷ lệ âm tính giả được gán những chi phí khác nhau, và xác suất mỗi loại không được
phản ánh bởi tập dữ liệu tập huấn. Trong bài báo này, chúng tôi trình bày một dạng cận trên cho sai
số bất đối xứng tổng quát dựa trên sai số bất đối xứng thực nghiệm, của bộ phân loại có dạng là kết
hợp lồi của nhiều bộ phân loại khác. Bộ phân loại kết hợp lồi được sử dụng khá phổ biến trong các
phương pháp kết hợp phân loại gần đây như phương pháp thúc đẩy (boosting) hoặc phương pháp
đóng bao (bagging). Chúng tôi cũng chỉ ra loại cận này là một dạng tổng quát của một trong những
cận mới nhất (và chặt nhất) của sai số đối xứng tổng quát, cho bộ phân loại kết hợp lồi.

Abstract. Asymmetric error is an error that trades off between the false positive rate and the false
negative rate of a binary classifier. It has been recently used in solving the imbalanced classification
problem, e.g., in asymmetric boosting. However, to date, the relationship between an empirical
asymmetric error and its generalization counterpart has not been addressed. Bounds on the classical
generalization error are not directly applicable since different penalties are associated with the false
positive rate and the false negative rate respectively, and the class probability is typically ignored in
the training set. In this paper, we present a bound on the expected asymmetric error of any convex
combination of classifiers based on its empirical asymmetric error. We also show that the bound is a
generalization of one of the latest (and tightest) bounds on the classification error of the combined
classifier.

Keywords. Asymmetric error, asymmetric boosting, imbalanced classification, Rademacher com-
plexity

1. INTRODUCTION

In recent years, the imbalanced binary classification problem has received considerable
attention in various areas such as machine learning and pattern recognition. A two-class data
set is said to be imbalanced (or skewed) when one of the classes (the minority/positive one)
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is heavily under-represented in comparison with the other class (the majority/negative one).
This issue is particularly important in real-world applications where it is costly to mis-classify
examples from the minority class. Examples include: diagnosis of rare diseases, detection of
fraudulent telephone calls, face detection and recognition, text categorization, information
retrieval and filtering tasks, examples and absence of rare cases, respectively.

The traditional classification error is typically not used to learn a classifier in an imbalanced
classification problem. In many cases, the probability of the positive class is a very small
number. For instance, the probability of a face sub-window in appearance-based face detection
(e.g., Viola–Jones [28]) is less than 10−6, while the probability of a non-face sub-window is
almost 1. Using the classification error for learning would result in a classifier that has a very
low false positive rate and a near-one false negative rate.

A number of cost-sensitive learning methods have been proposed recently to learn an
imbalanced classifier. Instead of treating the given (labelled) examples equally, these methods
introduce different weights to the examples of different classes of the input data set, so that one
type of error rate can be reduced at the cost of an increase in the other type. These methods
have appeared in a number of popular classification learning techniques, including: decision
trees [1, 9], neural networks [14], support vector machines [26], and boosting [8, 15, 29].

Because the positive class is much smaller than the negative class, it is expensive to main-
tain a very large set of negative examples together with a small set of positive examples so as
to have i.i.d. training examples. In practice, we typically have a fixed-size set of i.i.d. training
examples for each class instead. In other words, the class probability is ignored. Let f : X → R
represent the classifier with which we use sign(f(x)) ∈ Y = {−1,+1} to predict the class of
x. By incorporating the weights into the learning process, these methods learn a classifier by
minimizing the following asymmetric error,

λ1P (f(x) ≤ 0|y = 1) + λ2P (f(x) ≥ 0|y = −1) , (1.1)

where λ1, λ2 > 0 are the associated costs for each error rate: the false positive rate
P (f(x) ≤ 0|y = 1) and the false negative rate P (f(x) ≥ 0|y = −1), and P is a probability
measure on X × Y that describes the underlying distribution of instances and their labels.
Note that the asymmetric error is a generalization of the classification error. One can obtain
the classification error by choosing λ1 = P(y = 1) and λ2 = P(y = −1).

The motivation of the presented work comes from the success of recent real-time face
detection methods in computer vision. These methods follow a framework proposed by Viola
and Jones [28], in which a cascade of coarse-to-fine convex combinations of weak classifiers (or
combined classifiers for short) is learned. At first, the combined classifiers were learned using
AdaBoost [4]. However, recent advances [29, 15, 19] show that the accuracy and the speed
of face detection could be significantly improved by replacing AdaBoost with asymmetric
boosting [29], a variant of AdaBoost adapted to the imbalanced classification problem by
minimizing 1.1.

Our work is inspired by the work in [19]. In this work, the authors showed that by choosing
asymmetric costs λ1, λ2 such that λ1

λ2
= α

β , asymmetric boosting can obtain a classifier such
that its false positive rate is less than α, its false negative rate is less than β, and the number
of weak classifiers is approximately minimized. The first two results are necessary for the
construction of a cascade. However, the third result is crucial because in real-time object
detection, the number of weak classifiers is inversely proportional to the detection speed.
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The success of real-time face detection has attracted a lot of attention as of late. However,
there has been no theoretical explanation on the performance of asymmetric boosting. It is
important to answer this question because there are new machine learning methods that rely
on the knowledge about the generalization of the classifier to operate and improve it over
time. Examples are online learning (e.g., [7, 18]) and semi-supervised boosting (e.g., [5]) for
object detection. Existing bounds on the classification error cannot be applied here, because
in this context the input data are treated as per-class i.i.d. examples, and we have different
costs associated with the two classes. The goal for this work is, therefore, to develop bounds
on (1.1) with respect to empirical errors to explain the performance of a combined classifier
learned in the imbalanced case, e.g., by using asymmetric boosting.

The outline of the paper is as follows. Section 2 gives a brief review of related work. The
main results are presented in section 3. Conclusions are given in section 4. The proofs for the
main results are given in section 5.

2. RELATED WORK

Let us focus our attention on work related to bounding the expected classification error of
a combined classifier. Let {(x1, y1), . . . , (xn, yn)} be a set of n training examples, where xi ∈ X
and yi ∈ Y . Under the i.i.d. assumption on the training examples, the standard approach to
bounding the classification error was developed in seminal papers of Vapnik and Chervonenkis
in the 70s and 80s (e.g., see [3, 25, 27]). The bounds are expressed in terms of the empirical
probability measure and the VC-dimension of the function class. However, in many important
examples (e.g., in boosting or in neural network learning), directly applying these bounds
would not be too useful because the VC-dimension of the function class can be very large, or
even infinite.

Since the invention of voting algorithms such as boosting, the convex hull,

conv (H) :=

{ ∞∑
i=1

wihi : wi ≥ 0,
∞∑
i=1

wi = 1, hi ∈ H

}
, (2.2)

of a base function class H := {h : X → [−1, 1]} has become an important object of study in
the machine learning literature. This is because: (1) conv (H) represents the space of all linear
ensembles of base functions in H, and (2) traditional techniques using VC-dimension cannot
be applied directly because even if the base class H has a finite VC-dimension, the combined
class F has an infinite VC-dimension.

Schapire etal. [20, 21] pioneered a line of research to explain the effectiveness of voting
algorithms. They developed a new class of bounds on the classification error of a convex
combination of classifiers, expressed in terms of the empirical distribution of margins yf(x).
They showed that in many experiments, voting methods tend to classify examples with large
margins.

Koltchinskii etal. [12, 13, 10] combined the theories of empirical, Gaussian, and Rademacher
processes to refine this type of bounds. They used Talagrand’s remarkable inequalities on em-
pirical processes, exploiting subsets of the convex hull to which the classifier belongs, the
sparsity of the weights, and the clustering properties of the weak classifiers, to further tighten
the bounds. Some of these properties are related to the learning algorithm that was used to
learn the combined classifier.
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To the best of our knowledge, little work related to bounding the expected asymmetric
error defined in (1.1) has been done. In [2, 22], the authors targeted at bounding the Neyman-
Pearson error of a classifier, with respect to the VC-dimension of the function class. The
Neyman-Pearson error is fundamentally different from (1.1). Consider two error rates: the
false positive rate and the false negative rate. In the former, one constrains one error rate
and minimizes the other; in the latter, one minimizes a weighted sum of the two error rates.
Besides, [2, 22] are not suitable to explain a combined classifier learned from boosting, because
in this case, the classifier’s VC-dimension is possibly infinite.

Zadrozny etal. [30] proposed a method to convert a classification learning algorithm into
a cost-sensitive one, and proved that the resultant cost-sensitive error is at most M times the
resultant classification error were the classifier learned with the original algorithm, where M
is approximately inversely proportional to the probability of the positive class. One can apply
their work on the bounds of Koltchinskii etal. to obtain bounds on (1.1). However, factor M
is too large in practice because the probability of the positive class is too small. For instance,
in the context of face detection we are interested in, M ≈ 106, implying the resultant bound
is loosened by 106 times.

3. MAIN RESULTS

In this paper, we propose bounds which are generalizations of Theorem 1 and Corollary 1
of Koltchinskii and Panchenko [12]. Theorem 1 of [12] is one of the tightest bounds to date on
the classification error of a combined classifier. However, they cannot be trivially generalized
because they operate on the assumption that the training examples are i.i.d. and are treated
equally. At the centre of the study presented in [12] is the result of Panchenko [16] on the
deviation of an empirical process. We propose a new result that is the generalization of [16]’s
work. It allows to include weights on the examples, and to eliminate the identical requirement
on the training set. By using the new result, we are able to generalize the work of [12] to
bound the expected asymmetric error of a combined classifier.

There are tighter bounds in [12] which operate under more restricted assumptions on the
combined classifier. However, studying them is beyond the scope of this paper. We leave that
for future work.

In our method, we do not need to convert a learning algorithm, avoiding the problem of
loosening the bound by M times as in [30].

The contribution of the paper can be summarized as follows. In [12], Koltchinskii and
Panchenko derived their generalization bounds based on Panchenko’s study [16] on the de-
viation of an empirical process. We generalize [16] by introducing weights on the examples,
so that we can incorporate different costs to different classes. We then specialize the result
in the context of bounding an asymmetric error, using the strategy that [16] was specialized
to derive the bounds in [12]. Most of our derivations are minor variations on some proofs in
[17, 16, 12]. Our only claim of originality is for the recognition that an expected asymmetric
error can be bounded by its empirical asymmetric error in the same way that the expected
classification error is bounded by its empirical error.

Suppose that P is a probability measure on X ×Y, which describes the underlying distribu-
tion of instances and their labels. Let Pv be the probability measure on some random variable
v given that other random variables are fixed. We denote by E and Ev their expectations, re-
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spectively. Suppose that the training set x consists of n1 positive examples {x1, . . . , xn1} and
n2 negative examples {xn1+1, . . . , xn} where n = n1 +n2. Let F := {f : X → [−q/2, q/2]} be
a function class for some q > 0. Panchenko [16] studied the deviation of a functional

pnf :=
1
n

n∑
i=1

f(xi), (3.3)

from its mean E[pnf ], under the standard assumption that the variables xi for i = 1..n are
drawn identically and independently from a probability measure µ on X . In our case, we
consider the deviation of a more general functional,

Pnf :=
n∑
i=1

aif(xi), (3.4)

from its mean Pf := E[Pnf ], for some known ai ∈ R for all i = 1..n, and under an assumption
that xi are drawn independently, but not necessarily identically. The weights ai allow us
to associate different costs to different examples, a general condition often needed in the
imbalanced classification context. The elimination of the identical condition is required, since
in the imbalanced case, positive examples and negative examples are typically not drawn from
the same distribution (the class probability is ignored).

However, this requirement does not really pose a difficulty because most standard tech-
niques in bounding empirical processes do not require the identical condition.

We control the residual Qnf := Pf−Pnf uniformly over the function class F by using the
same measure propopsed in [16] called uniform packing number. We need some definitions. Let
Wnf(y) :=

∑n
i=1 a

2
i (f(yi)− f(xi))2 be a function that measures how the given training set x

differs from another training set y (of n examples) under the action of f . Let Vnf := EyWnf(y)
be its expectation over all y. Given a probability distribution Q on [−q/2, q/2], let us denote
by dQ,2(f, g) := (Q(f − g)2)1/2 the L2(Q)-distance in F . Given u > 0, a subset F ′ ⊆ F
is called u-separated if for any pair f 6= g ∈ F ′, we have dQ,2(f, g) > u. Let the packing
number D(F , u, dQ,2) be the maximal cardinality of any u-separated set. Let the uniform
packing number D(F , u) be a function such that supQD(F , u, dQ,2) ≤ D(F , u) where the
supremum is taken over all probability measures on X . We say that F satisfies the uniform
entropy condition if ∫ ∞

0

√
logD(F , u)du <∞. (3.5)

Our first new result, stated in Theorem 3.1, is a generalization of Corollary 3 presented in
[16]. The proof of Theorem 3.1 is given in section 5.1.

Theorem 3.1. If (3.5) holds, for any training set x of n examples and any β ∈ (0, 1), there
exists a constant 0 < K < ∞ that depends on β only such that for any t ≥ log β−1, with
probability at most exp

(
1− (

√
t−
√

log β−1)2
)
,

∃f ∈ F , Qnf ≥ K
∫ √

Vnf
2m

0

√
logD(F , u)du+

√
4Vnft, (3.6)

where m :=
√∑n

i=1 a
2
i .
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By using Theorem 3.1, we derive our second result, stated in Theorem 3.2. Theorem 3.2 serves
as an intermediate result so that we can derive bounds on the asymmetric error in the final
step. It is also a generalization of Theorem 1 in [12]. From now on, we assume ai > 0 for
all i = 1..n without loss of generality (since if ai < 0, we can replace hi with −hi). As with
Theorem 1 in [12], the bound is controlled by the γ-dimension introduced in [10], described as
follows. Assume that the weights of the weak classifiers are arranged in the decreasing order,
w1 ≥ w2 ≥ . . . . For a number γ ∈ [0, 1], a γ-dimension of f , denoted as d(f ; γ), is defined as
the smallest integer d ≥ 0 such that there exists T ≥ 0, weak classifiers hj ∈ H, and weights

wj ≥ 0 such that f =
∑T

j=1wjhj ,
∑T

j=1wj ≤ 1, and
∑T

j=d+1wj ≤ γ. Given a family of weak
classifiers H, we assume, for some V > 0,

D(H, u) = O(u−V ). (3.7)

This is often the case in practice. For instance, if H is a VC-subgraph class with VC-dimension
d, then by the well-known result of Dudley and Pollard (e.g., [6]), (3.7) holds with V = 2d,
namely D(H, u) ≤ e(d+ 1)(2e/u2)d.

Let ϕδ : R→ [0, 1] be a Lipschitz function with Lipschitz constant δ−1 (ie. |ϕδ(s1)−ϕδ(s2)
s1−s2|≤δ−1∀s1,s2∈R).

For some function f ∈ F , let us define a function fϕδ(x, y) := ϕδ(yf(x)). We present the fol-
lowing theorem.

Theorem 3.2. Let α = 2V/(V + 2). If (3.7) holds, then for all t > 0, for all f ∈ F :=
conv(H), and for all ϕδ : R→ [0, 1] as a Lipschitz function with Lipschitz constant δ−1 where
δ ∈ ∆ = {2−k : k ≥ 1}, with probability at least 1− e−t, the following inequality holds

Pfϕδ − Pnfϕδ√
Pfϕδ

≤ K inf
γ∈[0,1]

{√
d(f ; γ)
n′

log
n′

δ
+
(γ
δ

)α/2 (Pf ′)−α/4√
n′

+

√
t

n′

}
, (3.8)

where n′ = mini=1..n{1/ai}.

The proof for Theorem 3.2 is given in section 5.2. We now choose proper values for weights ai
to derive bounds on an expected asymmetric error with respect to its empirical asymmetric
error. This is the final result of the paper. Let ai = λ1/n1 for 1 ≤ i ≤ n1, and ai = λ2/n2

for n1 + 1 ≤ i ≤ n. Suppose for some function g : X → Y , Pn1g = 1
n1

∑n1
i=1 g(xi) and

Pn2g = 1
n2

∑n
i=n1+1 g(xi) denote the empirical probability measure of g on the positive set

and the negative set, respectively. Our final result is the following corollary (see section 5.3
for the proof).

Corollary 3.1. Let α = 2V/(V + 2) and n′ = min{n1/λ1, n2/λ2}. If (3.7) holds, then for
all t > 0 with probability at least 1 − e−t for all f ∈ F := conv(H), the following inequality
holds,

λ1P(f(x) ≤ 0|y = +1) + λ2P(f(x) ≥ 0|y = −1)

≤ K inf
δ∈(0,1]

{
λ1Pn1(f(x) ≤ δ) + λ2Pn2(f(x) ≥ −δ)

+ inf
γ∈[0,1]

{√
d(f ; γ)
n′

log
n′

δ
+
(γ
δ

) 2α
(2+α)

n′
−2
2+α

}
+

√
t

n′

}
. (3.9)
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Corollary 3.1 bounds the expected asymmetric error λ1P(f(x) ≤ 0|y = +1) + λ2P(f(x) ≥
0|y = −1) with respect to its empirical margin-based asymmetric error λ1Pn1(f(x) ≤ δ) +
λ2Pn2(f(x) ≥ −δ). One can easily see that when λ1 = P(y = +1) and λ2 = P(y = −1),
corollary 3.1 degenerates to Corollary 1 in [12].

Theorem 1 in [12] can be interpreted as interpolation between zero-error and nonzero-error
cases of the classification error. Since theorem 3.2 is a generalization Theorem 1 in [12], it can
be considered as interpolation between the zero case and the nonzero case of an asymmetric
error.

To the best of our knowledge, the best bound on the expected asymmetric error, prior to
our work, can only be obtained by applying Zadrozny’s work [30] on top of a generalization
bound like those in [11, 10, 12]. As discussed in section 2, this approach induces an extra large
term M which is inversely proportional to P(y = +1). Our bound in Corollary 3.1 does not
involve this term, while at the same time, it is a generalization (in the asymmetric context)
of Corollary 1 in [12], one of the tightest bounds on the traditional classification error of a
combined classifier. It is therefore reasonable to claim that our bound is M times tighter than
the same kind of bound obtained from using the Zadrozny’s approach [30], and that it is fairly
tight overall.

4. CONCLUSION

In this paper, we have proposed a new set of bounds which contrain the expected asymmet-
ric error of a combined classifier based on its margin-based empirical asymmetric error. Our
bounds can be considered as generalizations (in the asymmetric context) of one of the tightest
bounds on the classification error of a combined classifier, presented in [12]. It is shown that
our bounds on the expected asymmetric error are tighter than previously best known bounds,
derived from the approach introduced by [30]. In the future, we will focus on further tightening
the proposed bounds, as well as developing bounds on the asymmetric error for the cases of
online learning and semi-supervised learning a combined classifier (e.g., [7, 18, 5]).

5. PROOFS

5.1. Proof for theorem 3.1

The proof is derived by combining the two following lemmas. Let us introduce the sym-
metrized version of Qnf : Snf :=

∑n
i=1 ai(f(yi) − f(xi)), and Snf ’s randomized version:

Rnf =
∑n

i=1 εiai(f(yi) − f(xi)), where x = (x1, . . . , xn) and y = (y1, . . . , yn) are random
variables in X n, and ε1, . . . , εn are i.i.d. Rademacher random variables (ie. εi ∈ {−1, 1} with
equal probabilities). For any pair x, y ∈ X n, let Π be the set of permutations π of these coordi-
nates such that for each i = 1..n, π(xi), π(yi) ∈ {xi, yi}. Consider a function Φnf := Φ(f, x, y)
which is invariant to the permutations π ∈ Π of (x, y). Assume that for some fixed β ∈ (0, 1)
and for any fixed x, y ∈ X n, we have

Pε

(
sup
f∈F

(Rnf − Φnf) > 0

)
< 1− β. (5.10)

Then the following lemma holds.
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Lemma 5.1. If (5.10) holds, then for any t ≥ log β−1, we have

P
(
∃f ∈ F , Qnf ≥ EyΦnf +

√
4Vnft

)
< exp

(
1− (

√
t−

√
log β−1)2

)
. (5.11)

Chứng minh. We will begin by stating some previous results needed for the proof.

Proposition 5.1. [Corollary 1 of [16]]Let ξi(x, y) : X 2n → R, 1 ≤ i ≤ 3, be measurable
functions defined on two copies of X n and let ξ′i(x) = Ey [ξi(x, y)]. If ξ3 ≥ 0 and for all
t ≥ 0,

P
(
ξ1 ≥ ξ2 +

√
ξ3t
)
≤ Γe−γt, (5.12)

then for all t ≥ 0, we have

P
(
ξ′1 ≥ ξ′2 +

√
ξ′3t

)
≤ Γe1−γt. (5.13)

Consider the space {0, 1}n with uniform measure Pε. If ε ∈ {0, 1}n and A ∈ {0, 1}n, define
the following set:

UA(ε) :=
{

(si)i≤n ∈ {0, 1}n,∃ε′ ∈ A, si = 0⇒ ε′ = ε
}
. (5.14)

Define the “convex hull” distance between the point ε and a set A as

fc(A, ε) := inf {|s| : s ∈ convUA(ε)} ,

where |s| denotes the Euclidean norm of s. Talagrand’s concentration inequalities [23] state
the followings:

Proposition 5.2. [Theorem 4.3.1 in [23]] For any α ≥ 0, we have

Pε(f2
c (A, ε) ≥ t) ≤ 1

Pε(A)α
exp

(
− αt

α+ 1

)
. (5.15)

Proposition 5.3. [Theorem 4.1.2 in [23]] If f2
c (A, ε) ≤ t, then

∀(λi)i≤n,∃ε′ ∈ A,
n∑
i=1

λiI(ε′i 6= εi) ≤

√√√√t
n∑
i=1

λ2
i , (5.16)

where εi and ε′i are the i-th components of ε and ε′ respectively, and I(x) is the indicator
function which returns 1 if x is true and 0 otherwise.

Firstly, it is enough to prove that

P
(
∃f ∈ F , Snf ≥ Φnf +

√
4Wnft

)
≤ β−α exp

(
− αt

α+ 1

)
. (5.17)

If this inequality holds, then we apply the symmetrization technique in proposition 5.1 with
ξ1 = Qnf , ξ2 = Φnf , and ξ3 = 4Vnf , and then optimize the right-hand side over α. The
result yields (5.11).
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Secondly, we rewrite the left-hand side of (5.17) by exploiting a fact that Φnf , and Vnf
are invariant under any permutation π ∈ Π:

P
(
∃f ∈ F , Snf ≥ Φnf +

√
4Wnft

)
= P

(
∃f ∈ F , Rnf ≥ Φnf +

√
4Wnft

)
= EPε

(
∃f ∈ F , Rnf ≥ Φnf +

√
4Wnft

)
.(5.18)

Finally, we use Talagrand’s concentration inequality on the discrete cube {0, 1}n to com-
plete the proof. Note that in this case we use the cube {−1,+1}n, but no change in the in-
equality is needed. For a fixed pair of x and y, consider a setA =

{
ε : supf∈F (Rnf − Φnf) ≤ 0

}
and a set At =

{
ε : f2

c (A, ε) ≤ t
}
. Following from condition (5.10), Pε(A) ≥ β, we use propo-

sition 5.2 to bound Pε(At). We obtain

Pε(At) ≥ 1− β−α exp
(
− αt

α+ 1

)
. (5.19)

Next, we choose randomly ε ∈ At and choose ε′ ∈ A according to proposition 5.3 with
λi = |ai||f(yi)− f(xi)|. Then, for any f ∈ F :

n∑
i=1

εiai(f(yi)− f(xi))− Φnf ≤
n∑
i=1

(εi − ε′i)ai(f(yi)− f(xi)) (5.20)

≤ 2
n∑
i=1

I(εi 6= ε′i)|ai||f(yi)− f(xi)| ≤

√√√√4t
n∑
i=1

a2
i (f(yi)− f(xi))2 =

√
4Wnft.(5.21)

Here, (5.20) holds because ε′ ∈ A. This completes the proof.

In order to use Lemma 5.1, we need a functional Φnf that satisfies (5.10). The following
lemma shows that Φnf does exist. In addition, (5.22) in the lemma implies that Theorem 3.1
holds.

Lemma 5.2. Fix x, y ∈ X . If (3.5) holds for some β ∈ (0, 1), then there exists a con-
stant K < ∞ (that depends on β only) and a functional Φnf = Φ(f, x, y) invariant to the
permutations π ∈ Π of (x, y) such that (5.10) holds and

EyΦnf ≤ K
∫ √

Vnf
2m

0

√
logD(F , u)du. (5.22)

Chứng minh. The proof is based on the standard chaining technique, which appears, for
example, in Theorem 3 of [17] and in Theorem 2.5.6 and 2.14.2 of [24]. Define a set:

F := {(f(x1), . . . , f(xn), f(y1), . . . , f(yn)) : f ∈ F} ⊂ R2n, (5.23)

and a distance function:

dx,y(f, g) :=

√√√√ n∑
i=1

a2
i (f(yi)− f(xi)− g(yi) + g(xi))2. (5.24)
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Here, the weights ai for i = 1..n are incorporated into the distance function dx,y(f, g). One can
check that dx,y(f, 0) =

√
Wnf , and that d2

x,y ≤ 2(d2
x,0 + d2

0,y) ≤ 4 max
{
d2
x,0, d

2
0,y

}
≤ (2qm)2.

In addition, D(F, u, dx,y) ≤ D(F , u/(2m)). Define a decreasing sequence pj = 2qm2−j for all
j ≥ 0. Note that p0 ≥ dx,y ≥ p∞ = 0.

We assume 0 ∈ F . Construct an increasing sequence of sets {0} = F0 ⊆ F1 ⊆ F2 ⊆ . . . ⊆
F , such that for any g 6= h ∈ Fj , dx,y(g, h) > pj and for all f ∈ F there exists g ∈ Fj such
that dx,y ≤ pj . The cardinality of Fj is bounded by |Fj | ≤ D(F, pj , dx,y) ≤ D(F , q2−j). Let
rj = D(F , q2−j) for all j ≥ 0. In addition, if rj = rj+1 then we construct Fj equal to Fj+1.

Define a sequence of projections πj : F → Fj , j ≥ 0 in the following way. Let j be an
integer such that dx,y(f, 0) ∈ (pj+1, pj ]. For all 0 ≤ k ≤ j, set πk(f) = 0. For all k > j,
choose πk(f) such that dx,y(f, πk(f)) ≤ pk. When Fk = Fk+1, let πk(f) = πk+1(f). The
construction leads to: dx,y(πk−1(f), πk(f)) ≤ pk−1 + pk = 3pk.

Construct another sequence ∆j = {g−h : g ∈ Fj , h ∈ Fj−1, dx,y(g, h) ≤ 3pj} for all j ≥ 1.
Let ∆j = {0} if rj = rj−1. The cardinality of ∆j does not exceed |∆j | ≤ |Fj ||Fj−1| ≤ r2

j .
By definition, any f ∈ F can be represented as a sum of elements from ∆j by the formula
f =

∑
j≥1(πj(f)− πj−1(f)), where πj(f)− πj−1(f) ∈ ∆j .

For all j ≥ 1, let Ij =
∫ q2−j
q2−j−1

√
logD(F , u)du and define the event

A =
∞⋃
j=1

{
sup
f∈∆j

n∑
i=1

εi(f(yi)− f(xi)) ≥ KIj

}
. (5.25)

We are now ready to prove the lemma by bounding the occurrence of A. When A does not
occur, for any f ∈ F let j be an integer such that

√
Wnf = dx,y(f, 0) ∈ (pj+1, pj ],

Rnf =
∑
k≥j+1

n∑
i=1

εiai((πk(f)− πk−1(f))(yi)− (πk(f)− πk−1(f))(xi)) (5.26)

≤
∑
k≥j+1

KIk ≤ K
∫ q2−j−1

0

√
logD(F , u)du ≤ K

∫ √
Wnf
2m

0

√
logD(F , u)du.(5.27)

If there exists K <∞ such that Pε(A) < 1− β, then by choosing

Φnf =
K

2m

∫ √Wnf

0

√
logD(F , u, dx,y)du ≤ K

∫ √
Wnf
2m

0

√
logD(F , u)du, (5.28)

we get (5.10). Besides, we get (5.22) by marginalizing (5.28) over y. It remains to prove that
for some K < ∞, Pε(A) < 1 − β. For some j such that rj+1 > rj and for some f ∈ ∆j ,
applying Markov’s inequality, we get:

Pε

(
n∑
i=1

εiai(f(yi)− f(xi)) ≥ KIj

)
≤ exp

(
1−

K2I2
j∑n

i=1 a
2
i (f(yi)− f(xi))2

)
. (5.29)

Since d2
x,y(f, 0) ≤ 9p2

j due to f ∈ ∆j , and I2
j ≥ log rjq22−2j−2 because D(F , u) is decreasing,

Pε

(
n∑
i=1

εiai(f(yi)− f(xi)) ≥ KIj

)
≤ er

−K2

144m2

j .
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Therefore,

Pε(A) ≤
∑
j≥1

|∆j |er
−K2

144m2

j 1[rj+1>rj ] ≤ e
∑
j≥1

r−αj 1[rj+1>rj ] ≤ e
∑
j≥2

j−α = e(ζ(α)− 1), (5.30)

where α = K2

144m2 − 2 and ζ(·) is the Riemann zeta function. To have Pε(A) ≤ 1− β, we can
choose:

K = 12m

√
ζ−1

(
1− β
e

+ 1
)

+ 2. (5.31)

5.2. Proof for Theorem 3.2

This theorem is an application of Theorem 3.1 on bounding the asymmetric error. The
way we derive Theorem 3.2 from Theorem 3.1 is analogous to the way Theorem 1 of [12] is
derived from Corollary 3 of [16]. The differences are mainly at the terms involved. Therefore,
in what follows, we will make use of some results in [10, 12] (which should not be reproduced
here due to space limit) and only give a sketch of our proof. Note that the term K below may
have different values during the derivation of the proof.

First of all, we obtain the following Lemma 5.3 in the same way that Theorem 6 of [12] is
derived from Corollary 3 of [16], (ie. by upper-bounding Vnf with Pf/n′ sinceWnf ≤ Pnf/n′).
After some arrangements among the terms, we get:

Lemma 5.3. If F ′ = {ϕδ (f) : f ∈ F} is a function class that satisfies (3.5), then there
exists an absolute constant K < ∞ such that for any t > 0 with probability at least 1 − e−t
for all f ′ ∈ F ′,

Qnf
′ ≤ K

(
1√
n′

∫ √Pf ′
0

√
logD(F ′, u)du+

√
tPf ′

n′

)
. (5.32)

Secondly, for a fixed d, γ, we look at a layer of function Fd,γ = {f ∈ F : d(f ; γ) ≤ d}. The
uniform entropy of Fd,γ was estimated in [10],

logD(Fd,γ , u) ≤ K
(
d log

1
u

+
(γ
u

)α)
. (5.33)

Besides, define F ′d,γ := {ϕδ(yf(x)) : f ∈ Fd,γ}, we have D(F ′d,γ , u) ≤ D(Fd,γ , δu), since
for any probability measure Q on X × Y , get:

Q(ϕδ(yf(x))− ϕδ(yg(x)))2 ≤ δ−2Q(yf(x)− yg(x))2 = δ−2Q(f(x)− g(x))2. (5.34)

Therefore,

logD(F ′d,γ , u) ≤ K
(
d log

1
δu

+
( γ
δu

)α)
. (5.35)

Thirdly, we apply the following well-known inequality,∫ s

0

(
log

1
u

)1/2

du ≤ 2s
(

log
1
s

)1/2

for s ∈ [0, e−1], (5.36)
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on the integral term in (5.32) after we upper-bound it with (5.35). We assume that Pf ′ ≥ 1/n′,
otherwise the bound of the theorem becomes trivial. We obtain for some constant K > 0, that∫ √Pf ′

0

√
logD(F ′d,γ , u)du ≤ K

(√
Pf ′

(
d

n′
log

n′

δ

)1/2

+
(γ
δ

)α/2 √Pf ′1−α/2√
n′

)
. (5.37)

Thus, for any t > 0, with probability at least 1−e−t, for all f ∈ Fd,γ , and f ′(x, y) = ϕδ(yf(x)),
we have

Qnf
′

√
Pf ′

≤ K

(√
d

n′
log

n′

δ
+
(γ
δ

)α/2 √Pf ′α/2√
n′

+

√
t

n′

)
. (5.38)

Finally, we use the chaining technique proposed in the last part of the proof for Theorem 1
in [12] to complete the proof. That is, we replace t with t′+ log Kd2

δγ and derive a union bound
over all values of γ. We get Theorem 3.2 by selecting yet another constant K large enough.

5.3. Proof for Corollary 3.1

The proof is based on the strategy that Theorem 1 in [12] was specialized in Corollary 1 in
[12]. It is not reproduced here since one can follow the proof for Corollary 1 in [12]. The differ-
ence between their proof and our proof is, we replace their terms Pϕδ(yf(x)), Pnϕδ(yf(x)),
and n, with our terms Pf ′, Pnf

′, and n′, respectively.
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