
Journal of Computer Science and Cybernetics, V.40, N.3 (2024), 233-248

DOI: 10.15625/1813-9663/20741

BYPASSING ANTI-EMULATION METHODS FOR MALWARE
DETECTION

VAN LOI CAO1,∗, DINH DAI NGUYEN2

1Institute of Information and Communication Technology, Le Quy Don Technical University,
236 Hoang Quoc Viet Street, Cau Giay District, Ha Noi, Viet Nam

2Institute of Cryptography Science and Technology, Government Cipher Committee,
24 Ly Thuong Kiet Street, Hoan Kiem District, Ha Noi, Viet Nam

Abstract. Malware detection has played a crucial role in many cyberattacks in recent years. Due

to the obfuscated nature of malware, the traditional static analysis technique tends to be ineffective.

Additionally, modern malware often can identify dynamic analysis environments, posing challenges

to dynamic analysis methods. Thus, feature extraction relies on analysis techniques that tend to be

less effective in obfuscated malware, resulting in poor performance of subsequent machine learning-

based detectors. This study introduces a Bypass Anti-emulation-based Malware Detection framework

(BAE-MD) for enhancing the efficiency of obfuscated malware detection. In other words, BAE-MD

includes a method that can bypass the anti-emulation mechanism of malware in a controlled dynamic

environment. This forces the malware to decrypt and decompress its actual malicious code to memory.

By doing so, Yara rules can be applied to memory dump to extract more than 60 features to feed into

detectors. BAE-MD is evaluated on a malware dataset in comparison with others using static and

dynamic analysis technique-based feature extraction. The experimental results can confirm that our

method outperforms the others. More investigations are also carried out to illustrate the efficiency

of BAE-MD. These results suggest that BAE-MD is a promising approach for dealing with the

continuous evolution of malware.

Keywords. Malware analysis, Malware detection, obfuscation, anti-emulation, feature extraction.

1. INTRODUCTION

In contemporary times, cybercriminals leverage malware as a primary tool to perpetrate
attacks on computer systems. The internet serves as the primary conduit for executing these
malicious activities, facilitated through avenues such as emails, malicious websites, and the
distribution of downloadable software [1]. Malware consists of harmful software deliberately
engineered to execute destructive functions. [2, 3]. These programs are typically classified
according to their behavior and operational methods, encompassing a diverse array of types
such as viruses, worms, trojan horses, backdoors, rootkits, and ransomware. The objectives
behind attacking computer systems are multifaceted, including resource destruction, financial
gain, unauthorized data access, utilization of computing resources, and service disruption [4–

*Corresponding author.
E-mail addresses: loi.cao@lqdtu.edu.vn (V.L. Cao); nguyendinhdai01@gmail.com (D.D. Nguyen)

loi.cao@lqdtu.edu.vn
nguyendinhdai01@gmail.com

234 VAN LOI CAO, DINH DAI NGUYEN

7]. The detection of malicious code stands as a critical component in the response and
troubleshooting protocols within companies and organizations.

Furthermore, the continual evolution of malware, marked by diverse variations and in-
creasingly sophisticated methods of concealment, presents a formidable challenge to malware
detection systems. Zero-day malware presents a particular challenge, as these exploits target
vulnerabilities yet to be discovered [8, 9]. Whenever new software is developed, malicious
actors seek out vulnerabilities to compromise its security. Consequently, there is a pressing
need to continually patch and refine malware detection systems to effectively combat such
threats [10,11].

Malware detection commonly employs two main approaches: signature-based and behavior-
based methods. Signature-based systems are known for their speed and efficiency, yet they
can be susceptible to evasion techniques employed by obfuscated malware. [12, 13]. Con-
versely, behavior-based techniques demonstrate greater resilience against obfuscation but
tend to be more time-intensive. While both signature and behavior-based methods have
seen significant development, hybrid approaches have also emerged to combine the strengths
of both techniques. Hybrid methods aim to address the limitations inherent in signature
and behavior-based approaches. Recently, machine learning/deep learning (ML/DL) has
been utilized for malware detection. These approaches have offered a promising avenue for
identifying new and variant strains of malware [14–16].

The feature extraction process plays a crucial role in developing effective deep learning
(DL) and machine learning (ML) models for malware detection. Both benign and malware
samples are analyzed using static and dynamic techniques, and distinctive features are ex-
tracted to identify malicious files from benign files. The effectiveness of malware detection
systems hinges on the precise extraction of relevant and discriminative features through these
analytical methods [1]. Static analysis involves scrutinizing the code and structure of soft-
ware without execution to ascertain potential maliciousness and discern the behavior of any
malicious code. Various properties such as PE header file information, import and export
functions, strings, and API calls are extracted during static analysis. Conversely, dynamic
analysis techniques often entail executing malicious code within a virtualized environment,
such as a sandbox, emulator, VMWare, or VirtualBox, to extract information on invoked
APIs, exhibited behaviors, newly created files, and altered registry values.

However, the evolution of malware also poses new challenges to feature extraction. To cir-
cumvent security systems, malware developers have employed various obfuscation techniques,
also known as anti-analysis techniques [17–20]. In other words, through the utilization of
encryption and encoding techniques, sophisticated malicious programs such as metamorphic,
polymorphic, and packed malware are created, posing significant challenges for malware anal-
ysis and detection techniques [21–24]. Feature extraction that relies on well-known static
and dynamic malware analysis can not retrieve the true behaviors of the malware, leading
to the inefficiency of subsequent ML/DL models.

To improve the efficiency of detection methods on malware with obfuscated techniques,
this study has proposed a Bypass Anti-emulation-based Malware Detection framework (BAE-
MD). Our framework consists of three components: Bypass Anti-emulation (BAE), Feature
Extractor, and ML-based Detector. The Bypass Anti-emulation method stands out as the
novel and pivotal component of BAE-MD, representing our primary contribution to this
study. BAE is proposed to bypass the anti-emulation mechanism of malware. As a result,

BYPASSING ANTI-EMULATION METHODS FOR MALWARE DETECTION 235

malware is deceived to execute its actual behavior in memory (i.e. decompress, decryption,
and decoding its malicious code in memory). This allows us to dump the memory into
files and apply static analysis techniques for extracting valuable features. The details of the
framework are presented in Section 4.

The main contribution of this study can be listed as follows:

1. Propose a novel Bypass Anti-emulation-based Malware Detection framework (BAE-
MD). Under the control of BAE, the actual behavior of malware is explored for facili-
tating subsequent feature extraction and ML-based detectors.

2. Design a set of experiments to evaluate our BAE-based malware detection framework in
comparison with other methods using static and dynamic malware analysis techniques.
The performance of these methods is evaluated on benchmark malware datasets by
common metrics.

3. Analyze the behavior of malware when executing them in the emulated environment
controlled by BAE. The analyzing results such as execution time, number of API calls,
entropy as well as strings, and the number of Yara rules matched on malware are
compared to those in the case without using BAE.

The structure of this paper is shown as follows. Sections 2 and 3 introduce the two
well-known malware analysis approaches as well as a brief discussion on recent ML-based
malware detection methods. Section 4 presents our malware detection framework that tackles
the challenges identified in this study. Section 5 describes the experimental analysis and
compares it with relevant studies. Finally, Section 6 concludes the paper by discussing the
findings and future works.

2. BACKGROUND

This section presents malware analysis techniques used in this study. This consists of
static analysis on the PE header and dynamic analysis in sandbox environments. These
techniques are commonly used for malware feature extraction [24].

2.1. Static analysis

Static analysis is a key method for examining source code without executing executable
files, aiming to extract distinct signatures representing the files [4]. It gathers various static
data types like PE-header information, string-based entropy, and compression ratios. Ex-
ecutable files, following the Common Object File Format (COFF), use the Portable Exe-
cutable (PE) format on Windows. PE serves as a structured container conveying essential
information for proper execution and management. Its sections include a DOS header, PE
file header, section tables, PE sections, and a transport layer security (TLS) section. The PE
header contains crucial details like code size, location, file header, optional header, and direc-
tories such as import, resource, and exception directories. These directories list DLLs, APIs,
and catalog resources used by the software. Additionally, the PE header includes elements
like Signature and NumberOfSections, facilitating the loading of executable files into mem-
ory during execution. The static analysis utilizes these elements to extract malware features,
crucial for effective malware detection. By analyzing the structure and content of executable
files, static analysis contributes significantly to identifying and mitigating potential threats.

236 VAN LOI CAO, DINH DAI NGUYEN

2.2. Dynamic analysis

Dynamic analysis entails monitoring a program’s activities while it is running [4]. In
this method, the file under examination is executed within a sandbox environment, such
as Cuckoo, which is designed to be controlled and monitored. This setup allows for the
observation of the file’s behavior and the collection of relevant dynamic data. Dynamic
analysis can gather various types of information, including details about malicious activities
evidenced by the executable’s behavior and memory snapshots taken during execution. Key
behaviors are identified by capturing invoked API calls, machine activities, file operations,
as well as registry and network interactions. Additionally, opcode-based memory images
can be captured to reflect dynamic malicious activities. The API calls recorded through
dynamic analysis using tools like Cuckoo are subsequently converted into byte sequences for
the purpose of binary feature classification.

3. RELATED WORK

This section will brief overview of recent malware detection approaches using machine
learning methods. This aims to focus on how to extract malware behavior features using
static analysis [25,26] and dynamic analysis [16,27–29].

In static analysis, the file being examined is not executed. Instead, the analysis relies
exclusively on the file’s contents and metadata. Consequently, the detection of its behavior is
based solely on static features rather than dynamic execution characteristics. Recent studies,
such as those by [25] and [26], exemplify machine learning (ML) approaches to malware
detection using static analysis. These methods derive input features from executable files
without running them. Static analysis involves scrutinizing the program’s internal structure,
including N-grams, opcodes, Portable Executable (PE) header information, strings, and
import functions. However, modern malware frequently employs packers and encryption
techniques to obfuscate its contents, leading to files with varied signatures. Such obfuscation
can hinder static analysis by concealing the actual content and behavior of the malware.
Consequently, the extracted static features may not accurately reflect the malware’s behavior,
resulting in diminished performance of subsequent ML-based detection methods.

Dynamic analysis examines the actions of a program during its execution [16]. In this
process, the file under investigation is run within a sandbox- aan isolated and controlled
environment-to observe its behavior, including changes to the file system, network activity,
process management, and specific system calls [27]. This approach allows for the deob-
fuscation and unpacking of the file, extraction of memory dumps, and identification of its
execution path. Beyond mere execution, dynamic analysis often involves debugging the bi-
nary to understand its capabilities, operational methods, and potential modifications of its
execution flow to circumvent detection measures.

Recent studies indicate that sandbox environments, such as Cuckoo, are frequently em-
ployed to track all system calls, network connections, and file system modifications made by
a binary. Deep learning methods are then utilized to identify malware [28, 29]. However,
to counteract dynamic analysis, malware creators often incorporate checks within their bi-
naries. These checks evaluate the execution environment and compare it to a typical user
environment. They may detect monitoring mechanisms by analyzing factors such as user in-
teractions (e.g., mouse movements, keyboard inputs), the presence of known analysis tools,

BYPASSING ANTI-EMULATION METHODS FOR MALWARE DETECTION 237

environmental variables indicative of a testing environment, specific hooks, or anomalies
in execution timing. As a result, these sophisticated evasion techniques can significantly
undermine the effectiveness of dynamic malware analysis.

In response to the challenges posed by sophisticated malware evasion techniques, a dy-
namic analysis-controlled environment is essential. This environment ensures malware be-
haves naturally for effective analysis, particularly as static analysis is hindered by malware’s
packing and obfuscation. This paper proposes a novel malware detection framework with a
bypass anti-emulation method (BAE) for improving the performance of ML-based malware
detection methods on obfuscated and packed malware. By executing malware within a con-
trolled environment with BAE and extracting static features from memory dumps, insights
into its behavior, network connections, and API calls are gained. These static features serve
as input for ML-based models, enhancing malware detection accuracy by identifying patterns
and malware.

4. PROPOSED APPROACH

This section will describe our proposed Bypass Anti-emulation-based Malware Detection
framework (BAE-MD). As discussed in Section 1, the Bypass Anti-emulation method (BAE)
is a crucial component of BAE-MD. It is designed to bypass the anti-emulation mechanism
of malware, which involves monitoring API calls and measuring execution time to determine
the characteristics of emulation environments. Consequently, the malware is compelled to
execute its actual behavior in memory, enabling the extraction of valuable features from the
memory. As illustrated in Figure 1, BAE plays a primary role in the BAE-MD framework.
The second component is Feature Extractor which uses a static analysis technique, partic-
ularly Yara rules for extracting features from memory dump files. Finally, an ML-based
Detector applies resulting features for classifying malware from benign. In the BAE-MD
framework, the Bypass Anti-emulation method stands out as both a novel approach and the
primary contribution. Details of these components are presented in Subsections 4.1, 4.2, and
4.3 as follows.

Figure 1: Malware Detection framework (BAE-MD) with Bypass Anti-emulation (BAE)

4.1. Bypass anti-emulation (BAE)

We chose the Qiling framework, which utilizes the Unicorn Engine, as our emulation
tool for analysis. The Qiling framework a is an advanced binary emulation platform built

a Qiling framework. https://github.com/qilingframework/qiling, 2021.

238 VAN LOI CAO, DINH DAI NGUYEN

on top of the Unicorn Engine b . Qiling serves as a high-level framework that leverages
Unicorn to emulate CPU instructions while also managing operating system interactions. It
supports various executable formats, including PE, Mach-O, and ELF, and incorporates dy-
namic linkers for loading and relocating shared libraries, as well as syscall and I/O handlers.
Consequently, Qiling enables the execution of binaries without dependence on their native
operating system. Unicorn provides a scriptable CPU emulator, and when a program makes
a system call, Qiling endeavors to replicate the corresponding behavior of the host operating
system (such as Windows or Linux). Details of the BAE method are presented in three steps
as follows:

1. Run program: BAE starts with sending binary samples to the Qiling framework for
execution. Qiling then utilizes the capabilities of the Unicorn Engine to emulate the ex-
ecution of these binary samples. Qiling’s orchestration manages the execution process,
and it interacts with the Unicorn Engine to interpret the instructions within the binary.
This process involves analyzing and executing each instruction step by step, thereby
granting us the capability to intervene in these steps to bypass the anti-emulation
function employed by malware.

2. Bypassing : It is a crucial task in the BAE method. Malware developers often im-
plement various techniques to identify when their code is being executed within an
emulation environment. Once malware has found the environment, it will hide its ac-
tual behavior leading to false analysis results. This study aims to bypass two typical
techniques employed by malware to identify emulation environments, namely monitor-
ing API calls and measuring execution time.

Bypass API calls: The malware’s use of API calls to specific functions is the charac-
teristic of emulation environments. If these functions are not invoked, the malware
may decide to execute its malicious code, such as GetWindowContextHelpId(), Im-
ageListAdd(), CoReleaseMarshalData(), CreateEventA(), SetClassLongA(), and wget-
mainargs(). To circumvent these APIs, we utilize API hooking techniques to intercept
and modify API calls made by the malware. By altering the behavior of certain func-
tions, we can deceive the malware into believing it’s interacting with a real system.
As demonstrated in the code below, we re-implement the GetWindowContextHelpId()
API (as in line 2) in a format that Qiling can recognize.

1 @winsdkapi(cc=STDCALL , dllname="user32_dll")

2 def HookGetWindowContextHelpId(ql , address , params):

3 ERROR_INVALID_WINDOW_HANDLE = 0x578

4 ql.os.last_error = ERROR_INVALID_WINDOW_HANDLE

5 return 0

Bypass measuring execution time: Emulators and sandboxes often execute code more
slowly than real hardware. Thus, malware can use timing-based techniques to measure
the execution time of certain operations to identify whether it’s running in a controlled
environment. To bypass this technique with Qiling, we use the Qiling search pattern
(line 9) and patch this binary (line 13) in our below script.

b Unicorn engine. https://github.com/unicorn-engine/unicorn, 2021.

BYPASSING ANTI-EMULATION METHODS FOR MALWARE DETECTION 239

1 def patch_binary(qiling):

2 patch_ = {

3 ’original ’: b’\x99 \...’,

4 ’patch ’: b’\x81 \...’

5 }

6 patches.append(patch_)

7 for patch in patches:

8 #Search partern

9 check = qiling.mem.search(patch[’original ’])

10 if check:

11 try:

12 #Patch binary

13 qiling.patch(check [0], patch[’patch ’])

14 return

15 except Exception as err:

16 #Failed

3. Process dump: Once malware is actually executed in memory within our controlled
environment, we will dump the memory process for feature extraction in Subsection 4.2.
A process memory dump, also known as a memory snapshot or memory image, involves
capturing the contents of a process’s memory space at a specific point in time. This
memory dump can provide valuable insights into the behavior of a running program.

As previously outlined, BAE incorporates the Run program, Bypassing, and Process
dump procedures within the Qiling framework, creating a controlled environment that com-
pels malware to execute and restore their malicious code. Utilizing Qiling, our sophisti-
cated controlled environment can be more advanced than other sandbox systems like V-
sandbox [30] and Tamer [31] designed specifically for IoT malware, which is based on Qemu.
Qiling distinguishes itself from Qemu by offering dynamic analysis capabilities through its
Python-based framework, facilitating dynamic instrumentation, runtime code patching, and
cross-platform execution (e.g., Windows, Linux). In contrast, Qemu is confined to binary
emulation without such extensibility and platform support, primarily targeting Linux and
BSD environments c . Leveraging Qiling, the BAE method can be readily extended to
various cross-platform executions.

4.2. Feature extractor

The dump memory file for each sample from Qiling is collected for feature extraction using
the static analysis technique. In this study, we utilize Yara rules d to extract characteristics
of malware. The below script is an example of Yara’s rule for extracting thread injection
from malware:

rule inject_thread {

meta:

description = "Code injection with CreateRemoteThread in a remote process"

strings:

$c1 = "OpenProcess"

c https://qiling.io/comparison/
d https://github.com/Yara-Rules/rules/blob/master/capabilities/capabilities.yar

240 VAN LOI CAO, DINH DAI NGUYEN

$c2 = "VirtualAllocEx"

$c3 = "NtWriteVirtualMemory"

$c4 = "WriteProcessMemory"

$c5 = "CreateRemoteThread"

$c6 = "CreateThread"

$c7 = "OpenProcess"

condition:

$c1 and $c2 and ($c3 or $c4) and ($c5 or $c6 or $c7)}

To enhance the analysis, we leverage Yara’s capabilities alongside digital signatures as key
features. Yara utilizes a rule-based methodology to identify patterns associated with mal-
ware within files. These rules generally include strings, regular expressions, and specialized
operators that define distinct attributes of malware families, combined with boolean logic to
refine detection. Attributes are assigned values of 0 or 1 by checking for malicious behavior
according to Yara’s rules. By using the Yara’s rules, 62 features are extracted as shown in
Table 1.

Table 1: Features extracted by Yara’s rules

Feature Description Feature Description

InjectThread Code injection in a remote process CredLocal Steal credential

CreateProcess Create a new process SniffAudio Record Audio

Persistence Install itself for autorun at Windows startup CredFf Steal Firefox credential

HijackNetwork Hijack network configuration CredVnc Steal VNC credential

CreateService Create a windows service CredIe7 Steal IE 7 credential

CreateComService Create a COM server SniffLan Sniff Lan network traffic

NetworkUdpSock Communications over UDP network MigrateApc APC queue tasks migration

NetworkTcpListen Listen for incoming communication SpreadingFile Malware can spread east-west file

NetworkDynDns Communications dyndns network SpreadingShare Malware can spread east-west using share drive

NetworkToredo Communications over Toredo network RatVnc Remote Administration toolkit VNC

NetworkSmtpotNet Communications smtp RatRdp Remote Administration toolkit enable RDP

NetworkSmtpRaw Communications smtp RatTelnet Remote Administration toolkit enable Telnet

NetworkSmtpVb Communications smtp RatWebcam Remote Administration toolkit using webcam

NetworkP2pWin Communications over P2P network WinMutex Create or check mutex

NetworkTor Communications over TOR network WinRegistry Affect system registries

NetworkIrc Communications over IRC network WinToken Affect system token

NetworkHttp Communications over HTTP WinPrivateProfile Affect private profile

NetworkDropper File downloader/dropper WinFilesOperation Affect private profile

NetworkFtp Communications over FTP StrWin32Winsock2Library Match Winsock 2 API library declaration

NetworkTcpSocket Communications over RAW socket StrWin32WininetLibrary Match Windows Inet API library declaration

NetworkDns Communications use DNS StrWin32InternetAPI Match Windows Inet API call

NetworkSsl Communications over SSL StrWin32HttpAPI Match Windows Http API call

NetworkDga Communication using dga MysqlDatabasePresence This rule checks MySQL database presence

Bitcoin Perform cryptocurrency mining HasTLS Has Thread Local Storage

Certificate Inject certificate in-store HasASLR Has Address Space Layout Randomization

EscalatePriv Escalade privileges HasSEH Has Structured Exception Handling

Screenshot Take screenshot HasCFG Has Control Flow Guard

LookupIp Lookup external IP HasDEP Has Data Execution Prevention flag

DynDns Dynamic DNS HasManifest Has manifest

LookupGeo Lookup Geolocation SuspiciousDebugTs Suspicious debug timestamp

Keylogger Run a keylogger CodeIntegrity Code integrity

4.3. ML-based detector

The extracted features are then input into ML-based methods. All malware categories
are designated as the first class, while benign samples are categorized as the second class.
For the experiments, we utilize well-known classification methods, namely XGBoost with
gradient-boosted decision trees, Random Forest, and KNN, for constructing the ML-based
Detector in our BAE-MD framework. The objective is to assess the strength and robustness
of the BAE method when paired with various established machine-learning techniques.

BYPASSING ANTI-EMULATION METHODS FOR MALWARE DETECTION 241

Figure 2: Malware Detection Framework with Static Analysis on PE (SAP)

Figure 3: Malware Detection Framework with Dynamic Analysis on Cuckoo Sandbox (DAC)

The BAE-MD framework is an end-to-end solution designed to automatically identify
malware. It can seamlessly integrate into malware detection systems, enhancing their detec-
tion capabilities, particularly against malware employing obfuscation techniques.

5. EVALUATION AND DISCUSSION

This section evaluates our proposed BAE-based malware detection framework (BAE-
MD) on a malware dataset. The performance of BAE-MD is compared to other malware
detection frameworks using the static analysis on PE files (SAP) and dynamic analysis
on Cuckoo Sandbox (DAC) trace API calls e . The overview of the malware detection
frameworks using SAP and DAC are presented in Figures 2 and 3 respectively.

Therefore, we designed two experiments to investigate the efficiency of our proposed
method against the others. Firstly, we evaluate the performance of Random Forest when
working with three different analysis techniques Bypass Anti-emulation method (BAE), SAP,
and DAC to illustrate the efficiency of BAE. To demonstrate the consistency of BAE, we
evaluate three different ML methods such as Random Forest, XGBoost, and KNN when
working on BAE. Secondly, we measure the characteristics of malware in two execution cases
with/without our Bypass Anti-emulation method to confirm the influence of our method.
The details of the experiments and resulting discussion are presented in Subsections 5.1, 5.2,
and 5.3.

5.1. Dataset

In this paper, we use 3, 020 malware samples collected fromMalwareBazaar f and Any.run g .
The data consists of various malware categories such as Ransomware, Spyware, and Trojan

e https://github.com/mohamedbenchikh/MDML/blob/master/
f MalwareBazaar - https://bazaar.abuse.ch/browse/
g ANY.RUN - https://any.run

242 VAN LOI CAO, DINH DAI NGUYEN

Horse as listed in Table 2. Similarly, benign samples collected only PE files from various
applications in the Windows machine. The dataset contains a total of 6, 040 records with
3, 020 benign samples.

Once PE files are collected, BAE is operated to produce memory dump files for the
dataset as illustrated in Figure 1. Then, the feature extractor component will transfer each
memory dump file into a 62-feature record, and store it in a CSV format file. The dataset is
randomly split into 70% for training and 30% for evaluation as shown in Table 2.

Table 2: Malware samples for training and testing

Lable data

Trojan Horse Spyware Ransomware

Benign Total

Z
eu

s

E
m
ot
et

R
ef
ro
so

S
ca
r

T
IB

S

C
o
ol
w
eb

se
ar
ch

G
at
or

T
ra
n
sp
on

d
er

C
on

ti

M
A
Z
E

P
y
sa

A
ko

R
ev
il
(S
o
d
in
ok

ib
i)

G
an

d
C
ra
b

S
am

S
am

R
y
u
k

B
ad

R
ab

b
it

Count 199 200 198 195 194 197 190 199 193 201 207 190 132 124 130 129 142 3020 6040

Training 141 138 142 135 142 139 135 138 137 141 143 136 92 87 91 90 99 2114 4240

Testing 58 62 56 60 52 58 55 61 56 60 64 54 40 37 39 39 43 906 1800

5.2. Experimental settings

Qiling framework with Unicorn Engine is set up as the emulation environment for
our experiments. It is installed on a machine with OS Ubuntu version 20.04, Intel Core i7-
9700 CPU, and 16GB RAM. For machine learning methods, the Sklearn library is employed
to construct ML-based models such as Random Forest, XGBoost, and KNN. The hyper-
parameters of the ML-based models are set with default values (i.e. n estimators = 50 for
Random Forest, max depth = 6 for XGBoost and n neighbors = 3 for KNN). To evaluate
the performance of Malware detection frameworks in this paper, different metrics such as
Accuracy, Weighted Average Precision, Weighted Average Recall, F1-score, and the Area
Under the ROC Curve (AUC) are utilized.

5.3. Results and discussion

As mentioned above, two experiments are conducted for the evaluation of our proposed
framework. Tables 3 and 4 present the performance of BAE-MD against these others using
SAP and DAC, and three ML-based methods on BAE. The analysis results from malware
in the two execution cases (with/without BAE) are shown in Tables 5, 6, and 7.

5.3.1. Performance in terms of detection accuracy

Table 3 shows that Random Forest works in conjunction with three malware analyses
for feature extraction, SAP, DAC, and BAE. The performance of Random Forest (RF) is
measured with five different metrics. The table clearly shows that Random Forest working
with dynamic analysis environments such as DAC and BAE outperforms that with SAP.
Additionally, RF with BAE produces the highest performance on all metrics (Accuracy,
Precision, Recall, F1-Score, and AUC).

BYPASSING ANTI-EMULATION METHODS FOR MALWARE DETECTION 243

The results show that analyzing malware during execution in dynamic environments, like
DAC and Qiling with BAE, can explore more characteristics than just using PE files. This
can facilitate extracting valuable features for ML-based detectors like Random Forest. The
Bypass Anti-emulation method (with the two functions of bypassing monitoring API calls
and bypassing measuring execution time) forces malware to actually execute in our control
environment. Thus, we can examine malicious code from obfuscated malware for feature
extraction that can be done by DAC. This can result in a better performance of Random
Forest on BAE.

Moreover, Table 4 demonstrates the consistency of three different ML-based methods
working on BAE. Both Random Forest, XGBoost, and KNN produce competitive perfor-
mance when measuring with the five metrics. Amongst them, KNN performs slightly worse
than the others.

Table 3: Performance of Random Forest on the features extracted by SAP, DAC, and BAE

Feature
Extraction with

Static Analysis
on PE (SAP)

Dynamic Analysis
on Cuckoo

Sandbox (DAC)

Bypass
Anti-emulation

(BAE)
Classifiers Random Forest

Accuracy 0.725 0.949 0.964
Precision 0.724 0.942 0.964
Recall 0.723 0.956 0.962
F1-Score 0.724 0.959 0.963
AUC 0.725 0.951 0.964

Table 4: Performance of three classifiers on the features extracted by BAE

Feature
Extraction with

Bypass Anti-emulation (BAE)

Classifiers KNN XGBoost Random Forest

Accuracy 0.952 0.964 0.964
Precision 0.939 0.961 0.964
Recall 0.961 0.964 0.962
F1-Score 0.950 0.962 0.963
AUC 0.953 0.964 0.964

5.3.2. Investigation characteristics of dumped files with BAE

To clarify the results in Subsection 5.3.1, we choose several malware files for investigation.
Malware often employs obfuscated techniques that compress and encrypt their malicious code
to evade malware analysis and detection methods. We execute these malware files in Qiling
controlled by BAE for investigation. The resulting information is compared to that obtained
from Qiling without BAE and from their PE files. Details of the investigation are presented
as follows:

Evaluate strings, the execution time, API calls, and Entropy: An obfuscated mal-
ware h is chosen for investigating strings, the execution time, API calls, and Entropy. The

h f5bf0c3e96b075995e0551785367891eea641dd9e1092c3808210753542d11e7

244 VAN LOI CAO, DINH DAI NGUYEN

Table 5: Strings extracted from the obfuscated file and the memory dump file

Strings
Obfuscated file Memory dumped file

LoadLibraryA ExitProcess CloseHandle UnmapViewOfFile
GetProcAddress VirtualProtect IsBadReadPtr MapViewOfFile
l;c 5it]{ CreateFileMappingA CreateFileA
Xcp4c {ms FindClose FindNextFileA
t fdi9Hcommode typl FindFirstFileA CopyFileA
h1I37 olfp KERNEL32.dll malloc
7 dy| Wv Il.t exit MSVCRT.dll
B`.rd @. exit XcptFilter
0’?lJ u A p initenv getmainargs
GIu PTj initterm setusermatherr
XPTPSW KERNEL32.DLL adjust fdiv p commode
MSVCRT.dll set app type except handler3

controlfp stricmp
.exe C:*

strings extracted from the obfuscated file are compared to those extracted from the memory
dump file controlled by BAE. The results from Table 5 confirm that when executing in our
controlled environment, a larger number of strings are found. Additionally, these strings
seem to be more likely real than extracted from the obfuscated file.

Moreover, the execution time, the number of API calls, and the entropy value are ana-
lyzed. Firstly, the above malware is executed in the Qiling environment in two cases with
and without BAE. We then measure the execution time, the number of API calls, and the
entropy as shown in Table 6. The results show that applying the bypass anti-emulation
method influences on the malware behavior such as the execution time, the number of API
calls, and the entropy. Entropy is a measure of the randomness or disorder within data. Low
entropy values often indicate high structured and regular patterns, while high entropy values
can suggest low randomness or complexity. Therefore, the lower entropy value (1.95) on the
memory dump file using BAE in comparison with that (6.11) not using BAE can indicate
that the BAE method has forced the malware to decompress and decrypt its content to the
memory. In addition, the execution time and number of API calls (6.5s and 12) are larger
than those not using BAE (1.5s and 4).

Again, these investigating results on strings, execution time, number of API calls, and
entropy can confirm the efficiency of the BAE method.

Table 6: The execution time, the number of API calls, and the entropy from malware when
it runs in Qiling with/without BAE

Type
Without

Bypass Anti-emulation
With

Bypass Anti-emulation

Time execution 1.5s 6.5s
Number of API call 4 12
Entropy 6.11 1.95

Yara rules: We randomly choose 25 malware samples from the training data shown in
Table 2 for investigating the number of matching rules. The same Yara rules used for
feature extraction in Subsection 4.2 are employed. These rules are applied to the original PE

BYPASSING ANTI-EMULATION METHODS FOR MALWARE DETECTION 245

files and the memory dump files extracted from the Qiling environment controlled by BAE.
For each malware, Table 7 presents the SHA-256 hash along with the number of matching
rules on its PE file and its memory dump file. The values in bold indicate a larger number
of matching rules found on the memory dump files.

Because original samples are obfuscated programs. Obfuscated programs often compress
and encrypt their malicious codes which cannot be analyzed. This data can be decompressed
and decrypted as the program runs in our controlling environment with BAE. This can restore
the malicious code by creating a memory region and writing the decoded data. Therefore,
the number of matching rules on the memory dump files obtained from our controlled envi-
ronment is often larger than that done on the original PE files. This can be explained that
why our proposed framework performs more efficiently than others using SAP and DAC.

Table 7: Numer of Yara rules matched on the PE file and memory dump file from the Qiling
environment with BAE

No. Hash SHA-256 of malware
Number of rules matched on malware
Original PE file Memory dump file

1 1af55c95620f18d4ad92ff28e83dd14ce1daaa77b7709beaa4cfe8652bde6f36 5 5
2 1c06a90840409f4635e8f9d959f482ed40379571595e2546926429f974998d21 12 12
3 2f86f8b37ce86cfe16419d0fbeb1d0ef2f37032f6c630ed1d14649f327c27aa0 0 4
4 3cf18715e4e52e503845221167ad276e90f614dd8142172d5a4a4f76b937bfe4 0 5
5 5e9f2794e4c145fbd68caacb0ddf07d1d35fc9b8b748b2efd1b4063e489f8223 5 7
6 6c6491a4d68635154b4b1ebcb72bd6f89493c0b44ed769b9a558888244efec18 5 8
7 6e855e9b6706e7b583345ce8fff8776c63ef5b36cb897cc4ed4a452722d3ad89 0 2
8 07bd5beb8d2042ce158e3debe0e63d1494816827384d31c87361ba8fd24b2d55 0 1
9 08a840677baaa0b14152850e1e0923aaa819ae8a2ecd7923f9510e1141962f16 0 3
10 8cc440eff0de4c70b4427d2d0332dd8ccbadb36ead79bd1db5bc67b665bd3fe2 0 4
11 9ab21141018bf9b7884f4dba96fcd4d184bc1fb913f38e8267decba39f78b376 0 2
12 9acefbb6638612b03847da2c1652e3a1aae9d677b22f5c5d0e43022d8d08c6bb 4 5
13 9e0a919d3d424638da51b979be48222f565f97a1f21a536e3fe56e067ae80401 13 13
14 16d662bcb526f0bc319671cb02488c7d37a70925d73a04d79c25e3ce0abb5253 0 3
15 23a188b67111d6c67ba62e1588479154ca23c4c65d768a662b873757a3419ed0 0 2
16 34a0f848bbcf609398fbffbc14a3b070f6e5c15c4987785c29db8de7d46f9bd6 1 3
17 49b2e08cf7fb9bceaf2721ef24c9ab795c984403c258af9df3914dee1f3225a0 0 2
18 58e6a469f1ace9ec112de054209783ad6dd469a0794f20a998a0dcdf02a4834e 0 0
19 59da9f40387363fb12e59349fa8f47535f80abe5ac07d87e20f42c547e176864 5 5
20 76de16b596ad3700130d2d2c02a9ca144ace99bef78a7088b93f069673cbe972 0 2
21 82a294aa5072baca70b941c44def34063e052ef781a1673ebc65071cffba647e 1 1
22 226f1fce2b39e4769507402b282864222d091d786344511d4fdf4cf9c3d2c049 0 0
23 236c73a241d229cc820b4fa2aa914403151deb84b90939ac4760460fc107dda4 5 5
24 664e98a05e0cdd62d0f97525f2255f1c19b5b8a1d8091a362ef5fbc007c2715c 0 2
25 954fe5a029ddc55acc658311beb82b95c6755a07101efb9cbe631a42e2bd00ef 0 4

6. CONCLUSIONS AND FUTURE WORK

This study introduces the Bypass Anti-emulation-based Malware Detection framework
(BAE-MD) for improving the efficiency of detecting obfuscated malware. By circumventing
malware’s anti-emulation mechanisms within dynamic environments, BAE-MD enables the
decryption and decompression of malicious code directly into memory. This can facilitate ob-
taining valuable features for ML-based malware detection methods. Our proposed framework
is evaluated on a malware dataset and compared to alternative approaches employing static
and dynamic analysis techniques for feature extraction. The experiments demonstrate that

246 VAN LOI CAO, DINH DAI NGUYEN

BAE-MD outperforms existing methods in terms of detection accuracy and efficiency. The
task of investigating other execution format files and adapting BAE-MD on Linux systems
is postponed to future work.

REFERENCES

[1] J. Singh and J. Singh, “A survey on machine learning-based malware detection in executable

files,” Journal of Systems Architecture, vol. 112, p. 101861, Jan. 2021. [Online]. Available:

https://doi.org/10.1016/j.sysarc.2020.101861

[2] W. Han, J. Xue, Y. Wang, L. Huang, Z. Kong, and L. Mao, “MalDAE: Detecting and

explaining malware based on correlation and fusion of static and dynamic characteristics,”

Computers & Security, vol. 83, pp. 208–233, Jun. 2019. [Online]. Available: https:

//doi.org/10.1016/j.cose.2019.02.007

[3] R. Chaganti, V. Ravi, and T. D. Pham, “A multi-view feature fusion approach for

effective malware classification using deep learning,” Journal of Information Security
and Applications, vol. 72, no. C, pp. 103 402–103 417, Feb. 2023. [Online]. Available:

https://doi.org/10.1016/j.jisa.2022.103402

[4] D. Amir, B. Ahmed, R. Saddaf, and M. M. Ibrahim, “Artificial intelligence-based malware

detection, analysis, and mitigation,” Symmetry, vol. 15, no. 3, Feb. 2023. [Online]. Available:

https://doi.org/10.3390/sym15030677

[5] S. Yan, J. Ren, W. Wang, L. Sun, W. Zhang, and Q. Yu, “A survey of Adversarial attack

and defense methods for malware classification in cyber security,” IEEE Communications
Surveys & Tutorials, vol. 25, no. 1, pp. 467–496, Mar. 2023. [Online]. Available:

https://doi.org/10.1109/COMST.2022.3225137

[6] Ö. Aslan, S. S. Aktuğ, M. Ozkan-Okay, A. A. Yilmaz, and E. Akin, “A comprehensive review

of cyber security vulnerabilities, threats, attacks, and solutions,” Electronics, vol. 12, no. 6, p.
1333, Mar. 2023. [Online]. Available: https://doi.org/10.3390/electronics12061333

[7] K. Khan, A. Mehmood, S. Khan, M. A. Khan, Z. Iqbal, and W. K. Mashwani,

“A survey on intrusion detection and prevention in wireless ad-hoc networks,” Journal
of Systems Architecture, vol. 105, p. 101701, May 2020. [Online]. Available: https:

//doi.org/10.1016/j.sysarc.2019.101701

[8] M. A. Fatemeh Deldar, “Deep learning for zero-day malware detection and classification: A

survey,” ACM Computing Surveys, vol. 56, no. 2, pp. 1–37, Sep. 2023. [Online]. Available:

https://doi.org/10.1145/3605775

[9] M. S. Akhtar and T. Feng, “Malware analysis and detection using machine learning

algorithms,” Symmetry, vol. 14, no. 11, p. 2304, Nov. 2022. [Online]. Available:

https://doi.org/10.3390/sym14112304

[10] V. D. Quang, “Enhancing obfuscated malware detection with machine learning techniques,”

Communications in Computer and Information Science, vol. 1688, pp. 731–738, Nov. 2022.

[Online]. Available: https://doi.org/10.1007/978-981-19-8069-5 54

https://doi.org/10.1016/j.sysarc.2020.101861
https://doi.org/10.1016/j.cose.2019.02.007
https://doi.org/10.1016/j.cose.2019.02.007
https://doi.org/10.1016/j.jisa.2022.103402
https://doi.org/10.3390/sym15030677
https://doi.org/10.1109/COMST.2022.3225137
https://doi.org/10.3390/electronics12061333
https://doi.org/10.1016/j.sysarc.2019.101701
https://doi.org/10.1016/j.sysarc.2019.101701
https://doi.org/10.1145/3605775
https://doi.org/10.3390/sym14112304
https://doi.org/10.1007/978-981-19-8069-5_54

BYPASSING ANTI-EMULATION METHODS FOR MALWARE DETECTION 247

[11] F. Jannatul, I. Rafiqul, M. Arash, and I. Md Zahidul, “A review of state-of-the-art malware

attack trends and defense mechanisms,” IEEE Access, vol. 11, pp. 121 118–121 141, 2023.

[Online]. Available: https://doi.org/10.1109/ACCESS.2023.3328351

[12] M. M. Alani, A. Mashatan, and A. Miri, “XMal: A lightweight memory-based explainable

obfuscated-malware detector,” Computers & Security, vol. 133, p. 103409, Oct. 2023. [Online].

Available: https://doi.org/10.1016/j.cose.2023.103409

[13] H. J. Asghar, B. Z. H. Zhao, M. Ikram, G. Nguyen, D. Kaafar, S. Lamont, and

D. Coscia, “Use of cryptography in malware obfuscation,” Journal of Computer Virology
and Hacking Techniques, vol. 20, no. 1, pp. 135–152, Mar. 2024. [Online]. Available:

https://doi.org/10.1007/s11416-023-00504-y

[14] R. Ali, A. Ali, F. Iqbal, M. Hussain, and F. Ullah, “Deep learning methods

for malware and intrusion detection: A systematic literature review,” Security and
Communication Networks, vol. 2022, no. 1, p. 2959222, Oct. 2022. [Online]. Available:

https://doi.org/10.1155/2022/2959222

[15] U.-e.-H. Tayyab, F. B. Khan, M. H. Durad, A. Khan, and Y. S. Lee, “A survey of the recent

trends in deep learning based malware detection,” Journal of Cybersecurity and Privacy,
vol. 2, no. 4, pp. 800–829, Sep. 2022. [Online]. Available: https://doi.org/10.3390/jcp2040041

[16] M. T. Nguyen, V. H. Nguyen, and N. Shone, “Using deep graph learning to improve

dynamic analysis-based malware detection in PE files,” Journal of Computer Virology
and Hacking Techniques, vol. 20, no. 1, pp. 153–172, Sep. 2024. [Online]. Available:

https://doi.org/10.1007/s11416-023-00505-x

[17] M. Kim, H. Cho, and J. H. Yi, “Large-scale analysis on anti-analysis techniques in

real-world malware,” IEEE Access, vol. 10, pp. 75 802–75 815, Jul. 2022. [Online]. Available:

https://doi.org/10.1109/ACCESS.2022.3190978

[18] A. Sharma, B. B. Gupta, A. K. Singh, and V. Saraswat, “Orchestration of apt malware evasive

manoeuvers employed for eluding anti-virus and sandbox defense,” Computers & Security,
vol. 115, p. 102627, Apr. 2022. [Online]. Available: https://doi.org/10.1016/j.cose.2022.102627

[19] P. Rehida, G. Markowsky, A. Sachenko, and O. Savenko, “State-based sandbox tool for

distributed malware detection with avoid techniques,” in 2023 13th International Conference
on Dependable Systems, Services and Technologies (DESSERT). IEEE, Oct. 2023, pp.

1–6. [Online]. Available: http://dx.doi.org/10.1109/DESSERT61349.2023.10416467

[20] G. I. Stoleru and D. T. Gavrilut, “A practical approach for malware identification based

on anti-emulation techniques and feature to image translation,” in 2021 31st International
Conference on Computer Theory and Applications (ICCTA). IEEE, Oct. 2021, pp.

133–140. [Online]. Available: https://doi.org/10.1109/ICCTA54562.2021.9916624

[21] M. Dener, G. Ok, and A. Orman, “Malware detection using memory analysis data in big

data environment,” Applied Sciences, vol. 12, no. 17, p. 8604, Aug. 2022. [Online]. Available:

https://doi.org/10.3390/app12178604

https://doi.org/10.1109/ACCESS.2023.3328351
https://doi.org/10.1016/j.cose.2023.103409
https://doi.org/10.1007/s11416-023-00504-y
https://doi.org/10.1155/2022/2959222
https://doi.org/10.3390/jcp2040041
https://doi.org/10.1007/s11416-023-00505-x
https://doi.org/10.1109/ACCESS.2022.3190978
https://doi.org/10.1016/j.cose.2022.102627
http://dx.doi.org/10.1109/DESSERT61349.2023.10416467
https://doi.org/10.1109/ICCTA54562.2021.9916624
https://doi.org/10.3390/app12178604

248 VAN LOI CAO, DINH DAI NGUYEN

[22] W. Qiang, L. Yang, and H. Jin, “Efficient and robust malware detection based on control flow

traces using deep neural networks,” Computers & Security, vol. 122, p. 102871, Nov. 2022.

[Online]. Available: https://doi.org/10.1016/j.cose.2022.102871

[23] K. Shaukat, S. Luo, and V. Varadharajan, “A novel deep learning-based approach for malware

detection,” Engineering Applications of Artificial Intelligence, vol. 122, p. 106030, Jun.

2023. [Online]. Available: https://doi.org/10.1016/j.engappai.2023.106030

[24] M. Gopinath and S. C. Sethuraman, “A comprehensive survey on deep learning based malware

detection techniques,” Computer Science Review, vol. 47, p. 100529, Feb. 2023. [Online].

Available: https://doi.org/10.1016/j.cosrev.2022.100529

[25] A. R. Pandey, T. Sharma, S. Basnet, and S. Setia, “Static analysis approach of

malware using machine learning,” in International Conference on Recent Developments
in Cyber Security. Springer, Mar. 2023, pp. 109–121. [Online]. Available: https:

//doi.org/10.1007/978-981-99-9811-1 9

[26] H. K. Singh, J. P. Singh, and A. S. Tewari, “Static malware analysis using machine and deep

learning,” Proceedings of International Conference on Computing and Communication
Networks, Jul. 2022. [Online]. Available: https://doi.org/10.1007/978-981-19-0604-6 41

[27] J. von der Assen, A. H. Celdrán, A. Zermin, R. Mogicato, G. Bovet, and B. Stiller,

“Secbox: A lightweight container-based sandbox for dynamic malware analysis,” IEEE/IFIP
Network Operations and Management Symposium, pp. 1–3, Jun. 2023. [Online]. Available:

https://doi.org/10.1109/NOMS56928.2023.10154293

[28] N. M. Tu, N. V. Hung, P. V. Anh, C. Van Loi, and N. Shone, “Detecting malware based

on dynamic analysis techniques using deep graph learning,” in Future Data and Security
Engineering: 7th International Conference, FDSE 2020, Quy Nhon, Vietnam, November
25–27, 2020, Proceedings 7. Springer, Nov. 2020, pp. 357–378. [Online]. Available:

https://doi.org/10.1007/978-3-030-63924-2 21

[29] F. A. Aboaoja, A. Zainal, A. M. Ali, F. A. Ghaleb, F. J. Alsolami, and M. A. Rassam,

“Dynamic extraction of initial behavior for evasive malware detection,” Mathematics, vol. 11,
no. 2, p. 416, Jan. 2023. [Online]. Available: https://doi.org/10.3390/math11020416

[30] H.-V. Le and Q.-D. Ngo, “V-sandbox for dynamic analysis IoT botnet,” IEEE Access, vol. 8, pp.
145 768–145 786, Aug. 2020. [Online]. Available: https://doi.org/10.1109/ACCESS.2020.3014891

[31] S. Yonamine, Y. Taenaka, Y. Kadobayashi, and D. Miyamoto, “Design and implementation

of a sandbox for facilitating and automating IoT malware analysis with techniques to elicit

malicious behavior: case studies of functionalities for dissecting IoT malware,” Journal of
Computer Virology and Hacking Techniques, vol. 19, no. 2, pp. 149–163, May 2023. [Online].

Available: https://doi.org/10.1007/s11416-023-00478-x
Received on May 07, 2024
Accepted on July 10, 2024

https://doi.org/10.1016/j.cose.2022.102871
https://doi.org/10.1016/j.engappai.2023.106030
https://doi.org/10.1016/j.cosrev.2022.100529
https://doi.org/10.1007/978-981-99-9811-1_9
https://doi.org/10.1007/978-981-99-9811-1_9
https://doi.org/10.1007/978-981-19-0604-6_41
https://doi.org/10.1109/NOMS56928.2023.10154293
https://doi.org/10.1007/978-3-030-63924-2_21
https://doi.org/10.3390/math11020416
https://doi.org/10.1109/ACCESS.2020.3014891
https://doi.org/10.1007/s11416-023-00478-x

	INTRODUCTION
	BACKGROUND
	Static analysis
	Dynamic analysis

	RELATED WORK
	PROPOSED APPROACH
	Bypass anti-emulation (BAE)
	Feature extractor
	ML-based detector

	EVALUATION AND DISCUSSION
	Dataset
	Experimental settings
	Results and discussion
	Performance in terms of detection accuracy
	Investigation characteristics of dumped files with BAE

	CONCLUSIONS AND FUTURE WORK

