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Abstract. HIV/AIDS is a major epidemic in the 21st century, with high mortality rates and

no effective preventive vaccine. It significantly impacts the economy, mental well-being and health

systems and shortens national lifespans. Early detection helps reduce transmission and allocate med-

ical resources effectively. However, predicting outbreaks remains challenging due to the influence of

temporal, spatial and epidemiological factors, which complicate the spread of the disease across re-

gions and pose difficulties for predictive models. Very few studies use deep learning models to tackle

the HIV epidemic. To address this gap, we suggest using a graph data structure to simulate HIV

transmission between neighboring areas and integrate epidemiological factors into this framework.

We develop a spatio-temporal graph neural network model to predict short-term infection trends.

This model incorporates important factors from HIV modeling, including temporal dynamics, geo-

graphic regions, and epidemiological variables such as age groups, career groups, gender groups, risk

population groups, and transmission routes within an area. Our approach uses self-attention in the

graph architecture to gather node-level information across the infection graph at each step during

time series processing. We employ a GRU mechanism to update the graph information over time,

allowing for a comprehensive evaluation of transmission probabilities between regions and improv-

ing predictive accuracy. Our proposed model was tested on HIV datasets from districts in Ho Chi

Minh City, Viet Nam, and demonstrated superior performance compared to existing spatio-temporal

models applied to the same dataset.
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1. INTRODUCTION

Disease prediction plays a crucial role in mitigating the economic, social, and health
impacts of infectious diseases. It enables governments to monitor outbreaks and develop
effective control strategies. Healthcare facilities rely on accurate predictions to prepare their
resources and equipment. HIV/AIDS, the deadliest pandemic of the 20th and 21st centuries,
has resulted in millions of deaths and infections [1]. Unlike influenza and COVID-19, which
spread primarily through respiratory routes [2,3], HIV is transmitted through blood, sexual
contact, and from mother to child [4]. It has a longer incubation period and spreads more
slowly within communities. HIV-positive cases are identified by confirmatory tests in HIV
testing centers [5]. By predicting HIV rates early, health agencies can allocate resources
more effectively and work to reduce transmission.

Recent studies on disease prediction are based on algorithms for time series analysis.
Time-series prediction involves collecting observations from the past and using them to
develop a mathematical model that captures the process of generating information. The al-
gorithms then utilize these models to predict future outcomes. In simpler terms, time-series
forecasting involves predicting the future values of a time series. Prediction models can be
categorized based on different factors, such as the mathematical models used for univariate
or multivariate time series or the algorithms for linear or nonlinear models.

Traditional forecasting models like ARIMA and exponential smoothing use statistical
models to forecast based on time series data. These models have several advantages in
time series forecasting. They are flexible in capturing seasonal patterns, cycles, or trends,
and they are simple and easy to implement because they require few parameters and basic
statistical assumptions. However, traditional models may not perform well when the data
contains additional external information needed for prediction or lack historical information,
which are common issues in the real world. In recent years, advanced deep learning tech-
niques, such as long short-term memory (LSTM) and convolutional neural networks (CNN),
are used in time series forecasting, demonstrating notable advancements compared to tradi-
tional models. Deep learning models can forecast complex high-dimensional data sets and
effectively address the challenge of missing information during data collection. Furthermore,
deep learning facilitates feature learning and extracting pertinent features or representations
for forecasting tasks based on raw data.

Despite advances in deep learning, models still struggle to fully capture the complex and
dynamic nature of disease spread. This is particularly true when considering the spatial and
temporal dependencies and the unique epidemiological factors associated with different epi-
demics. Disease models are usually dynamic, as they involve the spread of disease between
neighboring regions over time. For example, an outbreak may occur in a region the following
month if neighboring regions have high infection rates, potentially spreading the infection
to adjacent regions. Inspired by [6], the main factors that influence disease prediction are
listed below:

Location graph factors. In the context of disease transmission, the spread of diseases
can occur between neighboring locations, which can be depicted as a graph. In this graph,
each location is a node, and the connections between them represent potential disease trans-
mission routes. The strength of these connections is indicated by the weights of the edges,
which represent the likelihood of disease transmission between locations.

Epidemiological factors play a crucial role in increasing or decreasing the transmission
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potential of diseases within and between different locations. The number of positive cases
at a specific location is one of the most common indicators of the infection potential in an
area. However, to assess the transmission potential of a location relative to its surrounding
areas, additional epidemiological factors are necessary, such as the risk population group,
the transmission route group, the age group, the gender group, and other relevant factors.

Temporal factors. During disease outbreaks, the number of cases in each area can
increase or decrease at specific points in time. It is important to track the trend of the
disease’s spread in individual areas and across all areas over time. Therefore, understanding
the temporal factor is crucial to understanding the dynamic nature of disease outbreaks.

Therefore, the challenge in disease forecasting, including HIV transmission, lies in in-
tegrating spatial, epidemiological, and temporal factors into the prediction process. Some
recent studies on forecasting COVID-19 outbreaks propose spatio-temporal prediction mod-
els [7–9]. However, most of these models have not fully accounted for the transmission
dynamics between different regions over time and the incorporation of epidemiological fac-
tors.

In our paper, we present an HIV disease forecasting model that uses HIV epidemic data
collected according to three key factors: spatial, epidemiological, and temporal. We have
compared this model with various previous disease prediction models. The primary contri-
butions of our paper are summarized below.

1. We propose to construct an HIV transmission graph between neighboring regions
at each time point based on epidemiological information, including age groups, occupation
groups, gender groups, transmission target groups, and transmission routes in each region.

2. We propose a disease prediction model for the HIV epidemic called 3FPREDICT
(3-Factors Prediction) based on three spatial, epidemiological, and temporal factors. Specif-
ically, we utilize a graph self-attention model to compute the transmission likelihood between
regions based on the HIV transmission graph and employ GRU to process temporal sequence
information.

3. We implemented the model using real-world data on HIV transmission in Ho Chi Minh
City, Viet Nam. We used a list of HIV-positive cases detected in 23 districts and counties
in Ho Chi Minh City, Viet Nam, from January 2009 to December 2019 to create monthly
infection graphs. This resulted in a total of 144 infection graphs. We then built prediction
models based on these graphs. We used a graph self-attention model combined with GRU
for graph-based learning, which yielded competitive results compared to previous research
on disease prediction models.

The remaining sections of the paper are structured as follows. Section 2 concisely de-
scribes previous research on disease prediction and its associated limitations. The proposed
model is elaborated on in Section 3. The experimental results are presented in Section 4.
Finally, Section 5 concludes the paper and suggests avenues for future research.

2. RELATED WORK

2.1. Traditional approaches

Traditional epidemic prediction models are based on basic statistical methods. The sim-
plest forecasting algorithm, Naive, predicts each time step using the value observed in the
preceding time step [10]. Q. Chen [11] apply the SIR model, a compartmental model focusing
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on the mathematical modeling of population-level dynamics, for forecasting and analyzing
SARs. The authors in [12–15] use ARIMA (Autoregressive Integrated Moving Average)
models to forecast COVID-19 outbreaks and daily blood sample collection visits. Although
ARIMA is widely used to forecast univariate time series, its main drawback lies in its inabil-
ity to accommodate seasonal components.

Classical statistical methods are generally fast, have lower computational costs, offer
higher interpretability, and provide better statistical guarantees. They remain widely adopted
and have shown superior performance compared to machine learning solutions in the past.
However, traditional approaches often have limitations, such as robustness to missing data,
reliance on hand-crafted features, heavy preprocessing requirements, and rigid design choices
that require experience and a strong theoretical foundation. Despite the availability of many
tools to automate the creation of these models, their need for a robust theoretical background
makes them impractical for predicting multiple time series.

2.2. Deep learning approaches

Deep learning models [16–20] allow extracting relevant features for forecasting by learn-
ing from large and informative datasets. V.Chimula et al. [21] employ the LSTM network
to forecast the end time of the COVID-19 pandemic in Canada. LSTM, an improved model
of RNN (Recurrent Neural Network) [22], enables learning from distant dependencies. This
LSTM model yields promising results with COVID-19 data collected from Johns Hopkins
University and Canadian health authorities, including confirmed positive cases up to March
31, 2020, and daily counts of deaths and recoveries. Although the model performs well on
the collected dataset, some unaccounted cases may affect its forecasting results, including
incomplete reporting of data and failure to consider potential outbreaks that could influence
the model’s predictions. Similarly, the authors at [23–27] apply recurrent neural network
algorithms such as RNN, GRU, and LSTM to predict COVID-19 and other diseases over
time series. Diqi et al. [28] employ a Convolutional Neural Network (CNN) architecture com-
monly used in image processing to predict COVID-19. When applied to time series, CNN
allows for better feature extraction and aggregation for prediction activities. Effective fore-
casting improvements include combining ARIMA and LSTM [29], LSTM with the Markov
method [30], and LSTM with optimization methods [31]. Although the prediction results
align with time series data, a key limitation of these models is their inability to account for
the possibilities of interregional infection related to temporal variations in prediction models.

Epidemic models typically incorporate spatial (location of the disease outbreak) and tem-
poral (timing of disease outbreak) information. Disease surveillance data are often collected
based on spatial and temporal information. Although deep learning models can predict
disease datasets, they may not account for the potential outbreak or control of diseases in
specific locations over a certain period. The outbreak or control of a disease in one area
may affect other areas and the same location in the future. Combining CNN-LSTM [32]
and RNN-CNN [33] models aims to extract relevant feature information and consider these
for distant dependencies. However, they do not address the spatial and temporal features
of epidemic models. Basic deep learning models fail to capture relationships regarding the
potential of disease outbreak in an area with temporal changes.
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2.3. Spatio-temporal graph learning

To address spatio-temporal relationships in graph models, recent studies focus on uti-
lizing spatio-temporal graph deep learning models to tackle epidemic prediction problems,
primarily concerning COVID-19. Y.Zheng et al. [7] construct a spatio-temporal COVID-19
prediction graph, combining an SEIR (susceptible-exposed-infectious-recovered) model to
compute node features and an RNN (Recurrent Neural Network) to compute edge features.
The RNN model aims to capture the neighboring effect and regularize the landscape of the
loss function, ensuring an effective and robust contribution of local minima to prediction. A
weakness of the model is its failure to account for the time-dependent influence on disease
outbreaks in various regions.

The authors in [34] apply the GCN-LSTM model to predict the transmission of COVID-
19 in Connecticut. In the constructed graph, the nodes represent 169 towns or cities in
Connecticut, and the edges represent the distance between towns or cities in Connecticut.
LSTM is used to update the graph snapshots for each time point. Although edge infor-
mation is integrated, GCN (Graph Convolutional Network) [35] has the potential to cause
over-smoothing [36] on infection graphs. Panagopoulos et al. [8] employ a graph neural
network model to predict COVID-19 in regions of France, Italy, Spain and England. The au-
thors propose constructing a COVID-19 infection graph between regions at each time point
in the time series, where nodes represent regions in the graph, and edges denote the number
of individuals moving from one area to another. The model utilizes MPNN (Message Passing
Neural Network), a graph neural network architecture, to aggregate graph information at
each time point and employs LSTM to update graph information over time. Improvements
suggested for the model in the paper include incorporating additional epidemiological infor-
mation such as age/gender groups and other external factors to improve model precision.
However, the model does not consider the influence of infection in all regions.

A.Kapoor et al. [37] constructed a spatiotemporal graph for COVID-19 forecasting in the
counties of the United States. In this graph, nodes represent the graph vertices. They create
graphs with different types of edges to represent the dependence between space and time.
In the spatial domain, edges represent the movement of individuals between two areas. The
simple edges represented binary connections in the temporal domain over the past few days.
The graph consists of approximately 100 combined layers, each representing the daily spread
of infection between regions. It uses an MLP (Multi-Layer Perception) for forecasting, with
the input being the last layer. Similarly to [8], the weakness of the model lies in its disre-
gard of epidemiological factors and the failure to calculate the coefficient of influence of the
infection between regions.

Current spatio-temporal forecasting models have several notable disadvantages when pre-
dicting disease outbreaks. Firstly, many of these models lack an attention mechanism, which
means that they cannot identify and focus on important nodes in the graph. This leads to
insufficient information aggregation in areas with varying infection rates. Secondly, these
models often do not fully integrate epidemiological factors such as age, gender, and high-risk
groups, which limits their ability to make accurate predictions in complex disease scenarios.
In general, these disadvantages can significantly impact the effectiveness of disease forecast-
ing efforts.

In this paper, we explore the use of spatio-temporal graph neural networks [38] to predict
the spread of disease in spatial and temporal spaces. In our analysis, we incorporate epidemi-
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ological parameters for HIV in our analysis. We use spatial and temporal HIV disease data
and epidemiological information to create a model input graph. This integrates spatial, tem-
poral, and epidemiological factors, with nodes representing different regions characterized
by epidemiological statistics. This includes the total number of positive cases, age groups,
gender groups, career groups, transmission route groups, and high-risk population groups
of positive cases in the districts. The edges of the graph represent the connections between
adjacent regions. The weights indicate the distance between these areas, calculated based on
the proximity of HIV testing facilities in each region and the detection of positive cases. We
assume that each region has a single testing facility, which functions as the only location to
detect HIV-positive cases. In the context of a city, the regions where positive cases are pre-
dicted are the districts within the city. Each district has an HIV testing center where people
from surrounding areas who are suspected to have HIV can come to be tested. Suspected
positive cases can be tested in the district where they live or in neighboring districts. As a
result, the likelihood of transmission between two districts or counties is also related to the
distance between the testing centers.

To aggregate information within the graph, we employ the Graph Self-Attention archi-
tecture, enabling the synthesis of infection information from one region with all regions in
the graph, not just adjacent ones. The Graph Self-Attention aggregates feature information
of graph nodes and edges to compute the infection influence of all nodes, considering both
spatial and epidemiological factors. To handle temporal graph sequences, we use the GRU
network [39]. Finally, we employ a Multi-Layer Perceptron (MLP) to predict the number of
positive cases for all regions for the next month.

3. PROPOSED METHOD

Our task is to predict short-term HIV-positive cases across neighboring regions (such as
districts within a city). This involves information on n regions at time h in the past and
predicting the number of HIV-positive cases at time h + z. The problem can be described
as follows

Npcaseh+h1
n = PREDICT(Rn

h, R
n
h−1, ..., R

n
1 ), (1)

where Rn
t represent profiles of n adjacency regions at time step t, ∀t ∈ [1, h].

In our study, we construct a graph with n nodes representing n regions and an edge
between two nodes representing the distance between two HIV testing centers in two regions
at the time step t ∀t ∈ [1, h]. We develop the 3FPREDICT model for graph learning in the
prediction of HIV-positive cases. The overall prediction process can be shown as follows

Vpcaseh+z
n = 3FPREDICT(Gn

h, G
n
h−1, ..., G

n
1 ), (2)

whereGn
t represents the infection graph among n regions at time step t, ∀t ∈ [1, h]. Vpcaseh+z

n

is a vector that contains the prediction of the n regions in time h+ z based on the 3FPRE-
DICT prediction model.

3.1. Location infection graph construction

The graph is a set of nodes (also known as vertices) and edges connecting between each
two nodes [40]. The graph provides a structure for representing entities and relationships
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between entities. The graph’s nodes or edges can contain values representing the features
of the nodes or edges. The graph can be represented by an adjacency matrix, where each
element of the matrix represents each relationship between nodes in the graph. The strength
of graph problems lies in their ability to propagate information across the graph. This prop-
agation property is suitable for studying the spread of diseases through regions. Therefore,
we construct an infection spread graph among adjacent regions. Through the properties
of the graph, we investigate how transmission between regions impacts the forecasting of
HIV-positive cases.

We construct graphs Gt = (V t, Et) at time step t, where V t = (vt1, ..., v
t
n) is the set of

nodes with n = |V t| representing the number of nodes in the graph. Each node on the
graph represents a region we aim to predict. Each node has p features Xt = (xtp1, ..., x

t
pn)

corresponding to epidemiological factors of regions, including number of positive cases at
time t, age groups, career groups, gender groups, risk population groups, trans-
mission route groups and any other epidemiological information if available. The edge of
the graph etij between two nodes vti and vtj represents the ability of infection transmission
based on the distance between two regions. Specifically, we define the adjacency matrix At

of each graph Gt as follows: atij = Dt
ij if two regions are adjacent atij= 0 if other, where Dt

ij

is the distance between two HIV testing center in two regions i and j

atij =

{
Dt

ij if region i and region j border

0 other
(3)

where edge weight etij = Dt
ij is measured by the distance between the testing facilities at the

centers of the nearby regions, where testing and identification of positive cases occur. We
assume that this distance represents the likelihood of infection between two adjacent regions.
This implies that infected individuals are less likely to move between regions with a greater
distance than regions with closer testing facilities.

Figure 1 illustrates the transmission of HIV infection between districts in Ho Chi Minh
City. The large red circles on the map indicate testing centers in each district and county.
These centers detect positive cases within their respective district or county and neighboring
districts of the city. The lines connecting the red circles represent the distances between
testing centers, with shorter distances indicating higher transmission probabilities between
the districts.

3.2. Proposed model

To address the problem, we propose using an overall prediction model as depicted in
Figure 2. To compute the influence between regions at a given time, we employ the self-
attention mentioned in [40] for each infection graph Gt at each time step t. This technique
enables the self-attention mechanism to compute the influence of infection between regions.
The computing influence is based on the combination function of epidemiological feature in-
formation of the nodes in the graph (representing regions) and edge information of the graph
representing the distance between adjacent regions. Subsequently, the graphs are updated
using the Gated Recurrent Unit(GRU) for time-series processing.

Graph Neural Network(GNN). Graph Neural Networks [41] is a set of deep learn-
ing techniques designed to process and analyze graph-structured data, particularly in node
embedding tasks. This allows information aggregation from a node’s features based on
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Figure 1: HIV Infection map between areas in Ho Chi Minh City, Viet Nam

neighboring nodes’ features. Two fundamental operations in GNN are message passing,
which involves propagating information across the graph, aggregating neighborhood node
features, and updating new node embedding. These processes enable a node in the graph to
iteratively integrate information from its neighboring nodes. The propagation process [41]
is formulated as follows

h
′
i = γ(hi,⊕j∈Niϕ(hi, hj , eij)), (4)

where hi and hj is node embedding of node vi, vj, eij is edge embedding of the edge between
node vi and node vj and Ni is a set of neighboring nodes of node vi, γ is update function,
⊕ is an aggregation function, and ϕ is an update function. Some typical GNN architectures
are GCN (Graph Convolution Network) [35] and GAT (Graph Attention Network) [42].

Graph Self-attention(GSA) on Region infection graphs. Inspired by Vaswani et
al. [43], we calculate the impact between the infected regions in the location infection graphs
Gt at times step t by self-attention and multi-head attention. To calculate the influence
coefficient between two nodes vti and vtj , taking into account the weight of the edge etij we
use the following formula

αt
c,ij =

qtc,i, k
t
c,i + etc,ij∑

uϵN(i) q
t
c,i, k

t
c,u + etc,iu

, (5)

where qtc,i = W t
c,qh

t
i + btc,q, k

t
c,j = W t

c,kh
t
j + btc,k, e

t
c,ij = W t

c,ee
t
ij + btc,e, and

(
qt, kt

)
= exp

(
qtkt

T

√
d

)
. (6)
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Figure 2: The overall prediction model 3FPREDICT

Equation(6) represents the exponential scale dot product function, and d is the hidden
dim of each head. With attention head cth, we transform the features hti of node vti to the
query vector qtc,i ∈ Rd and the feature htj of node vtj to the key vector ktc,j ∈ Rd with the
trainable parameter W t

c,q, b
t
c,q, W

t
c,k, b

t
c,k. The edge feature value etij is aggregated with the

key value as additional information.
After calculating the infection coefficient, we aggregate the information from node vti to

node vtj using the following formula

h
′
i = ∥Cc=1

 ∑
jϵN(i)

αt
c,ij

(
vtc,j + etc,iu

) (7)

with

vtc,j = W t
c,vh

t
j + btc,v, (8)

where C is the number of heads and htj transforms to vector vtc,j ∈ Rd with trainable param-
eter W t

c,v and btc,v.
Temporal representation. 3FPREDICT model employs Gated Recurrent Neural Net-

works (GRU) to handle Gt, ∀t ∈ [1, h] in time series processing, preserving essential infor-
mation while selectively discarding less important details. GRU consists of two gates: the
reset gate and the update gate. The update gate helps the model determine how much
information should be transferred. In contrast, the reset gate primarily decides how much
past information should be discarded. GRU is formulated as follows

zt = σ(W t
zx

t + U t
zh

t−1), (9)

rt = σ(W t
rx

t + U t
rh

t−1), (10)

h̃t = Tanh(Whx
t + Uh(r

t ⊙ ht−1), (11)

ht = (1− zt)⊙ h̃t + zt ⊙ ht−1, (12)
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where zt is the update gate and rt is the output gate, xt is the input vector at time step t
and ht−1 is the vector of the time step t − 1. W t

z ,U
t
z,W

t
r ,U

t
r and W t

h,U
t
h is trainable weight

matrices. h̃t is store past information using the reset gate, and ht is the final result. To
shorten, we can denote GRU as follows

ht = GRU(xt, ht−1). (13)

Spatio-temporal representation. In spatio-temporal representation. GRU updates
the Graph Self-attention weight matrix for layer l at time step t as follows

W t = GRU(ht,W t−1), (14)

where ht denotes the node embedding updated at time step t and W t−1 is the weight matrix
in time step t− 1. The result weight matrix is then used to calculate the embedding of the
next layer node as follows

Ht+1 = GSA(At, Ht,W t), (15)

where At is the adjacency matrix of Gt.
Output layer. We utilize a Multi-layer Perceptron (MLP) to predict the number of

HIV infections in the upcoming months. The input to the MLP is represented by the
matrix H ∈ Rn×m, which contains information from n nodes in the infection graph at the
prediction time, with m dimensions conveying the information. The output prediction is a
vector o ∈ Rn×1, which contains the predicted information for n nodes corresponding to n
forecast regions.

4. EXPRIMENTAL RESULTS

We test the proposed model using a real HIV epidemic dataset and compare it with
existing deep learning and spatio-temporal models previously examined in the same dataset.

4.1. Dataset and evaluation metrics

Dataset. We use the HIV case surveillance data set from Ho Chi Minh City, Viet Nam.
The dataset contains aggregated data on HIV infection status in 23 districts from January
2009 to December 2019 (144 months). Each month, data are collected in each district and
include the following features:

1. Number of positive cases in a month.
2. Age groups for positive cases (¡5, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34,35-39,40-44,45-

49, ¿ 50).
3. Career groups of positive cases (service business staff susceptible to exploitation, such

as drivers, fishermen, agricultural workers, soldiers, public employees, students, children,
freelance workers, unemployed, and prisoners).

4. Gender groups of positive cases (male, female).
5. Risk population groups of positive cases (injecting drug users, female sex workers,

pregnant women, blood donors, tuberculosis patients, people with sexually transmitted in-
fections, youth undergoing military service examination, men who have sex with men, het-
erosexual individuals, prisoners, spouses/partners of injecting drug users, spouses/partners
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of people living with HIV).
6. Transmission route groups of positive cases (via injection, homosexual transmission,

heterosexual sexual transmission, from mother to child).
Graph Construction. We create monthly infection graphs for each district. In these

graphs, districts are represented as nodes, and the node characteristics include the number
of infections, age groups, occupation groups, gender groups, risk population groups, and
transmission route groups of positive cases for each month. Unlike the COVID-19 pandemic,
which can surge in a few days, HIV epidemic features involve a slower detection of infections
compared to COVID-19. Thus, the infection graphs are constructed monthly instead of daily
to accurately reflect the features of the HIV epidemic and forecast the number of infections
for the next month in each district. If two districts are adjacent, there is an edge between
their corresponding nodes. The edge weights are calculated based on the distance between
the HIV testing centers of the two districts.

Baselines. In our study, we are comparing a new model with traditional time series
forecasting methods such as LSTM [21, 25], CNN [28], and previous spatio-temporal graph
forecasting models. As there is very limited research on the use of spatio-temporal graph
models for HIV epidemics, we decided to implement previously used COVID-19 epidemic
forecasting models, including MPNN-LSTM [8] and GCN-LSTM [34], on the same HIV epi-
demic dataset.

Evaluation metrics. We apply the mean square error (MSE) and the coefficient of
determination (R2) to measure the performance of all models.

1. MSE is used to evaluate the similarity between actual and predicted values. A lower
MSE indicates a better model. MSE is formulated as MSE = 1

n

∑n
i=1(ŷi − yi)

2 where yi is
the ground truth and ŷi is the predicted value.

2. R2 indicates the extent to which the model’s independent variables explain the variance
of the dependent variable. The R2 value ranges from 0 to 1, with a value close to 0 indi-
cating that the model explains the variance of the dependent variable poorly. A model with

a higher R2 value is generally considered better. R2 is formulated as R2 = 1 −
∑n

i=1(ŷ−yi)
2∑n

i=1(ȳ−yi)2

where yi is the ground truth and ȳ is the mean value of grouth truth yi.

4.2. Results

The 3FPREDICT model predicts the number of HIV-positive cases in 23 districts in Ho
Chi Minh City. It achieved an MSE validation score of 29.25 and an R2 validation score of
0.43; detailed results are presented in Table 1. The MSE indicator of 29.25 for the proposed
3FPREDICT model is lower than the MPNN-LSTM (35.11), GCN-LSTM (38.10), LSTM
(48.51), and CNN (46.27) models. This suggests that the 3FPREDICT model is the best
choice for forecasting HIV cases in Ho Chi Minh City among the models compared. The
MSE indicates that the error between the predicted and actual values of 3FPREDICT is the
smallest.

Table 1: Comparison of MSE and R2 on Ho Chi Minh City HIV Dataset

3FPRE MPNNLSTM GCNLSTM LSTM CNN

MSE 29.25 35.11 38.10 48.51 46.27

R2 0.43 0.24 0.18 -0.04 0.003
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Figure 3: GSA-GRU MSE validation scores

Figure 4: MPNN-LSTM MSE validation scores

The R2 indicator of 0.43 for 3FPREDICT is the highest compared to the MPNN-LSTM
(0.24), GCN-LSTM (0.17), LSTM (-0.04), and CNN (0.003) models. This indicates that
based on the city’s dataset, the 3FPREDICT model is the most suitable for making short-
term predictions of HIV-positive cases in Ho Chi Minh City.

We have two charts to assess and compare the performance of the 3DPREDICT model
and the MPNN-LSTM model based on their loss values during training and testing. Figure
3 displays the loss values of the 3DPREDICT model, while Figure 4 shows the loss values of
the MPNN-LSTM model. The mean squared error (MSE) values and the total loss values in
the 3FPREDICT model are observed to decrease during the training process, indicating that
the model is learning and improving its prediction accuracy with each step. After about 20
steps, the MSE and total loss values stabilize and fluctuate between 20 to 30. This stability
contrasts with the MPNN-LSTM model, which fluctuates between 20 and 50. The stabiliza-
tion at this point indicates that the model has learned the main features of the data and has
reached a certain level of convergence. The smaller difference between the MSE values and
the training loss values, compared to the MPNN-LSTM model, suggests that the model is
not overfitting as much.

Figures 5 and 6 compare the R2 values of the 3FPREDICT model and the MPNN-LSTM
model during validation. Figure 5 presents the R2 values of the Graph Self-attention GRU
model, while Figure 6 demonstrates the R2 values of the MPNN-LSTM model. This com-
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Figure 5: GSA-GRU R2 validation scores

Figure 6: MPNN-LSTM R2 validation scores

parison allows us to assess the suitability of each model for the actual data. The Graph
Self-attention GRU model exhibits a steady increase in R2 values, reaching a higher level.
In contrast, the MPNN-LSTM model displays more fluctuations and does not achieve as
high R2 values as the Graph Self-attention GRU model. This suggests that the graph self-
attention - GRU model possesses better predictive and explanatory power for the data.

5. CONCLUSION

In this study, we propose an HIV disease prediction model called 3FPREDICT, where 3F
denotes 03 spatial, temporal, and HIV epidemiological factors. The model combines graph
self-attention for processing infection graphs by region at each time point and a GRU for
handling the time series data. It is used for short-term prediction in Ho Chi Minh City,
Vietnam.

In 3FPREDICT, at each time step in the time series, a location infection graph is created,
connecting neighboring districts. In this graph, the nodes represent the districts and their
features include various epidemiological factors such as age groups, career groups, gender
groups, risk population groups, and transmission routes groups. The edges of the graph con-
nect neighboring regions. They are weighted according to the distance between HIV testing
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centers in each district, where tests are performed and positive case detection occurs. To
aggregate node information at each time step, we utilize Graph Self-attention, allowing the
synthesis of information across the entire graph for each node representing a district in the
city using a self-attention mechanism. For temporal processing, we used a GRU. The inputs
are the weight matrices of the graph after passing through the self-attention layer, and the
outputs are the weight matrices of the subsequent GNN layer. We analyzed real HIV infec-
tion data in 23 districts and communes in Ho Chi Minh City from January 2009 to December
2019, which produced more accurate results than previously utilized spatio-temporal disease
prediction models.

The use of spatio-temporal graph models for HIV forecasting represents a new approach
in this field. This research provides useful information on the potential of advanced machine
learning techniques in predicting epidemics. It emphasizes integrating spatial, temporal, and
epidemiological factors in the data to improve prediction accuracy.
‘ Our study has some limitations. The model was trained and tested using a specific HIV
epidemic dataset from Ho Chi Minh City, Viet Nam. This may restrict the generalizability
of the results for HIV epidemic forecasting in other regions and limit the model’s application
to other infectious diseases. Improving the model’s performance in the context of the HIV
epidemic could benefit from integrating more diverse datasets within HIV. This could involve
incorporating treatment data, such as treatment participation rates or the rates of treated
cases with viral load test results below the threshold. Although we have enhanced graph
learning with Graph Self-attention, our model has not improved in handling time-series data,
as we relied on the basic GRU algorithm.

The next steps of our research should focus on overcoming these limitations. This can be
achieved by testing our models using different HIV datasets and diseases and refining them
to improve their reliability and accuracy. It would also be beneficial to investigate further
how additional treatment data, such as the rates of treated cases with viral load test results
below a certain threshold, can offer more comprehensive insights into the dynamics of the
HIV epidemic. Additionally, we should consider expanding the GRU architecture with an
attention-GRU, as this could enhance accuracy and provide insights into the variation coef-
ficient across all regions at different times compared to other data points in the prediction
sequence.

In conclusion, our study shows that combining spatio-temporal graph models with epi-
demiological factors can improve the accuracy and effectiveness of HIV forecasting, leading to
more effective public health responses. We believe this research can pave the way for future
studies and applications of this model in combatting HIV and other infectious diseases.
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