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Abstract. Recent efforts to predict students’ graduation ranks using machine learning and deep

learning methods have faced challenges, particularly with small sample sizes which limit accuracy.

This paper introduces the LAGT (Learning Analysis by Graph Convolutional Network and Trans-

former) method, a novel approach for early predicting of students’ graduation ranks. LAGT integrates

a Graph Convolutional Network (GCN) to enhance the training set with labeled samples and utilizes

a Transformer to forecast graduation ranks. This method harnesses the semi-supervised learning

capabilities of GCN to automatically label data, addressing the constraints of small sample sizes

in training sets. Additionally, the Transformer leverages its proficiency in handling long sequences

and capturing contextual information, thereby demonstrating superior effectiveness in models trained

on larger datasets. We evaluated this method on three datasets from some universities (HNMU1,

HNMU2, VNU) and achieved a maximum accuracy of 92.73%. Results indicate that the integrated

LAGT method outperforms comparable approaches across multiple metrics including accuracy, pre-

diction precision, and model sensitivity, achieving up to a 35.73% improvement. Notably, on the same

HNMU1 dataset, the accuracy increased from 85% (reported by Son et al. [1]) to 90.91% with this

model. Experimental comparisons underscore the superior performance of LAGT over alternative

methodologies in similar scenarios.

Keywords. Early prediction of graduation classification, academic performance prediction, semi-

supervised learning, Graph Convolutional Network, Transformer.

1. INTRODUCTION

Learning Analytics (LA) focuses on measuring and collecting data, as well as analyzing
and reporting data to support educational decisions. One of the important applications of
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LA is to monitor and predict learners’ learning outcomes and detect potential problems early
so that timely intervention can be made [2]. Recently, higher education institutions have
increased their interest in LA to meet demands for transparency and close oversight of their
admissions and retention practices student. Universities are applying LA to improve service
quality and achieve specific goals such as scores and student retention [3]. An important
solution is to predict student learning outcomes early. This result helps students choose
appropriate courses, allows managers and lecturers to identify students who need support to
complete classes, and minimizes warnings or forced withdrawals due to poor learning results.
This brings time and cost benefits to students, families, schools, and society. Therefore,
predicting learning outcomes is an important research topic in the field of educational data
analysis, attracting the attention of many researchers.

The emergence of advanced techniques in artificial intelligence (AI), deep learning models
and their hybrid models [4], has created new opportunities for enhancing the accuracy of
prediction systems. Graph Convolutional Network (GCN) effectively exploits the structure
and relationships within graph data, enabling it to capture information from the connec-
tions and interactions among elements [5]. Meanwhile, Transformers excel in modeling long
data sequences and capturing contextual information, demonstrating remarkable effective-
ness across various applications.

Deep learning techniques are increasingly applied to analyze learners’ outcomes as ma-
chine learning models evolve. Mubarak et al. [6] introduced a GCN-based model for classify-
ing student engagement, achieving 84% accuracy compared to traditional methods. Sarwat
et al. [7] developed a Conditional Generative Adversarial Network (CGAN) combined with a
Support Vector Machine (SVM), demonstrating effectiveness in predicting learning outcomes.
Hassan and Muhammad (2023) utilized K-nearest neighbors (KNN) and Decision Trees with
attribute selection through genetic algorithms to predict student grades. Christou et al. [8]
proposed a feature-building and selection method based on grammar evolution for Radial
Basis Function (RBF) networks to forecast student outcomes. These studies highlighted the
critical importance of deep learning models in processing educational data, particularly in
predicting learners’ outcomes.

A technical challenge in the problem of predicting learning outcomes is that educational
data systems are not compatible with each other, so combining administrative data and
survey data (before and after the learning process at school, personal, family, and social
factors that influence learning outcomes) and process learning data remain a challenge. Due
to the characteristics of each level, field of study, and regulations, the training program at
each educational institution is different, making it difficult to synthesize and match data to
build a large enough data set. On the other hand, the source of digitized education data,
although much has been added in recent years, is still quite modest (compared to other
data sources, such as ImageNet). Besides, LA also requires careful attention to student and
faculty privacy as well as ethical obligations related to knowing and acting on student data.
Not being able to reuse training data sets in published works is also one of the limitations
of this approach. The automatic data generation mechanism to compensate for the above
limitations is one of the priority mechanisms used in studies following the LA approach to
small datasets.

In this paper, to overcome the above limitations, we propose a method that combines
modern deep learning models, GCN and Transformer, into a LAGT method to deal with
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small datasets in the education field. This method takes advantage of GCN’s semi-supervised
learning advantages to automatically add labels to the data set, based on which Transformer
can promote its prediction advantage with a larger training set (can double the number of
original training samples).

This paper addresses the challenge of predicting a student’s graduation classification
using their survey results and academic performance during the first and second years of
university. The main results of the paper are shown in the following aspects:

(1) Build 03 training data sets, processed from 03 raw data sets of 03 majors in 02
universities. These 03 data sets are good assets for use in research, data analysis, and
providing recommendations and solutions in education - an area where quantitative research
has not dominated the position so far.

(2) Propose a method to early predict students’ graduation results through survey data
and learning data of the first two years of the university according to the current deep learning
approach. The proposed method takes advantage of the semi-supervised learning advantage
of GCN to automatically generate labels, helping to increase the size of the training data
set. Then use the flexibility and good clustering capabilities of the Transformer to predict
the student’s graduation type.

(3) Experimentally deploy the proposed model on 03 training datasets and compare our
model with some machine learning models (Logistic Regression) and deep learning models
(Transformer) methods to illustrate its effectiveness. The results show that the proposed
integration method has superior performance compared to the matching methods on all
three scales: accuracy, prediction accuracy, and model sensitivity. The highest difference is
up to 35.73%. Moreover, for parallel results of the same dataset (HNMU1), the accuracy
increases from 85% in [1] to 90.91% in this model. The highest accuracy is 92.73% for the
VNU dataset confirming the effectiveness of our method.

The paper is organized as follows: An overview of the necessity and results of the research
problem is presented in section 1. Some related research, proposed methods, and proposed
models will be introduced in sections 2 and section 3. Experimental results with specific de-
scriptions of the three datasets and results of different scenarios implemented above datasets
are presented in section 4. Finally, there are conclusions and references.

2. RELATED STUDIES

Recent studies have demonstrated the effectiveness of machine learning and deep learning
models in predicting student academic outcomes [9]. Iatrellis and colleagues [10] applied
the K-means method to group students based on data and used Random Forest (RF) to
cluster, providing more detailed predictions on course completion times and post-university
enrollment rates of students (SEIPS). Okubo [11] utilized Recurrent Neural Networks (RNN)
to predict student grades in a specific course. However, with data limited to only 108 students
in a single course, the generalizability of the results cannot be fully evaluated. Fei and Yeung
[12] experimented with State Space Models and Sequential Neural Networks on two MOOC
datasets with the goal of detecting students likely to drop out.

Corrigan and Smeaton [13] used Random Forest, RNN, and simple LSTM to predict
student success through a virtual learning environment. In the same virtual learning envi-
ronment, Waheed et al. [14] deployed a Deep Neural Network (DNN) to analyze student
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interaction data, predicting students at risk of failing and proposing timely interventions.
Fok et al. [15] discovered an optimal configuration of TensorFlow models to achieve higher
prediction accuracy for this problem. Yousafzai et al. [16] improved results using Bidi-
rectional Long Short-Term Memory (BiLSTM) with attention mechanisms. Li et al. [17]
introduced the GNN, R2GCN model, which showed superior performance in predicting stu-
dent performance in online learning groups. For predicting graduation outcomes, Son et al.
[1] used Logistic Regression and feature selection to predict graduation outcomes based on
admission data and first and second-year academic records at the university. The data was
collected from HNMU’s students with 993 samples and 23 related characteristics saved in
the training management and the survey data. The accuracy with the Logistic Regression
method was raised from 79% for the case of first-year data to 85% when the data was added
to the second-year academic records.

A profound understanding of educational data through machine learning and deep learn-
ing not only optimizes student academic outcomes but also plays a crucial role in improving
teaching methods and enriching the learning environment [3]. However, the application of
deep learning in the field of educational data science is still in its early stages, with many
recent studies emerging only in recent years with limited data resources.

3. METHOD

3.1. Overview of GCN

GCN is a generalization of Convolutional Neural Networks (CNNs) for structured graph
data. The primary objective of GCN is to filter node attribute information and graph
structure into a node representation vector, also known as embedding [5].

GCN operates by performing a series of linear transformations on the features of vertices
in the graph. Each of these linear transformations is called a GCN layer. The feature of a
vertex is a vector representing information about that vertex. This information may include
the value of the vertex itself, its neighboring vertices, and the relationships between the
vertex and its neighbors.

The linear transformation in a GCN layer uses a weight matrix to combine the features of
neighboring vertices. This weight matrix is learned from training data. The basic structure
of GCN is illustrated in Figure 1 with the model’s input is a graph where vertices typically
represent objects (such as people, products, and websites), and edges depict relationships
between them.

Graph Representation: The graph is often represented as an adjacency matrix to
describe the relationships between vertices. Each vertex can be represented by a feature
vector, and a weight matrix can be used to represent edge weights.

Graph Convolutional Layer: GCN uses graph convolutional layers to compute new
feature representations for each vertex based on neighborhood information. The number of
layers denotes the furthest distance over which node features can propagate, essentially the
maximum number of hops each node can move. These convolutional layers allow the model
to “see” and “aggregate opinions” from neighboring vertices to enhance the representation
of each vertex. The number of these convolutional layers can be customized.

Activation Function and Pooling Layer: After each convolutional layer, an acti-
vation function may be applied to introduce non-linearity. Pooling layers can also be used
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Figure 1: Graph Convolutional Network Architecture with Two Layers

to reduce the dimensionality of representations, enhancing overall efficiency and reducing
model complexity.

Fully Connected (FC) Layer: After information has passed through several convo-
lutional layers, a fully connected layer can be added to aggregate information and produce
the final representation.

Output Layer (Classification): The output layer typically uses a Softmax function to
convert the final representation into probabilities for each class. The final result of the model
is a probability distribution, with the class having the highest probability often chosen as
the classification result.

GCN is a relatively new technology still under development. Researchers continue to
explore ways to improve its performance and expand its range of applications.

3.2. Overview of Transformer

Computers cannot learn directly from raw data such as images, text files, audio files, or
video clips. They require a process of encoding information into numerical form and decoding
from numerical form to output results. This process involves two main stages: Encoder and
Decoder [18].

Encoder: This phase transforms the input into machine-understandable features. In
neural networks, the Encoder consists of hidden layers. For CNN models, the Encoder
comprises a sequence of hidden layers of convolution and max-pooling. In RNN models, the
Encoder process includes embedding layers and recurrent neural networks.

Decoder: The output from the Encoder serves as the input to the Decoder. The De-
coder’s objective is to determine the probability distribution from the features obtained in
the Encoder phase, thereby identifying the output label. The result can be a single label for
classification models or a sequence of labels over time for seq2seq models.

In this paper, we use the Transformer model with Encoder using Attention transfor-
mation, combined with convolution; Combine some additional layers of full connections,
Dropout, and Decoder with Pooling-creating connections with the number of dimensions
in the Unit. The application of node reduction techniques to predict students’ graduation
outcomes is consistent with previous models.
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3.3. Our method

In this section, we present a proposed model for predicting graduation ranks.

Figure 2: Proposed graduation rating prediction model.

The operation of the model in Figure 2 is as follows. Firstly, the samples in “Raw data”
(labeled and unlabeled) collected from reality will be preprocessed to obtain a data array of
samples labeled (XL, yL) and unlabeled samples XU . From this data table, we proceed to
build a “Graph” with each student data record as a vertex of the graph. The construction
of a “Graph” is done according to the principle that if the Euclidean distance of two data
information records is less than a certain threshold γ, there will be an edge connecting
those two vertices in the graph. The constructed “graph” will be fed into an N-layer graph
convolutional network (block in the bottom middle) to obtain a “Graph with labeled nodes”
(graph in the lower right corner). The reason for using a graph convolutional network here
is because the problem we are solving has very few training samples (labeled samples even



EARLY PREDICTION STUDENTS’ GRADUATION RANK USING LAGT 305

less) and takes advantage of the power of this approach semi-supervised based on the GCN
graph to increase the number of training samples from unlabeled samples. After passing
through GCN, the unlabeled samples of the dataset will be labeled and added. Thus we
have a training sample table with an increased number of labeled samples (XL+U , yL+U ).
Secondly, this data table is passed through the Transformer model (upper middle block) to
make predictions. It should be noted here that the Transformer model is modern and very
effective, but with a small number of training samples, the model does not maximize its
effectiveness. This is also the reason why we combine the GCN and Transformer networks
in our model.

GCN Model

We use a 2-layer model with the HNMU1, HNMU2, and VNU datasets. For the HNMU1,
HNMU2, and VNU datasets, we use a two-layer model. For the HNMU1 dataset, the first
layer has a hidden size of 6 and uses the ReLU activation function. The second layer is
the output layer with 5 dimensions (corresponding to the number of classes in the HNMU1
dataset) and uses the Softmax activation function. For the HNMU2 dataset, the first layer
has a hidden size of 8 and uses the ReLU activation function. The second layer is the output
layer with 4 dimensions (corresponding to the number of classes in the HNMU2 dataset)
and uses the Softmax activation function. For the VNU dataset, the first layer has a hidden
size of 8 and uses the ReLU activation function. The second layer is the output layer with
3 dimensions (corresponding to the number of classes in the VNU dataset) and uses the
Softmax activation function. The detail parameters of GCN are given in Table 1.

Table 1: GCN model parameter table on the HNMU1, HNMU2, and VNU datasets

First layer Activation function Second layer Activation function

HNMU1 6 Relu 5 Softmax

HNMU2 8 Relu 4 Softmax

VNU 8 Relu 3 Softmax

Transformer Model

The Transformer model for HNMU1 will select the multi-head value as 1. The feed-
forward layer in each encoder layer has a size of 64. The number of Transformer encoder
layers is 1. The dropout rate is 0.5. After that, it is passed through a fully connected layer
with an output size of 5. The output of this network will be 5 (corresponding to the number
of classes in the HNMU1 dataset).

The Transformer model for HNMU2 will select the multi-head value as 2. The feed-
forward layer in each encoder layer has a size of 64. The number of Transformer encoder
layers is 1. The dropout rate is 0.5. After that, it is passed through a fully connected layer
with an output size of 4. The output of this network will be 4 (corresponding to the number
of classes in the HNMU2 dataset).

The Transformer model for VNU will select the multi-head value as 4. The feed-forward
layer in each encoder layer has a size of 64. The number of Transformer encoder layers is
1. The dropout rate is 0.5. After that, it is passed through a fully connected layer with
an output size of 3. The output of this network will be 3 (corresponding to the number of
classes in the VNU dataset). The detail parameters of Transformer are given in Table 2.
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Table 2: Transformer model parameter table on the HNMU1, HNMU2, and VNU datasets

Multi-head
Feed-forward

layer
Number
of Encode

Fully connected
layer

Activation
function

HNMU1 1 64 1 5 Softmax

HNMU2 2 64 1 4 Softmax

VNU 4 64 1 3 Softmax

4. EXPERIMENTAL

4.1. Description of three experimental datasets

4.1.1. First dataset (HNMU1)

The dataset includes 2,763 students majoring in elementary education, who has studied
at HNMU from 2014 to 2021. The dataset was collected and processed for 18 months, from
March 2020 to September 2021. We extracted 73 student-related characteristics to get a
comprehensive view of students’ training history. These features fall into main categories:
academic performance (e.g., GPA, credits completed), financial information, information
before admission, etc. Each observation sample is represented by 1 row. We use data from
HNMU for training management and survey data to incorporate various characteristics of
each student. The data analysis process involves aligning data and prioritizing data updates,
as well as reducing overall data sparsity. This results in a new, valuable training dataset
that improves the reliability of our prediction outcomes.

The data is cleaned, removing unnecessary data variables and variables not assessed in
this study (some physical or aptitude subjects, and variables related to student finances).
At the same time, attributes with too little data or lots of empty data are also removed.
Electives largely fall into this blank data area. We also focus on specific test score data
and eliminate the letter grade portion of the test score data. We selected student-specific
variables to test their correlation with the variable of interest. Therefore, from 2,763 samples
with 73 attribute variables (20 survey characteristics and 53 GPA of university), the dataset
was cleaned to include data from only 933 observed samples and the variables were limited
to 23 variables for training (3 survey characteristics and 20 GPA of the first and second year
of university).

4.1.2. Second dataset (HNMU2)

The dataset was collected from students majoring in Mathematics and Physics Educa-
tion at the Faculty of Education, Hanoi Metropolitan University, encompassing the years
2014 to 2023. Raw data was provided by the Faculty of Education’s Department of Training
Management and Student Affairs, and survey data, including student management details
(tuition, personal information, etc.), admission scores, foreign language scores, computer
science scores, module scores across 8 semesters spanning 4 years of study, and results of re-
lated factor survey. Scores were recorded on both a 10-point and 4-point scale, accompanied
by letter grades and module credits. This dataset underwent collection and processing over
2 years from 2022 to 2023, yielding over 1,000 samples and encompassing 89 attributes, of
which 35 survey characteristics. Following pre-processing, the dataset includes 744 observa-



EARLY PREDICTION STUDENTS’ GRADUATION RANK USING LAGT 307

tion samples from students majoring in Mathematics Education, encompassing 55 attribute
variables (35 survey characteristics and 20 GPA of the first and second year of university),
with 551 observation samples having actual labels. The HNMU2 dataset exhibits significant
class imbalance, with the following distribution of samples: the medium class contains 19
samples, the good class has 338 samples, the very good class includes 190 samples, and the
excellent class has only 4 samples.

4.1.3. Third dataset (VNU)

The dataset collects information from 2,791 students at the University of Education,
VNU from 2014 to 2023 of different pedagogical majors (Literature Education, Mathematics
Education, Physic Education, etc.). These datasets are collected and basic-processed from
2021 to 2023. There is a fact that data with different majors do not match each other.
Thus, we only format data for a specific major. For example, we use data collected from 668
students majoring in Literature Education at the University of Education, VNU from 2014
to 2023 with 92 attributes (mixed from survey data and academic data). Data after pre-
processing were cleaned, removing unnecessary data variables and variables not evaluated.
We selected student-specific variables to test their correlation with the variable of interest.
After performing the pre-processing steps, we have only obtained 271 observation samples
consistent with 69 actual labeled attribute variables (49 survey characteristics and 20 GPA
of the first and second year of university). The dataset consists of three main categories of
variables: (A) Personalization factors of participating students, such as gender and parents’
educational backgrounds; (B) Factors affecting learning outcomes, which include study hours,
time spent on social media, scholarships, health status, and employment status; and (C)
Academic performance metrics, covering both pre-university and university achievements.

In this paper, for experimental results, only survey admissions data and academic data
from students’ first and second years were included, as previous studies have shown that
early in a student’s college career is the most important stage for retention and graduation
outcomes [19, 20].

4.2. Evaluation measures

The metrics used include: Accuracy, Prediction Accuracy (Precision), Sensitivity (Re-
call), and F1-Score (F1). They are calculated by using the following formula ([21]).

Accuracy =
AP +AN

Total number of samples
,Precision =

TP

TP + FP
,Recall =

TP

TP + FN
, and

F1 =
2× Precision× Recall

Precision + Recall
.

In which the indicators TP, FP, TN, and FN have the following meanings. TP (True
Positive) is the total number of positive pattern-matching prediction cases. TN (True Nega-
tive) is the total number of negative pattern-matching prediction cases. FP (False Positive)
is the total number of cases that predict observations belonging to the negative label to
be positive and FN (False Negative) is the total number of cases that predict observations
belonging to the positive label to be negative.
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4.3. Experimental results

The proposed model given in subsection 3.3 improves the accuracy of the problem of
predicting graduation grades with a small training data set size. To demonstrate the ef-
fectiveness of our proposed model, this subsection centers on conducting experiments using
three separate datasets: the HNMU1 dataset, the HNMU2 dataset, and the VNU dataset.
Through the evaluation of these real-world datasets, we intend to substantiate the effective-
ness of our model.

We performed experiments employing three distinct methods:

(a) Transformer on the original dataset.

(b) Transformer on the original dataset and data augmentation using SMOTE.

(c) Proposed Method - LAGT: The approach involves using a Transformer trained on an
expanded dataset (comprising original and additional data), followed by applying GCN on
the original dataset. Specifically, the dataset is divided as follows: 60% original data, 20%
additional unlabeled data, 20% test data.

On the other hand, to estimate the effectiveness of our model, DNN and GAT are used
to compare with similar scenarios (input data consists of 60% of the original labeled data
and 20% of the test data).

By comparing the performance of these established methods with our proposed model,
we aim to evaluate how leveraging synthetic data generated by LAGT improves predictive
accuracy. These analyses will help determine whether our approach surpasses traditional
techniques and highlights its potential for enhancing predictive performance, particularly in
data-limited scenarios. For the GCN model, we use the Adam optimizer with a learning
rate of 0.01 and weight decay of 0.0005 and each layer will use a dropout of 0.5. For the
Transformer model, we use the Adam optimizer with a learning rate of 0.005 and weight
decay of 0.0005 and each layer will use a dropout of 0.5.

4.3.1. Results on the first data set (HMNU1)

We train the model on this first dataset with 1,000 epochs. The principle of choosing
the best model is that we take the average of the training loss and validation loss values.
Whichever epoch gives the smallest value will be selected at that epoch. On that principle,
with the model in Figure 3, the model selected at the 969th epoch has a train loss of 0.0740
and a validation loss of 0.7925. In Figure 4, the model is selected at the 674th epoch. has a
train loss of 0.4651 and a validation loss of 0.4985. With the model in Figure 5, the model is
selected at the 375th epoch. has a train loss of 0.3419 and a validation loss of 0.4266. With
the model in Figure 6, the model selected at the 418th epoch has a train loss of 0.2739 and
a validation loss of 0.4665.

The model obtained after training is applied to the test set and results are obtained as
shown in Table 3. Table 3 shows the accuracy, i.e. the percentage of correct predictions over
the total number of test samples, of the proposed method is 6.95% higher than the accuracy of
the Transformer method. Moreover, the accuracy of LAGT is 5.91% higher than the accuracy
of the Logistic Regression method, that was used by Son et al. [1]. Besides, prediction
accuracy (the ratio of correct predictions to the total number of positive predictions of the
model) and sensitivity (the ratio of positive samples correctly identified by the model to
the total number of actual positive samples) of the proposed method are also higher than
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Table 3: Prediction results on the first dataset (HNMU1)

Methods Accuracy Precision Recall F1-Score

Logistic Regression
Son et al. (2022)

85 - - -

DNN 81.28 36.92 43.91 38.67

GAT 74.33 42.01 64.72 47.19

Transformer 83.96 42.91 37.74 39.66

Transformer + Smote 85.03 68.39 41.25 46.96

LAGT 90.91 71.76 67.55 69.39

Figure 3: Transformer on the original
dataset

Figure 4: Transformer on the original
dataset and SMOTE-generated data

Figure 5: GCN on the original
dataset

Figure 6: Transformer (after adding
training samples)

the Transformer method by 28.85% and 29.81%, respectively. This shows that the proposed
method’s ability to accurately classify positive samples is much higher than that of the
Transformer method. The F1−Score, i.e. the harmonic average of prediction accuracy and
sensitivity, of the proposed method is 29.73% higher than that of the Transformer method.
This shows a better balance between prediction accuracy and sensitivity of the proposed
method compared to the Transformer method.
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4.3.2. Results on the second data set (HMNU2)

Do the same principle we train the model on second dataset with 1,000 epochs. With
the model in Figure 7, the model selected at the 96th epoch has a train loss of 0.0326 and
a validation loss of 0.7590. With the model in Figure 8, the model is selected at the 410th

epoch has a train loss of 0.2704 and a validation loss of 0.4526.With the model in Figure 9,
the model selected at the 159th epoch has a training loss of 0.4682 and a validation loss of
0.7812. With the model in Figure 10, the model selected at the 11th epoch has a train loss
of 0.3919 and a validation loss of 0.6049. The model obtained after training is applied to the
test set and results are obtained as shown in Table 4.

Table 4: Prediction results on the second data set (HNMU2)

Methods Accuracy Precision Recall F1-Score

DNN 81.82 58.30 57.06 57.42

GAT 86.36 57.60 61.36 59.42

Transformer 87.27 59.46 60.96 59.99

Transformer + Smote 89.09 78.96 79.45 79.06

LAGT 91.82 82.40 78.04 79.74

Figure 7: Transformer on the original
dataset

Figure 8: Transformer on the original
dataset and SMOTE-generated data

Figure 9: GCN on the original
dataset

Figure 10: Transformer (after adding
training samples)

Table 4 shows the accuracy of the proposed method is significantly higher (4.55% higher)
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than the method using only the Transformer, indicating that the proposed model is capable
of predicting more accurately than the Transformer. The prediction accuracy of the proposed
method is much higher (22.94%) than that of the Transformer, this means that in the positive
predictions of the model, the correct prediction rate is higher, minimizing the cases of false
positives. The sensitivity of the proposed method is also significantly higher (about 17.08%),
showing that the proposed model is capable of detecting more real positive samples and
minimizing false negative cases. The F1−Score of the GCN and Transformer combination is
much higher (about 19.75%). F1−Score is a composite index that combines both prediction
accuracy and sensitivity, and this improvement shows that the proposed method achieves
a better balance between accurately predicting positive samples and many actual positive
samples were detected.

4.3.3. Results on the third data set (VNU)

We also train the model on third dataset with 1,000 epochs. In Figure 11, the model
selected at the 9th epoch has a training loss of 0.2096 and a validation loss of 0.3005. With
the model in Figure 12, the model is selected at the 666th epoch has a train loss of 0.4841
and a validation loss of 0.2416. With the model in Figure 13, the model is selected at the
986th epoch has a train loss of 0.1833 and a validation loss of 0.1687. With the model in
Figure 14, the model selected at the 17th epoch has a train loss of 0.1609 and a validation
loss of 0.2728. The model obtained after training is applied to the test set and results are
obtained as shown in Table 5.

Table 5: Prediction results on the third data set (VNU)

Methods Accuracy Precision Recall F1-Score

DNN 81.82 61.67 92.91 67.70

GAT 85.45 63.27 58.98 58.70

Transformer 87.27 60.46 60.14 59.92

Transformer + Smote 89.09 96.23 55.56 63.08

LAGT 92.73 73.80 95.87 78.15

From Table 5 we can see that the accuracy of the proposed method is significantly higher
(5.46%) than the method using only a Transformer, showing that the proposed model is
capable of predicting more correctly in total test samples. The prediction accuracy of the
proposed method is much higher (13.34%), which means that in the positive predictions of the
proposed model, the correct prediction rate is higher, minimizing the positive cases fakeness.
The sensitivity of the proposed method is also significantly higher (35.73%), showing that
this model is capable of detecting more true positive samples, minimizing false negative cases.
The F1−Score of the proposed method is much higher (18.23%). F1−Score is a composite
index that combines both prediction accuracy and sensitivity, and this improvement shows
that the proposed method achieves a better balance between accurately predicting positive
samples and many actual positive samples were detected.

Through experimental results on three data sets (Tables 3-5), we can confirm that the
proposed method is better than the method using only Transformer in all evaluation indi-
cators. These results indicate that combining GCN and Transformer significantly improved
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the model’s learning and prediction capabilities, making the proposed method superior to
using Transformer alone.

Figure 11: Transformer on the original
dataset

Figure 12: Transformer on the original
dataset and SMOTE-generated data

Figure 13: GCN on the original
dataset

Figure 14: Transformer (after adding
training samples)

5. CONCLUSION

This paper presents the LAGT method, a new approach designed to enhance the accuracy
of early student graduation classification predictions. By integrating Graph Convolutional
Networks (GCNs) to enrich the training set with labeled samples and utilizing Transformers
for prediction, the LAGT method effectively addresses the challenges of traditional tech-
niques in managing small sample sizes. Experimental results across three datasets from
various universities demonstrate that the LAGT method achieves a remarkable accuracy
of up to 92.73%, significantly surpassing several competing models, including DNN, GAT,
and Transformer, in scenarios utilizing single machine learning models. Furthermore, LAGT
shows enhanced performance when using models paired with a Transformer model, such as
when combined with data augmentation techniques like SMOTE. This indicates that LAGT
not only boosts prediction accuracy but also excels relative to other methods under similar
conditions. The synergy of GCN and Transformer maximizes the extraction of information
from the data, yielding reliable and timely predictions. We aim to enhance the model’s
capability to automatically generate data and optimize its performance in future research.
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