
Journal of Computer Science and Cybernetics, V.40, N.4 (2024), 381–395

DOI no. 10.15625/1813-9663/21174

ON THE RELATIONAL DEPENDENCY COALITIONAL GAMES

VU DUC NGHIA1,∗, JANOS DEMETROVICS2, TRAN THANH DAI3, VU DUC THI4

1National University, University of Economics and Business,
144 Xuan Thuy Street, Cau Giay District, Ha Noi, Viet Nam

2Computer and Automation Research Institute,
1111 Budapest, Lágymányosi u. 11, Hungarian
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Abstract. Cooperating game theory is becoming increasingly popular in AI, data science, and

game theory applications in sharing and circular economy. Social media shows us the impact of many

influencers on millions (even hundreds of millions) of followers, which raised the need to have a new

model of coalition game, in which the influence or dependence of players on others are not equal,

some have more than others. In this paper, we introduce a relational dependency game with new

properties of minimal winning coalitions and maximal losing coalitions and their in-depth relationship

with different approaches from simple games. In this new model, unlike simple games, all winning

coalitions have the same payoff but losing coalitions have different payoffs, which coincides with Leo

Tolstoy’s philosophy: all happy families are alike, but each unhappy family is unhappy in its way.

The algorithm to find a minimal winning coalition among maximal losing coalitions is addressed in

this paper. In this new model, unlike a simple game, we present the relational dependency coalition

game model in which players depend on or do not depend on one another when they share a common

interest in achieving a specific goal or outcome. The players must find a minimal winning coalition

on which all players of the game depend on achieving the highest payoff. Closure operations and

choice functions arise naturally in this game when there is a one-to-one correspondence between the

winning coalition/losing coalition and the closure operation/choice function. And the game becomes

more complex when relational independence lives with dependency among players. How to have a

structural representation of relational independence along with dependency and how to describe a

minimal winning collation on a simple hypergraph is also addressed in the paper.

Keywords. Relational dependency coalitional games, minimal winning coalition, maximal losing

coalition, closure transversal, choice transversal, anti-transversal, economics.

1. INTRODUCTION

With increased competition over natural resources and environmental amenities, decision-
makers face strategic decisions in various management and use aspects. Since founded in 1944
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by John von Neumann and Morgenstein [1], coalitional games had ups and downs in research
interests. John Nash in 1953 argued that solutions to cooperative games should always
be verified by showing that they are also solutions to formally equivalent noncooperative
games [2]. One way of interpreting this was as demonstrating the ultimate redundancy of
cooperative game theory. Since then, cooperative game theory or coalitional games has been
understudied for long. However, not all things are for sale or competition, just as universities
don’t auction off admission places to the highest bidder in general, and transplant organs
are not for sale legally. The coalitional game models become so important in our society,
and they demonstrably have improved efficiency and saved lives.

Coalition formation, which has been widely studied and researched in game theory and
economics in [3], now attracts much more attention in AI and data science as a means of
forming coalitions of autonomous selfish players that need to work together to perform cer-
tain jobs in [4] and [5]. Game theory with coalitional games becomes a very powerful means
to study some novel concepts like the sharing economy as a new wave of integration of
economy and technology in research. Game theory continues to be one of the 20th-century
inventions that are driving social revolutions in the 21st, as Larry Samuelson in 2016 [6]
predicts a coming surge of renewed interest in the deeper mathematics of cooperative games.
Following that trend of deeper mathematics of coalitional games, our introduction of the
Relational Dependency Coalitional Game (RDCG) model is a marriage between a relational
database model with coalitional games built based on relational dependencies among players.
No work before us merges coalitional games with the idea of functional dependencies in the
relational database model proposed by E. F. Codd. The major benefit of putting relational
dependencies into a coalition game is its inheritance of a massive knowledge of relational
models with powerful combinatorics tools like keys/anti-keys as well as hypergraph tools like
transversal/anti-transversal, and graph theory of strongly connected/Hamiltonian graph,
which in turn could help us more powerful quantifying tools to find new properties under
both certain and uncertain conditions as well as in the world of complete and incomplete
information. Also, by using relational dependencies we could easily apply Pawlak’s rough
set on decision table [7] that each player faces when forming coalitions under uncertainty.
By integrating coalition games with a relational database model, we introduce relational de-
pendencies into cooperative games, which have yielded results that could help us understand
deeper the value of relational dependencies, founded by E. F. Codd, applied in coalition
games.

Cooperative games, with grand coalition, coalition structure containing disjoint coali-
tions, and overlapping coalitions. The relational dependency (RD) coalition model could
be used as an underlying model with the capability to describe all three kinds of coali-
tion above. Besides that, to reduce the algorithm complexity, using data along with upper
and lower boundary are two major ways. Introducing relational dependencies into coalition
games is a direct way of reducing algorithm complexity, and by investigating properties of
minimal winning and maximal losing coalitions, we could add more upper and lower bound-
ary properties to support further. In this study, we keep deterministic assumptions in the
world of complete information:

- First, it assumes that the payoff to each coalition is given by a fixed and deterministic
value.

- Secondly, it assumes that these values are common knowledge among all agents.
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However, in future papers, we will replace those two assumptions by: Each player has
private information that other players don’t know, which leads to uncertainty of the payoff
to each coalition, which in turn leads to payoff uncertainty for each player depends on
the honesty of other players. The type of each person is the network of relations or the
number of relational dependencies of other players on that person. Thus, agent type is
a key factor determining the quality of a potential coalition. The higher the number of
relational dependencies the player has, the more contribution he could make to the coalition,
which in turn decreases the number of players needed to form a minimal winning coalition.
In a incomplete information world, that type of the private information is only known to
that player and is unknown to all others. This could lead to many new results in studying
coalitional games in uncertainty.

In this paper, we focus our studies on the concept and properties of minimal winning
coalitions based on the concept and properties of minimal keys. Similarly, we study the
concept and properties of maximal losing coalitions is based on the concept and properties of
maximal losing coalitions. Based on our massive knowledge of the relational database model,
we inherit the algorithm for finding a minimal winning coalition. Also, linking with the
hypergraphs, we introduced a new concept of anti-transversal and other properties besides
describing a minimal winning coalition on a hypergraph.

2. PRELIMINARIES

This section presents some major concepts related to closure operations/choice functions
and maximal losing coalition/minimal winning coalition in the relational dependency coali-
tion game model, see [8–11] for details. First, we define our relational dependency game as
follows:

Let U = {a1, ..., an} be a nonempty finite set of n players. A relational dependency (RD)
is a statement of the form A → B, where A,B ⊆ U , means B depends on A. For example,
a group of doctors B depends on doctor {ai} due to his superior expertise and acting as a
teacher to group B. And if A ↛ B we say B has no relational dependence on A.

Given a family F of RDs over U , there exists a unique minimal f-family F+ that contains
F . It can be seen that F+ contains all RDs which can be derived from F by following axioms
based on Armstrong axioms:

(F0) X → X ∈ F : Group of doctors X depends on themselves.

(F1) If X → Y ∈ F and Y → Z ∈ F then X → Z ∈ F : If doctor group Y depends on group
X and doctor group Z depends on group Y , then doctor group Z depends on group
X.

(F2) If X → Y ∈ F and X ⊆ V , W ⊆ Y then V → W ∈ F : If doctor group Y depends on
group X and doctor group X ⊆ group V and doctor group W ⊆ group Y , then doctor
group W depends on group V .

(F3) If X → Y ∈ F and V → W then X ∪ V → Y ∪W ∈ F .

If doctor group Y depends on group X and doctor group W depends on group V , then
doctor group Y ∪W depends on group X ∪ V .

A family of RDs satisfying Armstrong’s axioms is called an f-family over U .
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Definition 1. Let n ≥ 2 as the number of players in a game, U = {a1, ...an} be a nonempty
finite set of n players. A coalition, s is defined as a subset of U , and the P (U) is the set of
all coalitions. We take an empty set as a coalition too and call it an empty coalition. The
game with all players of U is called a grand coalition.

Examples. If n = 2, which means there are two players then P (U) = {∅, {a1}, {a2}, U}.
If n = 3, then all subsets of U are 2|U | = 23 = 8 we have the set of all coalitions as
follows: P (U) = {∅, {a1}, {a2}, {a3}, {a1, a2}, {a2, a3}, {a3, a1}, U}. For n players, we have
P (U) = 2n.

Definition 2. Coalition form and characteristics functions: A coalition schema S = ⟨U,F, v⟩
(and a coalition game r = ⟨G,F, v⟩ with G ⊆ U) is defined as follows F is a set of RDs over
U , and a real-valued characteristic function v: P (U) → R (and v:P (G) → R for r) from the
set of all possible coalitions of players of U (and G respectively) to a set of payments that
satisfies v(∅) = 0. The quantitative v(A) is a real number for each coalition A ⊂ U , which
may be considered as the value (or worth, or power) of coalition A when its members work
together as a team.

Definition 3. Define wk, a coalition of k players in a game schema S over U , as a winning
coalition if all players of U have relational dependencies on k, which implies v(wk) = v(U).
That means all winning coalitions have the same payoffs as a grand coalition of all play-
ers. That definition of winning coalitions has a deeper connection with closure operation,
explained further below in this section. A losing coalition lk is a coalition when all players
of U do not have relational dependencies on k.

The definitions above align with Leo Tolstoy’s philosophy in his famous Anna Karenina:
all happy families are the same, but each unhappy family is unhappy in its way.

Denote A+ = {a|A → {a} ∈ F+}. A+ is called the closure of A over U . It is clear that
A → B ∈ F+ if and only if B ⊆ A+. Clearly, if coalition schema S = ⟨U,F, v⟩, then there is
a game r over U such that Fr = F+. Let U be a nonempty finite set of players and P (U)
its power set, containing all subsets of U . A map L : P (U) → P (U) is called a closure over
U if it satisfies the following conditions:

(1) A ⊆ L(A) (Extensiveness Property)

(2) A ⊆ B implies L(A) ⊆ L(B) (Monotonicity Property)

(3) LL((A)) = L(A) (Closure Property)

Set L(A) = {a|A → a ∈ F+}, we can see that L is a closure over U .

Lemma 1. If F is a f-family and if LF = {a|a ∈ UandA → {a} ∈ F}, then LF is a closure.
Inversely, if L is a closure, there exists only a f-family F over U such that L = LF and
F = {A → B|A,B ⊆ U,B ⊆ L(A)}.

There is a 1-1 correspondence between closures and f-families of relational dependencies
on U .

Definition 4. Let M ⊆ P (U). M is called a Sperner system over U if A,B ∈ M , then A is
not a subset of B.
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Definition 5. A map C : P (U) → P (U) is called a choice function, if every A ∈ P (U) then
C(A) ⊆ A.

Choice functions are widely studied in rational behaviors of individuals and groups in
social studies as well as economics. We could understand the choice function as follows: P (U)
is interpreted as a set of all alternatives, A as a set of alternatives given to the decision-maker
to choose the best, and C(A) as a choice of the best alternatives among A.

Choice functions have been also widely studied in connection with the theory of rational
behaviors of individuals and groups, see [9–11]. There were introduced some properties to
characterize the rational behavior of a decision-maker. The most important properties of
choice functions are the following (in [9–11]). For all X,Y ⊆ U we have:

- Heredity (H): if X ⊆ Y then C(Y ) ∩X ⊆ C(X).

- Concordance (C): C(X) ∩ C(Y ) ⊆ C(X ∩ Y ).

- Out casting (O): if C(X) ⊆ Y ⊆ X then C(X) = C(Y ).

- Monotonicity (M): if X ⊆ Y then C(X) ⊆ C(Y ).

Let L be a closure operation. Based on [12–15], we have the following results.

Definition 6. Define two choice functions associated with L as follows: For X ⊆ U
C(X) = U − L(U −X), denoted as Choice Function type-I (CF-I for short).
CL(X) = L(U −X) ∩X, denoted as Choice Function type-II (CF-II for short).
Note that both choice functions related to closure operations above are uniquely deter-

mined by the closure L, in fact, L(X) = X ∪ CL(U −X) and L(X) = U − C(U −X).
For every X ⊆ U the sets CL(X) and C(X) form a partition of X, that means CL(X) ∪

C(X) = X and CL(X) ∩ C(X) = ∅.

It is easy to see that CF-I satisfies the properties of (O) and (M) while CF-II satisfies
the properties of (He) and (O).

Based on the definition above, we could easily have:

Proposition 1. There is a 1-1 correspondence between CFs - I and closure operations
on U .

Proposition 2. There is a 1-1 correspondence between CFs - II and closure operations
on U .

Definition 7. Let L be a closure operation over U , and A ⊆ U and A is a winning coalition
of L if L(A) = U , that means U of all players have a relational dependence on A. And A is
a minimal winning coalition of L if A is a winning coalition, but L(B) ̸= U for any proper
subset B of A.

Based on closure operations and choice functions, we define the concept of minimal
winning coalition and maximal losing coalition as follows:

Denote K is the set of all minimal winning coalitions. It is known that K is the set of a
minimal winning coalition of any closure operation if and only if K is a nonempty Sperner
system, that means A,B ∈ K: A /∈ B.
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Proposition 3. A minimal winning coalition W is a special case of closure operation L over
U : W ⊆ L(W ) = U .

Definition 8. Let K be a Sperner system, we define the set of a maximal losing coalition
of K, denoted K−1 as follows

K−1 = {A ⊂ U : (B ∈ K) implying (B ⊈ A) and (A ⊂ C) implying (∃B ∈ K)(B ⊆ C)}.

It is easy to see that the maximal losing coalition K−1 of K are the subsets of U not
containing the elements of K and which are maximal for this property and K−1 is a Sperner
system too. We have the following.

Lemma 2. If W is a minimal winning coalition of a closure operation over U , then maximal
losing coalition W−1 contains a choice function CF-II.

Proof. Since for W ⊆ U , W is a minimal winning coalition of L if L(W ) = U and L(W ) =
U −C(U −W ) = U , that means CF-I C is the empty set in this case. In the other case, W
is a minimal winning coalition of L if L(W ) = U and L(W ) = W ∪ CL(U −W ) = U . ■

We could see that the maximal losing coalition, denoted as W−1 does not contain any
element of W so W−1 contains choice function CL(U−W ). Thus K−1 family contains choice
function CF-II. Thus, if |W | = 1 then CL(U −W ) is a maximal losing coalition. It is easy
to have the following results from Lemma 2.

Proposition 4. There is a 1-1 correspondence between minimal winning coalitions and
closure operations on U .

Proposition 5. There is a 1-1 correspondence between maximal losing coalitions and
CFs - II on U if |W | = 1.

Based on the properties of choice functions, we then have the following properties of a
maximal losing coalition W−1 if |W | = 1.

Proposition 6. If |W | = 1 then W−1 satisfy following:
- Out casting (O): If W−1(X) ⊆ Y ⊆ X then W−1(X) = W−1(Y ).
- Heredity (He): If X ⊆ Y then W−1(Y ) ∩X ⊆ W−1(X).

Proof. This result comes directly from the nature of maximal losing coalition, W−1(X) =
CL(X) = L(U −X)∩X and L(X) = X ∪CL(U −X) = U , thus, if |W | = 1 then W−1(X) =
CL(X) is a CF-II. Thus, properties of O and He holds. ■

The maximal losing coalition presented in this paper originally from the idea of anti-key
in relational databased proposed in [16], which plays an important role in understanding
deeper the relationship between closure operations and choice functions and between func-
tional dependencies and functional independencies, and is to understand the link between
consistency and inconsistency in decision tables [7]. Now we have the following results pre-
senting the relationship between maximal losing coalition and minimal winning coalition
directly comes from [16].

Proposition 7. For K = {W1, ...,Wt}, and K−1 = {W−1
1 , ...,W−1

m } over U , then

t⋃
i=1

Wi =

m⋃
j=1

(U −W−1
j ) = U −

m⋂
j=1

W−1
j .
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Based on all the results above, we have:

Proposition 8. Winning coalition and losing coalition have the following properties over U :
a) Any coalition containing a minimal winning coalition is winning. Thus, the relational

dependency game is monotonic.
b) The complement of a minimal winning coalition might contain other minimal winning

coalitions in case there are many disjoint minimal winning coalitions, so the complement of
a minimal winning coalition over U might be not a losing coalition.

c) The complement of a losing coalition might be not a winning coalition if the only
winning coalition is U .

d) The intersection of all winning coalitions is a veto set of some or one player, but that
set might not be a winning coalition.

Taylor and Zwicker, in 1999 [17], proposed a simple coalition by defining: a conventional
coalitional game as considered simple if payoffs are either 1 or 0, which means coalitions are
either “winning” or “losing” along with four axioms of monotonicity, properness, strongness,
and non-weakness in [17–19]:

a) A simple game W is monotonic if any coalition containing a winning coalition is also
winning.

b) A simple game W is proper if any winning coalition’s complement (opposition) is
losing.

c) A simple game W is strong if the complement of any losing coalition is winning.
d) A veto player (vetoer) in a simple game is a player that belongs to all winning coali-

tions. Supposing there is a veto player, any coalition not containing a veto player is losing.
A simple game W is weak if it has a veto player.

So, based on the concept of simple games above, we can see that:

Lemma 3. Predetermined relations of dependency among players make RD games find win-
ning coalitions easier than simple games do.

Without relational dependency among all players, like a relational dependency game, a
simple game could not measure the algorithm complexity as quickly as a relational depen-
dency coalition game. To illustrate that point, we go to an algorithm to find out how to find
minimal winning coalition and maximal losing coalition in a relational dependency game:

Let F be a closure operation over U . Set Z(F ) = {A ⊆ U : F (A) = A} and T (F ) =
{A ⊂ U : A ∈ Z(F ) and A ⊂ B implying F (B) = U}. The following results come directly
from [15,16,20].

Lemma 4. Let F be a closure operation over U , and KF is the set of minimal winning
coalitions of F . Then K−1

F = T (F ).

Now, we construct Algorithm 1 to find a minimal winning coalition from a set of maximal
losing coalitions.

Lemma 5. If H is a set of maximal losing collations, then {T (0), T (1), .....T (m)} are winning
coalitions, and T (m) is the minimal winning coalition.

The time complexity of this algorithm is O(n2|H|), where |U | = n and |H| = number of
elements of H. It is easy to have those results based on the above algorithm:
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Algorithm 1 Finding a minimal winning coalition based on a set of maximal losing coalitions

Input: Let r be a coalition game over U , and let H be a Sperner system and U /∈ H.
Define B = {b1, ..., bm} and B ∈ H and a ∈ U −B. And let G = {Bt ∈ H : a /∈ Bt}
Output: T (m) is a minimal winning coalition of r.
Define the recursive procedure (algorithm) as follows:
Step 1: T (0) := B ∪ a and for the q = 0, 1, ...,m− 1 define

Step (q + 1) : T (q + 1) =

{
T (q)− {bq+1} if ∀Bi ∈ H −G : {T (q)− bq+1} /∈ Bi

T (q) otherwise

Lemma 6. If T (0) = {b1, ..., bm} is an arbitrary winning coalition, then the following recur-
sive algorithm

T (q + 1) =

{
T (q)− {bq+1} if ∀Bi ∈ H −G : {T (q)− bq+1} /∈ Bi

T (q) otherwise.

Then T (m) is also a minimal winning coalition. Remark: It is best to choose B because
|B| is minimal.

Lemma 7. If there is a B such that ∀Bi ∈ H − {B} : Bi ∩ B = ∅ and a ∈
⋃

Bt∈H−{B}Bt,
then a ∪ b is a winning coalition ∀b ∈ B.

Lemma 8. If (U −
⋃

Bt∈H Bt) ̸= ∅ then a ∈ U −
⋃

Bt∈H Bt is a winning coalition ∀b ∈ B.

Remark 1. Let H be a Sperner system and U /∈ H and A ⊂ U . We can give an algorithm
analogous to the above one to decide whether A is a winning coalition. If A is a winning
coalition, then this algorithm finds A′ such that A′ ⊆ A and A′ is a minimal winning coalition.

Next, we construct Algorithm 2 for finding the set of maximal losing coalition of a given
Sperner system as follows:

Algorithm 2 Finding the set of maximal losing coalitions from a given Sperner-system

Input: Let an arbitrary Sperner-system V = {K1, ...,Km} over U be given.
Step 1: V1 = {U − {a} : a ∈ K1}. It is obvious that: V1 is losing coalition and V1 = {K1}−1

Step q + 1: Suppose we have constructed Vq = {K1, ...,Kq}−1 for q < m. We assume
that X1, ..., Xt are the elements of Vq containing Kq+1. So Vq = Fq ∪ {X1, ..., Xt}, where
Fq = {B ∈ Vq : Kq+1 ⊈ B}.
For all i, (i = 1, ..., tq) we construct a maximal losing coalition of {Kq+1} on Xi, in the
analogous way as V1, which are the maximal subsets of X not containing Kq+1. We denote
them by Bi

1, ..., B
i
ri(i = 1, .., t).

Let Vq+1 = Fq ∪ {Bi
p : B ∈ Fq → Bi

p ̸⊂ B, 1 ≤ i ≤ t, 1 ≤ p ≤ ri}.
Output: A set of maximal losing coalitions

Then we have following results come directly from [15].

Lemma 9. For every q (1 ≤ i ≤ m) : Vq = {K1, ...,Kq}−1. Let V0 = U , we have Vq =
Fq ∪ {X1, ..., Xt}, where 1 ≤ i ≤ m − 1. Denote by lq the number of elements of Vq. When
constructing Vq+1, the worst-case time is O(n2(lq − tq)tq) if tq < lq and O(n2tq) if lq = tq.

For the total time, we derive O
(
n2

∑m−1
q=0 tqµq

)
, where µq =

{
lq − tq if lq > tq
1 otherwise.
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3. RELATIONAL DEPENDENCY ON COALITIONAL GAME

A relational independency (IN) is a statement of the form A → B, where A,B ⊂ U .
The IN : A → B holds in a game of r = ⟨G,F, v⟩ over U if RD : A → B does not hold.
That means B is independent from A. We also say that r satisfies the IN A → B.

Let r be a game over U , and INr is the family of all IN that holds for r. A family RIN
of IN ’s is called complete if, for some game r, one has RIN = INr.

Let closure operation L(A) over r be defined as ∃B ⊆ U such that Lr(A) = A∪B for all
A ⊆ U.

Then we define LIN−RD(A) = A∪{a /∈ A : A → a ∈ INr} = A∪{a ∈ A : A → a /∈ RDr} .
Then it is easy to see that LIN−RD(A) is a closure operation, and we call it a hybrid closure
operation of RD and IN . And if A is a minimal winning coalition of a hybrid closure
operation, then A ⊆ LIN−RD(A) = U , that means maximal losing coalition K−1

IN of A does
not contain A, denoted as K−1

IN (U − A) = {a /∈ A : A → a ∈ INr}. We call such a maximal
losing coalition a maximal relational independence losing coalition (MILC). We have the
following results.

Lemma 10.

- Out casting (O): If K−1
IN (X) ⊆ Y ⊆ X then K−1

IN (X) = K−1
IN (Y ).

- Heredity (He): If X ⊆ Y then K−1
IN (Y ) ∩X ⊆ K−1

IN (X).

Proof. This result comes directly from the nature of MILC, which is not a winning coalition,
and it is a CF-II. Thus, properties of O and He holds. ■

4. MINIMAL WINNING COALTION IN RELATIONAL DEPENDENCY
COALITIONAL GAMES WITH HYPERGRAPHS

AND THEIR PROPERTIES

Hypergraphs are a handy mathematical tool for solving complex combinatorial problems.
Thus, describing a relational dependency coalitional game in a hypergraph is useful. The
relational dependency game schema can be considered as a set of players and a set of relations
on those players, which can easily be converted into a hypergraph model where the set of
vertices in the hypergraph present a correspondence to the set of players in the game schema,
while each hyperedge corresponding to a set of players included in a relation in the game
schema. Then, we must focus on the main parts of the relational dependency game schema,
like closure operations, choice functions, minimal winning coalition, and maximal losing
coalition, and represent them on the hypergraph.

4.1. Hypergraphs and transversals

First, some basic definition is needed here, and for more detail in [21]. Let U be a
nonempty finite set and put P (U) as the family of all subsets of U (another name for its
power set). And the family H = {Ei : Ei ∈ P (U), i = 1, ...,m} is called a hypergraph over
U if Ei is nonempty holds for all i.

A hypergraph H is simple if Ei ⊆ Ej implies i = j. A simple hypergraph is a Sperner
hypergraph.



390 VU DUC NGHIA et al.

The elements of U are called vertices, and the sets E1, ..., Em are the hyperedges of the
hypergraph H. A graph is a special case of a hypergraph, with |Ei| = 2.

A transversal (or “hitting set”) of a hypergraph H is a set T ⊆ U having a nonempty
intersection with every edge, that means if and only if E ∈ H implies T ∩ E is nonempty.

Transversal T is called minimal if no proper subset of T is a transversal.

The family of all minimal transversals of H (or all minimal keys over U) is called the
transversal hypergraph of H, denoted as Tr(H). Clearly, Tr(H) is a simple hypergraph.

4.2. Properties of simple hypergraph and minimal transversals

Claude Berge in [21] determines the following 5 properties of a hypergraph and minimal
transversal: Let H and H ′ be two simple hypergraphs,

1) H ′ = Tr(H) if and only if H = Tr(H ′).

2) Tr(Tr(H)) = H.

3) Tr(H) = Tr(H ′) if and only if H = H ′.

And also,

4) If H ⊈ H ′ iff every edge of H is also an edge of H ′.

5) If H ⊆ H ′ and H ′ ⊆ H then H = H ′.

And a simple graph H is intersecting iff H ⊆ Tr(H). Thus, we call a simple hypergraph
H non-intersecting iff Tr(H) ⊆ H.

Examples of intersecting hypergraphs are mentioned above. In other words, a simple
hypergraph H is called intersecting if every two hyperedges in E have a vertex in common.

Let H be an intersecting hypergraph over U , and we define that a minimal transversal
of H be a closure traversal (L Tr) of H if and only if it satisfies the following conditions:

(1) Extensivity (Ex): H ⊆ L Tr(H).

(2) Monotonicity (M): H ⊆ H ′ implies L Tr(H) ⊆ L Tr(H ′).

(3) Idempotency (I): L Tr(L Tr((H)) = L Tr(H).

Thus, a simple intersecting hypergraph H always has its transversal Tr(H) satisfying
conditions (1) and (2), but condition (3) is not necessarily satisfied.

As properties of transversal such that Tr(Tr(H)) = H is well-set, so in order to uphold
condition (3), which is Tr(Tr(H)) = Tr(H), then Tr(H) = H.

Let denote X(H) as the chromatic number of H, the minimal number of colors necessary
to color the vertices of H such that no edge of cardinality > 1 is monochromatic.

By that, we have the following results:

Lemma 11. A simple hypergraph H without loops has its transversals as closure transversals,
satisfying all three properties (Ex, M, I) if and only if X(H) > 2 and H intersect.

Proof. This lemma could be proved by the following results in [21]: A simple hypergraph H
without loops satisfies X(H) > 2 iff Tr(H) ⊆ H and a simple hypergraph H without loops
satisfies H = Tr(H) iff X(H) > 2 and H is intersecting. ■

We denote a simple intersecting hypergraph H satisfying closure transversal as a simple
closure intersecting hypergraph HL. Let’s investigate the relationship between choice func-
tion and non-intersecting hypergraph. Let H be a non-intersecting hypergraph over U , and
we define that a minimal transversal of H be a choice traversal (C Tr) of H if and only if it
satisfies the following conditions if every H ∈ P (U) then C Tr(H) ∈ H. Choice functions
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are widely studied in social studies and economics, as well as rational behaviors of individ-
uals and groups. We could understand the choice function as follows: P (U) is interpreted
as a set of all alternatives, H as a set of other options given to the decision-maker to choose
the best, and C Tr(H) as a choice of the best alternatives among H. Since the definitions
above, we call a simple hypergraph H non-intersecting iff Tr(H) ⊆ H, then we have the
following results.

Lemma 12. All transversals of simple hypergraph H become choice traversals if and only if
H is non-intersecting.

Choice functions have also been widely studied in connection with the theory of rational
behaviors of individuals and groups, see [9–11]. Thus, by Lemma 13, we could link the
rational behaviors of individuals and groups with studying traversals of non-intersecting
hypergraphs. Based on those properties of choice functions discussed above, we could have
the following results:

Lemma 13. - Heredity (He): If H ⊆ H ′ then Tr(H ′) ∩H ⊆ Tr(H).

- Concordance (C): Tr(H) ∩ Tr(H ′) ⊆ Tr(H ∩H ′).

- Out casting (O): If Tr(H) ⊆ H ′ ⊆ H then Tr(H) = Tr(H ′).

- Monotonicity (M): If H ⊆ H ′ then Tr(H) ⊆ Tr(H ′).

Let L be a closure operation. Define two choice functions associated with L as follows:

CL(X) = L(U −X) ∩X, (1)

C(X) = U − L(U −X), X ⊆ U. (2)

Note that both choice functions related to closure operations above are uniquely deter-
mined by the closure L; in fact, L(X) = X ∪ CL(U −X) and L(X) = U − C(U −X).

For every X ⊆ U , the sets CL(X) and C(X) form a partition of X, which means CL(X)∪
C(X) = X and CL(X) ∩ C(X) = ∅.

Based on that, we could have the following results.

Lemma 14. Let H be a simple non-intersecting hypergraph over U , and if L(H) : P (U) →
P (U), is defined as follows L(H) = H ∪ TrL(U −H) and L(H) = U − Tr(U −H). Then,
two Ls defined above are closure operations of H, and TrL(U −H) and Tr(U −H) form a
partition over (U −H).

Thus, from Lemma 15, we have the following lemmas.

Lemma 15. The mapping L → TrL establishes a one-to-one correspondence between a
simple non-intersecting hypergraph’s closure operations and traversals.

Lemma 16. The mapping L → Tr establishes a one-to-one correspondence between a simple
non-intersecting hypergraph’s closure operations and traversals. Such mapping is injective.

Proof. Because for two distinct closures L1 and L2 with L1(X) ̸= L2(X), we will have
TrL1(U −X) ̸= TrL2(U −X). Thus, the mapping must be injective. ■



392 VU DUC NGHIA et al.

Lemma 17. Let HL be a simple closure intersecting hypergraph over U , and if two followings
are defined as follows: CL(HL) = L Tr(U − HL) ∩ HL, and C(HL) = U − L Tr(U −
HL), HL ⊆ U . Then CL(HL) and C(HL) defined as above are two choice functions of HL and
they form a partition of HL, which means CL(HL)∪C(HL) = HL and CL(HL)∩C(HL) = ∅.

Then, two Cs defined above are choice functions of HL, and CL(HL) and C(HL) form a
partition over HL.

Lemma 18. The mapping CL → L Tr establishes a one-to-one correspondence between
choice functions and closure traversals of a simple closure intersecting hypergraph.

Lemma 19. The mapping C → L Tr establishes a one-to-one correspondence between choice
functions and closure traversals of a simple closure intersecting hypergraph.

4.3. Anti-transversals of simple closure intersecting hypergraph transversals.

The relationship between closure operations with minimal keys (as minimal winning coali-
tions in RD coalitional game) and choice functions with maximal anti-keys (maximal losing
coalitions in RD coalitional game) leads us to discover the relationship between intersecting
hypergraph with closure operations and non-intersecting hypergraph with choice functions.
Now, we investigate the relationship between transversals and anti-transversals in a simple
closure intersecting hypergraph.

Let L be a closure operation over U , and A ⊆ U , and A is a key of L if L(A) = U . And
A is a minimal key of L if A is a key, but L(B) ̸= U for any proper subset B of A. There
fore we can see that a minimal key is a special case of closure operation A ⊆ L(A) = U .

Denote K is the set of the minimal keys. It is known that K is the set of minimal keys of
any closure operation if and only if K is a nonempty Sperner system, which means A,B /∈ K:
A ⊈ B.

As we already know in [22], K is a set of minimal transversals, Tr(H), of a simple closure
intersecting hypergraph H. And Tr(H) is a simple hypergraph too.

We define the set of anti-transversals of Tr(H), denoted Tr−1 as follows

Tr−1 = {A ⊂ U : (B ∈ Tr(H)) implying (B ⊈ A)

and (A ⊂ C) implying (∃B ∈ Tr(H))(B ⊆ C)}.

It is easy to see that the anti-transversal Tr−1 of Tr(H) are the subsets of U not con-
taining the elements of Tr(H) and which are maximal for this property and Tr−1 is a simple
hypergraph too. Then we have the following.

Lemma 20. A simple closure intersecting hypergraph HL has anti-transversal Tr−1, which
contains CF-II.

Proof. By definitions and results in the above sections, a simple closure intersecting hyper-
graph has its transversals as closure transversals and anti-transversal Tr−1 does not contain
any element of transversal so Tr−1 contains CF-II. ■

Based on the properties of choice functions CF-II, we then have the following properties
of a set of the maximal anti-transversal Tr−1.
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Lemma 21. If |Tr| = 1 then Tr−1 satisfy:
- Out casting (O): If Tr−1(X) ⊆ Y ⊆ X then Tr−1(X) = Tr−1(Y ).
- Heredity (H): If X ⊆ Y then Tr−1(Y ) ∩X ⊆ Tr−1(X).

Proof . This result comes directly from the nature of anti-transversals in a simple closure
intersecting hypergraph. Thus, properties of O and He holds. ■

Similarly, we have the following result.

Lemma 22. Let Tr(H) be families of minimal transversals of a simple closure intersecting
hypergraph over U , then

⋃
Tr(H) = U −

⋂
Tr−1.

4.4. Describing a minimal winning coalition on hypergraph

As in Sections 2 and 3, let U = {a1, ...an} be a nonempty finite set of n players. From [22],
we could have Algorithm 3 and Algorithm 4 as follows.

Algorithm 3 Find a minimal transversal of H

Input: Let H be a hypergraph over U , and let P = {p1, ..., pk} be a transversal of H, and
define the recursive procedure (algorithm) as follows.
Step 1: T (0) := P and for the q = 0, 1, ..., k − 1 define

Step q + 1 : T (q + 1) =

{
T (q)− {lq+1} if ∀Ei ∈ H : {T (q)− lq+1} ∩ Ei ̸= ∅
T (q) otherwise

Output: T (k) is minimal transversal of H

Now, the following proposition can be checked easily.

Proposition 9. The sets T (1), T (2), ..., T (k) are transversal of H, and T(k) is a minimal
transversal of H.

The time complexity of this algorithm is O(n2|H|), where |H| = n. The next algorithm
finds the family of all minimal transversals of a given hypergraph.

Algorithm 4 Finding the family of all minimal transversals of a given hypergraph

Input: Let H = E1, ..., Em be a hypergraph over U . For every q = 1, ...,m we will construct
tr({E1, ..., Em}) by induction.
Step 1: L1 := {{a} : a ∈ E1}. It is obvious that L1 = tr(E1)
By the inductive hypothesis, we constructed Lq = tr(E1, ...Eq) for q < m.
Step q: Lq = Sq ∪ {B1, ..., Btq}, where Bi ∩ Eq+1 ̸= ∅, ı = 1, ..., tq and Sq = A ∈ Lq :
A ∩ Eq+1 ̸= ∅.
For each i (i = 1, .., tq) construct the set {Bi ∪ b : b ∈ Eq+1}
Denote them by Ai

1, .., A
i
ri (i = 1, .., tq). Let Lq+1 = Sq ∪ {Ai

p : A ∈ Sq ⇒ A ̸⊂ Ai
p, 1 ≤ i ≤

tq, 1 ≤ p ≤ ri}.
Output: Lm = tr ({E1, ...Em})

Now, the following lemma can be rechecked easily.

Lemma 23. For every q (1 ≤ q ≤ m), Lq = tr({E1, ...Eq}), which means Lm = tr(H), S =
⟨U,F, v⟩ be a coalitional game schema, and r a game over U . For every a ∈ U , set I(A) =
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{a ∈ U : A → {a} /∈ F+}. Then, I(A) is called an independent set of S. For r, put
I(A) = {a ∈ U : A → {a} ∈ Fr}.

Denote IS , the family of all independent sets of s. Set m(S) = {B ∈ ISB ̸= ∅,∃C ∈ IS :
C ⊂ B}, m(s) is called the family of all minimal independent sets of S. It can be seen that
A is a winning coalition if and only if I(A) = ∅.

Lemma 24. Let S = ⟨U,F, v⟩ be a game schema over U . Then Tr(KS) = m(S). Clearly,
m(S) is a simple hypergraph over U , Tr(KS) = m(S) = H. That means if R is a coalitional
game schema and H is a simple hypergraph over U , we say that R represents H if Tr(KS) =
H, which means KS = Tr(H).

Based on the results in Section 2 and Subsection 4.2, the following results could be easily
checked.

Lemma 25. A simple hypergraph H describing a relational dependency coalitional game r
over U has the following properties:

1) If r contains no independencies (consistency secured), then the closure operation of
transversals of H representing gamer is a one-to-one correspondence with choice function
CF-I, and H is a simple non-intersecting hypergraph.

2) If r contains both dependencies and independencies (inconsistency occurs), then the closure
operation of transversals of H representing r is a hybrid closure one, and H is a simple non-
intersecting hypergraph.

5. CONCLUSION

The core is the most attractive and natural way to define stability in coalitional games.
When payoff distribution is in the core, no player is incentivized to join a different coali-
tion. This is like the Nash equilibrium of non-cooperative games. Such core of relational
dependency coalitional games in the world of complete and incomplete information shall be
addressed: disjoint coalitions and overlapping coalitions in the world of complete informa-
tion; Bayesian relational dependency coalitional games integrated with Pawlak’s rough sets
in the world of incomplete information or under uncertainty.

Shapley values applied in relational dependency coalitional games and adding “weights”
on each relational dependency give us more valuable relationships between minimal winning
and maximal losing coalitions along with upper and lower bound properties and algorithms.

REFERENCES

[1] J. von Neumann and O. Morgenstern, The Theory of Games and Economic Behavior. Princeton
University Press, 1994.

[2] J. Nash, “Two-person cooperative games,” Econometrica, vol. 21, pp. 128–140, 1953.

[3] R. Myerson, Game Theory: Analysis of Conflict. Harvard University Press, 1991.

[4] E. Manisterski, D. Sarne, and S. Kraus, “Cooperative search with concurrent interactions,”
Journal of Artificial Intelligence Research, vol. 32, pp. 1–36, 2008.



ON THE RELATIONAL DEPENDENCY COALITIONAL GAMES 395

[5] T. Rahwan, S. D. Ramchurn, N. R. Jennings, and A. Giovannucci, “An anytime algorithm for
optimal coalition structure generation,” JAIR, vol. 34, pp. 521–567, 2009.

[6] L. Samuelson, “Game theory in economics and beyond,” Journal of Economic Perspectives,
vol. 30, pp. 107–130, 2016.

[7] D. T. Khanh, V. D. Thi, N. L. Giang, and L. H. Son, “Some problem related to reducts of
consistent incomplete decision tables,” International Journal of Mathematical Engineering and
Management Sciences, vol. 7, pp. 288–298, 2022.

[8] W. W. Armstrong, “Dependency structure of database relationship,” Information Processing,
vol. 74, pp. 580–583, 1974.

[9] H. Moulin, Choice functions over a finite set: a summary. IMA Preprints series. University of
Minnesota, 1984.

[10] M. A. Aizermann, “New problems in the general choice theory,” Social Choice and Welfare,
vol. 2, pp. 235–282, 1985.

[11] M. A. Aizerman and A. V. Malishevski, “General theory of best variants choice: Some aspects,”
IEEE Transactions on Automatic Control, vol. 26, pp. 1030–1041, 1981.

[12] J. Demetrovics, G. Hencsey, L. Libkin, and I. Muchnik, “On the interaction between closure
operations and choice functions with applications to relational databases,” Acta Cybernetica,
vol. 10, pp. 129–139, 1992.

[13] V. D. Nghia and B. Ramamurthy, “Properties of composite of closure operations and choice
functions,” Acta Cybernetica, vol. 15, pp. 127–142, 2002.

[14] V. D. Nghia, “Relationships between closure operations and choice functions - equivalent de-
scriptions of a family of functional dependencies,” Acta Cybernetica, vol. 16, pp. 136–150, 2004.

[15] J. Demetrovics and V. D. Thi, “Keys, antikeys and prime attributes,” Annates Univ, vol. 8, pp.
35–52, 1987.

[16] V. D. Thi, “Minimal keys and-antikeys,” Acta Cybernetica, vol. 4, pp. 361–371, 1986.

[17] A. D. Taylor and W. S. Zwicker, Simple Games: Desirability Relations. Princeton University
Press, 1999.

[18] G. Chalkiadakis, E. Elkind, and M. J. Wooldridge, Computational Aspects of Cooperative Game
Theory. Princeton University Press, 2011.

[19] M. Kumabe and H. R. Mihara, “Computability of simple games: A complete investigation of
the sixty-four possibilities,” Journal of Mathematical Economics, vol. 47, pp. 150–158, 2011.

[20] J. Demetrovics and V. D. Thi, “Relations and minimal keys,” Acta Cybernetica, vol. 3, pp.
279–285, 1988.

[21] C. Berge, Hypergraphs: combinatorics of finite sets. North-Holland Mathematical Library, 1989.

[22] J. Demetrovics and V. D. Thi, “Describing candidate keys by hypergraphs,” Computers and
Artificial Intelligence, vol. 18, pp. 191–207, 1999.

Received on September 09, 2024
Accepted on November 10, 2024


	INTRODUCTION
	PRELIMINARIES
	Relational dependency on coalitional game
	Minimal winning coaltion in Relational Dependency coalitional games with hypergraphs and their properties
	Hypergraphs and transversals
	Properties of simple hypergraph and minimal transversals
	Anti-transversals of simple closure intersecting hypergraph transversals.
	Describing a minimal winning coalition on hypergraph

	CONCLUSION

