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THE 256/384/512-BIT VERSION OF THE RIJNDAEL BLOCK CIPHER

DUONG ANH DUC - TRAN MINH TRIET - LUONG HAN CO

Abstract. The Rijndael Block Cipher has been chosen to be Advanced Encryption Standard (AES) since October 2nd
2000. The Cipher processes blocks and keys having 128, 192, or 256 bits. The Extended Rijndael Block Cipher is proposed
to process larger blocks and keys of the length 256, 384, or 512.

Tom tat. Phuong phap ma h6a Rijndael vira duoc Vien Tieu Chuan va Cong Nghe Hoa Ky (NIST) chfnh tlurc chon
lam chuan ma h6a AES (Advanced Encryption Standard) vao ngay 2 thang 10 narn 2000. Tren thirc te, phuong phap ma
h6a Rijndael xu Iy cac khoi dir lieu va mii kh6a c6 d(J dai 128, 192 hoac 256 bit. Trong bai viet nay, cluing toi gioi thieu
phien ban mo rong 256/384/5 12-bit cua thuat roan nay c6 kha nang xir Iy cac kh6i du lieu va rna kh6a c6 d(J dai 256, 384
hoac 512 bit.

1. INTRODUCTION

In this document we describe the 256/384/512-bit extended Rijndael-like Block Cipher. This is the
extended version of the Rijndael Block Cipher, proposed by Vincent Rijmen and Joan Daeman, which has been
chosen to be the AES by the National Institute of Standards and Technology (NIST). The input, the output and
the cipher key for the Extended-Rijndael are 256, 384 or 512 bits in length.

2. NOTATION AND CONVENTIONS

2.1. Extended-Rijndael Inputs and Outputs

The input, the output and the cipher key for Extended-Rijndael are each bit sequences containing 256, 384
or 512 bits with the constraint that the input and output sequences have the same length.

2.2. Bytes

The basic unit for processing in this algorithm is a byte, a sequence of eight bits treated as a single entity.
Each bytes b is interpreted as a finite field element which can be represented in binary notation

7

(Ih7h6hsh4h3h2hJhoD or hexadecimal notation (lh/10D or polynomial nocation Ib;x; .
;=0

2.3. The State
All operations are performed on a two-dimensional array of bytes called the State consisting of eight rows

of bytes, each containing Nb bytes, where Nb is the block length divided by 64. An individual byte of the State
(denoted by the symbol s) is referred to as either S,.e or s[r,el where r is its row number in the range 0:::;r < 8
and c is its column number in the range 0 :::;c < Nb.

At the beginning of the Cipher or Inverse Cipher, the input array, in, is copied to the State array according
to the scheme: s[r, el = in[r + 8c] for 0 :::;r < 8 and 0 :::;c < Nb and at the end of the Cipher and Inverse Cipher,
the State is copied to the output array auf as follows out[r + 8e] = s[r, e] for 0:::;r < 8 and 0:::;c < Nh.

The eight bytes in each column of the state array can be considered either as an array of eight bytes
indexed by the row number r or as a single 64-bit word. The state can hence be considered as a one-
dimensional array of words for which the column number c provides the array index.

3. POLYNOMIALS WITH COEFFICIENTS IN GF(2K)

All bytes in the Extended-Rijndael algorithm are interpreted as finite field elements which can be added
and multiplied. For these operations please refer to [2, 10, IS].

Eight-term polynomials can be defined - with coefficients that are finite field elements - as
7

a(x) = Ia;x; which will be denoted as a word in the form [Go, G
J
, G2, G3. G4, G), G6, G7].

;=0
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7

Let b(x) = Lb;x; define a second eight-term polynomial. Addition is performed by adding (XORing)
;=0

the finite field coefficients of like powers of x :
7

a(x)+b(x) = L(a; tBbJxi).
;=0

Multiplication is achieved in two steps. In the first step, the polynomial product c(x) = a(x) • hex) is
algebraically expanded, and like powers are collected to give:

14 ;

c(x) = Lcixi , where <, = EB(aj ebi_J. (2)
;=0 j=O

(1)

The second step of the multiplication is to reduce c(x) modulo a polynomial of degree 8; the result can be
reduced to a polynomial of degree less than 8. This is accomplished with the polynomial x8 + 1, so that:

x' modtx'' + 1)= x;mod8. (3)

The modular product of a(x) and b(x), denoted by a(x) ® b(x), is given by the eight-term polynomial d(x),
defined as follows:

7 [ i J [8+i Jd(x)=t;dixi,where di= ~(ajeb;_J tB ~(ajeb8+i_J. (4)

Because x8+ I is not an irreducible polynomial over GF(28), multiplication by a fixed eight-term
polynomial is not necessarily invertible. However, the Extended-Rijndael algorithm specifies a fixed eight-term
polynomial that does have an inverse:

a(x) = 1031x7+ 1051x6+ {031x'+ 1021x4+ 1021x'+ 1041r+ 1021x+ 1021, (5)

a-1(x) = 1031x7+ 1041x6+ 1031r+ 1031x4+ {02Ix'+ {051r+ 1021x+ 1031. (6)

4. THE CIPHER

The length (Nb) of the cipher input, the cipher output, the cipher state the cipher key (Nk), measured in
multiples of 64 bits (Nb), is 4, 6 or 8. The number of rounds (Nr) depends on the block length and the key
length: Nr = max lNh, Nkl+6.

The cipher is described in the following pseudo code, for which the individual transformations and the key
schedule are described in the following sections (the array w contains the key schedule, an array of round
keys).

Cipher(byte in[S * Nb], byte out[S * Nb], word w[Nb * (Nr + 1)])
begin

byte state [S,Nb]
state = in
AddRoundKey(state, w)
for round = 1 step 1 to Nr - 1

SubBytes(state)
ShiftRows(state)
MixColumns(state)
AddRoundKey(state, w + round * Nb)

end for
SubBytes(state)
ShiftRows(state)
AddRoundKey(state, w + Nr * Nb)
out = state

end

4.1. The SubBytes Transformation

The SubBytes transformation is a non-linear byte substitution that operates independently on each byte of
the State using a substitution table (S-box) as in the original Rijndael algorithm ([2,10, 15]).
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This S-box, which is invertible, is constructed by composing two transformations:
I. Take the multiplicative inverse in the finite field GF(28); the element {OOI is mapped to itself.
2. Apply an affine (over GF(2)) transformation defined by:

b, = b, EB b(i+4) mod 8 EB b(i+5)mOd8 EB b(i+6)mOd8 EB b(i+7)mOd8 EB Ci· (7)

for 0 ~ i < 8, where b, is the I'll bit of the byte, and {C7C6C5C4C)C2C ICo I = {631 = {O1100011 I. A prime on a
variable (e.g., b') indicates that the variable is to be updated with the value on the right.

SubBytes(byte state[8,Nb))
begin

for r = 0 step 1 to 8
for c = 0 step 1 to Nb - 1

state[r,c) = Sbox[state[r,c))
end for

end for
end

4.2. The ShiftRows Transformation

The ShiftRows transformation operates individually on each row of the state by cyclically shifting the
bytes in the row such that:

Sr,c = sr,(c+shijt(r.Nb))modNb (8)
for 0 < r < 8 and 0 ~ C < Nb, where the shift value shifttr.Nb) = r mod Nb
This has the effect of moving bytes to "lower" positions in the row (i.e., lower values of C in a given row), while
the "lowest" bytes wrap around into the "top" of the row (i.e., higher values of C in a given row).

ShiftRows(byte state[8,Nb))
begin

byte t [Nb)
for r = 1 step 1 to 8

for c = 0 step 1 to Nb - 1
t [c) = state [r, (c + shift [r,Nb)) mod Nb)

end for
for c = 0 step 1 to Nb - 1

state [r,c) = t [c)
end for

end for
end

4.3. The MixColumns Transformation
The MixColumns transformation operates on the State column-by-column, treating each column as a

eight-term polynomial as described in Sec. 3. The columns are considered as polynomials over GF(28) and
multiplied rnodulo z" + 1 with a fixed polynomial a(x), given by:

a(x) = {031x7+ {051x6+ {031x'+ {021x4+ {021~+ {041x1+ {021x+ {021 (9)
The pseudo code for this transformation is as follows, where the function FFmul(x, y) returns the product of
two finite field elements x and y.

MixColumns(byte state[8,Nb))
begin

byte t [8)
for c = 0 step 1 to Nb - 1

for r = 0 step 1 to 8
t [r) = state [r,c)

end for
for r = 0 step 1 to 8

state[r,c) =
FFMul(Ox02, t [r)) xor FFmul(Ox03, t [(r + 1) mod 8) ) xor
FFmul(OxOS, t [(r + 2) mod 8)) xor FFMul (Ox03, t [(r + 3 ) mod 8J) xor
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FFmul(Ox02, t[(r + 4) mod 8]) xor FFmul(Ox02, t[(r + 5) mod 8]) xor
FFmul(Ox04, t[(r + 6) mod 8]) xor FFmul(Ox02, t[(r + 7) mod 8])

end for
end for

end

4.4. The Add Round Key Transformation

In the AddRoundKey transformation, a Round Key is added to the State by a simple bitwise XOR
operation. Each Round Key consists of Nb words from the key schedule (described in Sec. 4.5). Those Nb
words are each added into the columns of the State, such that:

[' , , , , , , ']
SOc,Slc,S2c,S3c,S4c,SSc,S6c,S7c =

• , • , • I , •

[ S 0 c , Sic'S 2 c , S 3 c , S 4 c ' SSe'S 6 c , S 7 c ] EB [ Wroul/d. Nb+c ], . , , , . , , (10)

where [w,] are the key schedule words described in Sec. 4.5, and round is a value in the range 0::::; round S:Nr.
In the Cipher, the initial Round Key addition occurs when round = 0, prior to the first application of the round
function. The application of the AddRoundKey transformation to the Nr rounds of the Cipher occurs when 1::::;
round ts Nr. This transformation is its own inverse, since it only involves an application of the XOR operation.

4.5. Key Expansion
The round keys are derived from the cipher key by means of a key schedule with each round requiring Nb

words of key data with an extra initial set making Nh(Nr + I) words in total. The key schedule consists of a
linear array of 8-byte words denoted by either Wi or w[i] with i in the range 0 ::::;i < Nh(Nr + 1).

The expansion of the input key into the key schedule proceeds according to the following pseudo code
where the function SubWord(x) gives an output word in which the S-box substitution has been individually
applied to each of the eight bytes of its input x.

The function RotWord(x) takes a word rho, hi' b 2' b 3' b 4' b 5' b 6, h7] as input and returns the word [bl' b 2'

b ; b4, b ; h6, h7, ho].
The word array Rcon[i] contains the values given by [x'. I , 0, 0, 0, 0, 0, 0, 0] with J.I being powers of x in

the field GF(28) (note that i starts at 1, not 0).

KeyExpansion(byte key[8 * Nk], word w[Nb * (Nr + 1)], Nk)
begin

i = 0
while (i < Nk)

w[i] = word[key[8*i] ,key[8*i+l], key[8*i+2], key[8*i+3],
key[8*i+4], key[8*i+5], key[8*i+6], key[8*i+7]]

i = i + 1

end while
i = Nk
while (i < Nb * (Nr + 1))

word temp = w[i - 1]
if (i mod Nk = 0)

temp = SubWord(RotWord(temp)) xor Rcon[i / Nk]
else

if ((Nk = 8) and (i mod Nk = 4))
temp = SubWord(temp)

end if
w[i] = w[i - Nk] xor temp
i = i + 1

end while
end

Note that this key schedule, which is illustrated in Figure I for Nk = 4 and Nb = 6, can be generated 'on-
the fly' if necessary using a buffer of max(Nh, Nk) words.
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______ ro_u_n_d__ k_e_y_O ~ r_o_u_n_d_k_e_y__ 1 ro_u_n_d__ k_e_Y_2 c==
Figure 1. The key schedule and round key selection for Nk = 4 and Nb = 6

S. INVERSE CIPHER

The inversion of the cipher code presented in Sec. 4 is straightforward and provides the following pseudo
code for the inverse cipher.

InvCipher(byte in[8 * Nb], byte out[8 * Nb], word w[Nb * (Nr + 1)])
begin

byte state[8,Nb]
state = in
AddRoundKey(state, w + Nr * Nb)
for round = Nr - 1 step -1 to 1

InvShiftRows(state)
InvSubBytes(state)
AddRoundKey(state, w + round * Nb)
InvMixColumns(state)

end for
InvShiftRows(state)
InvSubBytes(state)
AddRoundKey(state, w)
out = state

end

5.1. The InvShiftRows Transformation
The InvShiftRows transformation operates individually on each row of the state cyclically shifting the

bytes in the row such that:

Sr,(c+shi[t(r,Nb))modNb = sr,c (11 )

for 0 < r < 8 and 0:::; c < Nb where the cyclic shift values shift(r, Nb) are mentioned in Sec. 4.2.
InvShiftRows(byte state[8,Nb])
begin

byte t [Nbl
for r = 1 step 1 to 8

for c = a step 1 to Nb - 1
t[(c + shift [r,Nb] ) mod Nb]
state[r,c]

end for
for c = a step 1 to Nb - 1

state [r,c] = t [c]
end for

end for
end

5.2. The InvSubBytes Transformation
InvSubBytes is the inverse of the byte substitution transformation, in which the inverse S-box is applied to

each byte of the State. This is obtained by applying the inverse of the affine transformation (4.1) followed by
taking the multiplicative inverse in GF(28

).

The inverse of the affine tranformation (4.1) being:

b; = b(i+2) mod 8 EEl b(i+5)mOd8 EEl b(i+7)mOd8 EEl d, (12)
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where byte d = {05 I
InvSubBytes(byte state[8,Nb))
begin

for r ; 0 step 1 to 8
for c ; 0 step 1 to Nb - 1

state[r,c) ; InvSbox[state[r,c))
end for

end for
end

5.3. The InvMixColumns Transformation

The InvMixColumns transformation acts independently on every column of the state and treats each
column as a eight-term polynomial as described in Sec. 3. The columns are considered as polynomials over
GF(28

) and multiplied modulo r" + I with a fixed polynomial a·l(x), given by:
a-I(x) = {03 Ix7 + {041.0 + {03 Ir + {03 Ix4+ {021x' + {05V + {021x + {03 I. (13)

The pseudo code for this transformation is as follows, where the function FFmul(x, y) returns the product of
two finite field elements x and y.

InvMixColumns(byte block[8,Nb))
begin

byte t [8)
for c ; 0 step 1 to Nb - 1

for r ; 0 step 1 to 7
t[r) ; block[r,c)

end for
for r ; 0 step 1 to 7

block[r,c) ;
FFmul(Ox03, t[r))
FFmul(Ox04, t[(r + 2) mod 8))
FFmul(Ox03, t[(r + 4) mod 8))
FFmul(Ox05, t[(r + 6) mod 8))

end for
end for

end

xor FFmul (Ox03,
xor FFmul (Ox03,
xor FFmul(Ox02,
xor FFmul(Ox02,

t [(r + 1)

t [(r + 3)

t [(r + 5)

t [(r + 7)

mod 8)) xor
mod 8)) xor
mod 8)) xor
mod 8))

5.4. Equivalent Inverse Cipher
In the straightforward Inverse Cipher presented above, the sequence of the transformations differs from

that of the Cipher, while the form of the key schedules for encryption and decryption remains the same.
However the order of InvSubBytes and InvShiftRows can be reversed. The order of AddRoundKey and
InvMixColumns can also be reversed, provided that the columns (words) of the decryption key schedule are
transformed using InvMixColumns. This latter operation shall not be performed on the first or the last Nb
words in the key schedule, since those do not operate with InvlvlbcColumns. Given these changes, the resulting
Equivalent Inverse Cipher offers a more efficient structure than the straightforward Inverse Cipher described
above.
In the pseudo code for the Equivalent Inverse Cipher, the word array dw[] contains the modified decryption
key schedule.

EqlnvCipher(byte in[8 * Nb), byte out [8 * Nb), word dw[Nb * (Nr + 1)))
begin

byte state[8,Nb)
state ; in
AddRoundKey(state, dw + Nr * Nb)
for round; Nr - 1 step -1 to 1

InvSubBytes(state)
InvShiftRows(state)
InvMixColumns(state)
AddRoundKey(state, dw + round * Nb)

end for
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InvSubBytes(state}
InvShiftRows(state}
AddRoundKey(state, dw)
out = state

end

For the Equivalent Inverse Cipher, the following pseudo code is added at the end of the Key Expansion routine:
for i = 0 step 1 to (Nr + 1) * Nb - 1

dw[i] = w[i]
end for
for md = 1 step 1 to Nr - 1

InvMixColumns(dw + rnd * Nb)
end for

6. MOTIVATION FOR DESIGN CHOICES

The motivations for designing the S-box, the ShiftRows offsets, the Key Schedule, and the number of
rounds of the Extended Rijndael are based on the original Rijndael Cipher ([1, 2, 9]). The most important
changes have been made in designing the MixColumns transformation.

The MixColumns transformation:
MixColumns has been chosen from the space of 8-byte to 8-byte linear transformations using the following

criteria:
1. Invertibility;
2. Linearity in GF(2);
3. Relevant diffusion power;
4. Speed on 8-bit processors;
5. Symmetry;
6. Simplicity of description.
7. Speed on 8-bit processors for the InvMixColumns

The criteria from 1 to 6 have been used to choose MixColumns in the standard Rijndael algorithm. The
criterion 7 imposes that the coefficients of the InvMixCol umns have small values, in order of preference {OO},
{Ol }, {02}, (03} ... For the original Rijndael algorithm, no solution can be found to satisfy all these seven
criteria. The MixColumns used in the Rijndael does not satisfy the criterion 7; so the inverse cipher takes
significantly more time than the cipher itself on 8-bit processors [1]

Branch number:
Let F be a linear transformation acting on byte vectors and let the byte weight of a vector be the number of

nonzero bytes. The byte weight of a vector is denoted by W(a). The Branch Number of a linear transformation
is a measure of its diffusion power

Definition. The branch number of a linear transformation F is:

(14)

A non-zero byte is called an active byte. The coefficients of the MixColumns have been chosen in such a
way that its branch number, denoted by B, is 8. A linear relation between input and output bits involves bits
from at least 8 different bytes from input and output.

7. STRENGTH AGAINST KNOWN ATTACKS

7.1. Symmetry Properties and Weak Keys of the DES Type
Symmetry in the behavior of the cipher has been eliminated by using the round constants that are different

for each round. The fact that the cipher and its inverse use different components practically eliminates the
possibility for weak and semi-weak keys, as existing for DES. The non-linearity of the key expansion
practically eliminates the possibility of equivalent keys.

7.2. Differential and Linear Cryptanalysis

7.2.1. Differential cryptanalysis (DC)
DC attacks [8] are possible if there are predictable difference propagations over all but a few (typically 2
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or 3) rounds that have a prop ratio (the relative amount of all input pairs that for the given input difference give
rise to the output difference) significantly larger than 21-" if n is the block length.
For this 256/384/512-bit extended Rijndael-like Block Cipher, we prove that there are no 4-round differential
trails with a predicted prop ratio above 248(Nb+l) (and no 8-round trails with a predicted prop ratio above 2-96(Nb+I)).

For all block lengths of this extended version, this is sufficient. The proof is given in Sec. 7.2.3.

7.2.2. Linear cryptanalysis (LC)
LC attacks [13] are possible if there are predictable input-output correlations over all but a few

(typically 2 or 3) rounds significantly larger than 2-012• For this extended version, we prove that there are no
4-round linear trails with a correlation above 2-24(Nb+l) (and no S-round trails with a correlation above
2-48(Nb+I)). For all block lengths of Extended-Rijndael, this is sufficient. The proof is given in Sec. 7.2.4.

7.2.3. Weight of differential and linear trails.
In [9], it is shown that:

• The prop ratio of a differential trail can be approximated by the product of the prop ratios of its active
S-boxes.

• The correlation of a linear trail can be approximated by the product of input-output correlations of its active
S-boxes.

The wide trail strategy can be summarised as follows:
• Choose an S-box where the maximum prop ratio and the maximum input-output correlation are as small as

possible. For the 256/384/512-bit extended Rijndael-like Block Cipher, this is respectively 2-6and 2-3•

• Construct the diffusion layer in such a way that there are no multiple-round trails with few active S-boxes.
We prove that the minimum number of active S-boxes in any 4-round differential or linear trail is 8(Nb+ 1).
This gives a maximum prop ratio of 248(Nb+I) for any 4-round differential trail and a maximum of 2-24(Nb+I) for the
correlation for any 4-round linear trail. This is independent of the value of the Round Keys.

7.2.4. Propagation of patterns
For DC, the active S-boxes in a round are determined by the nonzero bytes in the difference of the states at

the input of a round. Let the pattern that specifies the positions of the active S-boxes be denoted by the term
(difference) activity pattern and let the (difference) byte weight be the number of active bytes in a pattern.

For LC, the active S-boxes in .• round are determined by the nonzero bytes in the selection vectors [9] at
the input of a round. Let the pattern that specifies the positions of the active S-boxes be denoted by the term
(correlation) activity pattern and let the (correlation) byte weight W(a) be the number of active bytes in a
pattern a.

Moreover, let a column of an activity pattern with at least one active byte be denoted by active column.
Let the column weight, denoted by Wc(a), be the number of active columns in a pattern. The byte weight of a
columnj of a, denoted by W(a)lj, is the number of active bytes in it.

The weight of a trail is the sum of the weights of its activity patterns at the input of each round.
Difference and correlation activity patterns can be seen as propagating through the transformations of the

different rounds of the block cipher to form linear and differential trails.
This is illustrated with an example in Figure 2.

~

AIAIAIAW~

SubBytes ShiftRows MixColumns AddRoundKey
Figure 2. Propagation of activity pattern (in gray) through a single round

In our description, the activity pattern at the input of a round i is denoted by aj_1 and the activity pattern
after applying ShiftRows of round i is denoted by bj_I' The initial round is numbered 1 and the initial difference
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pattern is denoted by ao. Clearly, a, and b, are separated by ShiftRows and have the same byte weight, bj_, and
aj are separated by MixColumns and have the same column weight. The weight of an m-round trail is given by
the sum of the weights of ao to am_, • In the following figures, active bytes are indicated in dark grey, active
columns in light grey.

Theorem 1. The weight of a two-round trail with Q active columns at the input of the second round is lower
bounded by 8Q.
Proof The fact that MixColumns has a Branch Number equal to 8 implies that sum of the byte weights of each
column in bo and a, is lower bounded by 8. If the column weight of a, is Q, this gives a lower bounded of 8Q
for the sum of the byte weights of bo and a, . As ao and bo have the same byte weight, the lower bounded is also
valid for the sum of the weights ao and a" proving the theorem. QED

Theorem 1 is illustrated in Figure 3.

~c

~..

f

Figure 3. Illustration of Theorem 1 with Q = 2

From this it follows that any two-round trail has at least 8 active S-boxes.

Lemma 1. In a two-round trail, the sum of the number of active columns at its input and the number of active
columns at its output is at least Nb+ 1. In other words, the sum of the columns weights of au and a2 is at least
Nb+1.
Proof ShiftRows moves all bytes in a column of a, to different columns in b, and vice versa. It follows that the
column weight of a, is lower bounded the byte weights of the individual columns of b, and the number of
columns in a state (Nb). Likewise the column weight of b, is lower bounded by the byte weights of the
individual columns of aiand the number of columns in a state (Nb).
In a trail, at least one column of a, (or equivalently bo ) is active. Let this column be denoted by "column g".
Because Mixcolumns has a branch number of 8, the sum of the byte weights of column g in bo and column g in
a, is lower bounded by 8. The column weight of ao is lower bounded by the byte weight of column g of bo and
the number of columns Nb. The column weight of b, is lower bounded byit,e byte weight of column g of a, and
the number of columns Nb. It can be infered that the sum of the column weights of ao and b, is lower bounded
by Nb+ 1. As the column weight of a2 is equal to that of b, the lemma is proven. QED

Lemma 1 is illustrated in Figure 4.

Theorem 2. Any trail over four rounds has at least 8(Nb+ 1) active bytes.
Proof By applying Theorem 1 on the first two rounds (l and 2) and on the last two rounds (3 and 4), it follows
that the byte weight of the trail is lower bounded by the sum of the column weight of a, and a3 multiplied by 8.
By applying Lemma 1, the sum of the column weight of a, and a3 is lower bounded by Nb+1. From this it
follows that the byte weight of the four-round trail is lower bounded by 8(Nh+ 1). QED

Theorem 2 is illustrated in Figure 5.

7.3. Truncated Differentials
The concept of truncated differentials was first published by Lars Knudsen [12]. The corresponding class

of attacks exploit the fact that in some ciphers differential trails tend to cluster [9]. Clustering takes place if for
certain sets of input difference patterns and output difference patterns, the number of differential trails is
exceedingly large. The expected probability within that a differential trail stays the boundaries of the cluster
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can be computed independently of the prop ratios of the individual differential trails. Ciphers in which all
transformation operate on the state in well aligned blocks are prone to be susceptible to this type of attack. Since
this is the case for 256/384/512-bit extended Rijndael-like Block Cipher, all transformations operating on bytes
rather than individual bits, we investigated its resistance against "truncated differentials". For 6 rounds or more,
no attacks faster than exhaustive key search have been found.
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~
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t.:
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Figure 4. Illustration of Lemma 1 with one active column in al
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7.4. Interpolation Attacks
In this attack [14], the attacker constructs polynomials using cipher input/output pairs. This attack is

feasible if the components in the cipher have a compact algebraic expression and can be combined to give
expressions with manageable complexity. The basis of the attack is that if the constructed polynomials (or
rational expressions) have a small degree, only few cipher input/output pairs are necessary to solve for the (key-
dependent) coefficients of the polynomial. The complicated expression of the S-box in GF(28), in combination
with the effect of the diffusion layer prohibits these types of attack for more than a few rounds. The expression
for the S-box is given by:

S(x)={ 63}+{ 8f}x'27+{b5}x'91+{Ol}r23+{f4}r39+{25}r47+{f9}r51+{ 09}r53+{05}r54
J
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7.5. Weak keys as in IDEA

The weak keys discussed in this subsection are keys that result in a block cipher mapping with detectable
weaknesses. The best known case of weak keys are those of IDEA [9]. Typically, this weakness occurs for
ciphers in which the non-linear operations depends on the actual key value. This is not the case for
256/384/512-bit extended Rijndael-like Block Cipher, where keys are applied using the XOR and all non-
linearity is in the fixed S-box. In 256/384/512-bit extended Rijndael-like Block Cipher, there is no restriction on
key selection.

7.6. Related-Key Attacks

In related-key attacks [II], the cryptanalyst can do cipher operations using different (unknown or partly
unknown) keys with a chosen relation. The key schedule of 256/384/512-bit extended Rijndael-like Block
Cipher, with its high diffusion and non-linearity, makes it very improbable that this type of attack can be
successful for 256/384/512-bit extended Rijndael-like Block Cipher.

8. EXPERIMENTS AND PERFORMANCE

The cipher and its inverse take the same time Table 1 and Table 2 give the performance figures for the raw
encryption implemented in C of the original Rijndael Block Cipher and the 256/384/512-bit extended Rijndael-
like Block Cipher using the Microsoft Visual C++ 6.0 compiler. The experiments were performed on different
platforms such as 200 MHz Pentium (running Microsoft Windows 98SE), 400 MHz Pentium II, and 733 MHz
Pentium III running Microsoft Windows 2000 Professional.

Speed (Mbits/sec)

Key Block 200 MHz 400 MHz 733 MHz
(bits) (bits) Pentium Pentium IT Pentium III

128 128 70.5 141.5 259.2

128 192 59.8 119.7 219.3

128 256 51.3 101.5 186.1

Table 1. Performance figures for the cipher

Speed (Mbits/sec)

Key Block 200 MHz 400 MHz 733 MHz
(bits) (bits) Pentium Pentium II Pentium III

256 256 27.4 56.4 103.4

256 384 23.3 47.5 87.1

256 512 20.2 42.0 76.9

Table 2. Performance figures for the cipher

From these tables, it can be seen that it is approximately four times slower to process each block when the
length of the block and the cipher key are doubled. Although nearly half of the total speed of the cipher will be
reduced, the space for exhaustive key search will be significantly enlarged.

9. CONCLUSION

256/384/512-bit extended Rijndael-like Block Cipher is expected, for all key and block lengths defined, to
behave as good as can be expected from a block cipher with the given block and key lengths. This
implies among other things, the following. The most efficient key-recovery attack for 256/384/512-bit extended
Rijndael-like Block Cipher is exhaustive key search. Obtaining information from given plaintext-ciphertext
pairs about other plaintext-ciphertext pairs cannot be done more efficiently than by determining the key by
exhaustive key search. The expected effort of exhaustive key search depends on the length of the Cipher Key
and is:
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• for a 32-byte key, 2255 applications;
• for a 48-byte key, 2383 applications;
• for a 64-byte key, 2511 applications.

The rationale for this is that a considerable safety margin is taken with respect to all known attacks.
Basing on the same mathematical and cryptographic bases of the Rijndael Block Cipher, we also devise the

512/768/1024-bit extended Rijndael-like Block Cipher [1, 5]) and the generalized template of the Rijndael-like
Block Cipher ([3, 6]) that can be used to generate ciphers with larger blocks and larger keys.

We are currently testing the optimized implementations of these extended versions of the Rijndael Block
Cipher. Together with the original algorithm, these versions are being implemented in our applications
including the plug-in for the Microsoft Outlook Express [15], the plug-in for the Eudora, the encoding/decoding
modules for the digital maps and some other DSP equipments, the secured electronic mail system ([7, 15]), the
security process in examinations [4] ...
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