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Abstract. Noninvasive prenatal test (NIPT) is a widely used screening method to detect trisomy on

chromosomes 13, 18, and 21. The lack of positive samples prevents us from examining the performance

of NIPT algorithms on detecting trisomy on other chromosomes. Recently, we have introduced an

efficient computational method to generate positive samples with trisomy from negative samples. In

this paper, we applied the simulation method to generate 4600 positive samples for all 22 autosomal

chromosomes as well as the X chromosome in females; and reused 1250 negative samples to assess the

performance of algorithms CNVKit, WisecondorX, and VINIPT in detecting numerical chromosome

aberrations. Experiments showed that WisecondorX had a sensitivity of 99.95% and a specificity of

97.2% on determining trisomy aberrations. VINIPT could detect all positive samples (i.e., sensitivity

of 100%) and correctly determined 99.4% negative samples (i.e., specificity of 99.4%). The CNVkit

algorithm was not as accurate as the WisecondorX and VINIPT algorithms. Its performance on some

chromosomes such as chromosome 19 needs to be improved. WisecondorX and VINIPT could serve

as reliable tools for analyzing NIPT data.

Keywords. Non-invasive prenatal test (NIPT), WisecondorX, VINIPT, CNVKit, Autosomal tri-

somy, Simulation.

1. INTRODUCTION

A normal human genome has 23 pairs of chromosomes including 22 pairs of autosomal
chromosomes and one pair of sex chromosomes. Females have two X chromosomes while
males have one X chromosome and one Y chromosome. Numerical chromosome aberrations
(i.e., losing one copy or having one additional copy of a chromosome) might occur in fetal
genomes during the pregnancy resulting in different serious disorders. The most prevalent
numerical chromosome aberrations are trisomy on chromosomes (i.e., having an extra copy
of a chromosome) including well-known notorious trisomy on chromosome 13 (T13 or Patau
syndrome), chromosome 18 (T18 or Edwards syndrome), and chromosome 21 (T21 or Down
syndrome).

Detecting numerical chromosome aberrations during the first weeks of pregnancy is one
of the most crucial tests for pregnant women. Non-invasive prenatal test (NIPT) has been
developed and widely used in practice to detect trisomy on chromosomes 13, 18, and 21.
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To undertake the NIPT, cell-free DNA (cfDNA) is extracted from the blood of the mother
as early as the 10th week which includes a mixture of both maternal and fetal genomes.
Statistical methods have been developed to detect numerical chromosome aberrations in the
fetal genome from its cfDNA in the maternal blood such as NIFTY [3], Wisecondor [12], its
improvement WisecondorX [11], and CNVkit [13].

The NIPT algorithms have a high level of sensitivity and specificity in detecting trisomy
on chromosomes 13, 18, and 21 [7, 10, 15]. As almost all NIPT samples are normal (negative),
a large number of negative samples are available from genetic testing centers. The negative
samples can be used to measure the specificity (the ability to detect negative samples) of
NIPT algorithms. However, the sensitivity (the ability to detect positive sample) of the NIPT
algorithms is not easily evaluated due to the lack of positive samples publicly available to
the scientific community.

Simulating positive samples is a good approach to assess the sensitivity of NIPT methods.
Recently, we have proposed a simple computational approach to simulate positive samples
with aberrations on autosomal chromosomes from negative samples [8]. We simulated pos-
itive samples with trisomy on chromosomes 13, 18, and 21 to preliminarily evaluate the
sensitivity of NIPT software WisecondorX and VINIPT. In this paper, we applied the simu-
lation method to create positive samples with trisomy on all 22 autosomal chromosomes as
well as X chromosome in females. We used the positive samples and 1250 negative samples
to measure the sensitivity and specificity of three algorithms CNVkit, WisecondorX, and
VINIPT.

2. DATA AND METHODS

2.1. Data

We reused negative samples from singleton pregnancies in our recent study [8]. The
samples were sequenced by the MGISEQ-200 platform with 50 bp single-end reads. We
selected 200 negative female samples with the number of reads from 5 to 15 million, and
the fetal DNA fraction of at least 4.0 from the dataset to create positive samples. We
created 200 positive samples with trisomy for each chromosome (i.e., chromosome 1 to chro-
mosome 22 and chromosome X). In this study, we simulated 200 positive samples for each
chromosome to avoid computational overload. In total, we created 4600 positive samples
(200 samples × 23 chromosomes) for measuring the sensitivity of NIPT algorithms. Their
fetal DNA fractions range from 4.1% to 20.9% with a mean of about 10%. The average
number of reads per sample is about 9.7 million (∼ 0.15x). We also selected 1250 negative
samples with at least 2.5 million reads to examine the specificity of the algorithms. The
mean fetal DNA fraction of the negative samples is about 9.7% (ranging from 3.4% to 21%).
The negative samples contain from 2.7 to 35.9 million reads with a mean of 11.6 million
reads (∼ 0.17x). The statistics of the samples are summarized in Table 1.

2.2. NIPT procedure

Non-invasive prenatal test (NIPT) provides a safe and efficient method for screening
aberrations in the genomes of developing fetuses. To carry out NIPT, blood from the mother
is collected as early as the 10th week of pregnancy, and samples are subject to a series of
both wet-lab and bioinformatics steps (see Figure 1) to determine numerical chromosome
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Table 1: The statistics of fetal DNA fraction and the number of reads of negative and
simulated positive NIPT samples.

Fetal DNA fraction (%) #Reads (million)

Dataset #Samples Min Mean Std Max Min Mean Std Max

Simulated positive samples 4600 4.1 10.0 2.5 20.9 5.4 9.7 1.5 14.8

Negative samples 1250 3.4 9.7 2.9 21.0 2.7 11.6 6.3 35.5

aberrations. The bioinformatics steps including NIPT algorithms play a pivotal role in the
analysis and interpretation of genomic aberrations originating from the fetal genome.

Wet-lab steps: They include blood collection from pregnant women, cfDNA extraction
from the maternal blood, and genome sequencing.

– Blood collection: The blood from pregnant women contains a mixture of cfDNA from
genomes of both mother and developing fetus. A small amount of blood is collected
from the pregnant woman, typically as early as the 10th week of pregnancy.

– cfDNA extraction: The cfDNA from the maternal blood sample is extracted. Most of
cfDNA (∼ 90%) originate from the maternal genome and a small portion (∼ 10%) are
from the fetal genome.

– Genome sequencing: The cfDNA is sequenced by high-throughput sequencing plat-
forms such as Illumina. The step results in multi-million short reads. In practice, the
read coverage per sample typically ranges from 0.1x (∼ 6 million reads of 50 bps in
length) to 1x.

The Bioinformatics phase consists of three key steps: data processing, fetal DNA fraction
estimation, and identification of numerical chromosome aberrations using NIPT algorithms.

Data processing: The sequenced short reads undergo several data processing steps
including sequence alignment and sequence cleaning. Mapping short reads to the refer-
ence genome to determine their positions in the genome using a genome aligner such as
Bowtie2 [5] or BWA [6]. To obtain high-quality data for downstream analyses, the short
reads ambiguously mapped to multiple positions might be removed; and duplications should
be also eliminated except one.

Fetal DNA fraction estimation: Applying computational methods to estimate the
fetal DNA fraction. If the fetal DNA fraction is not enough (e.g., smaller than 5%), we have
to re-collect blood and re-sequence data to obtain a higher fetal DNA fraction (the longer
pregnancy time leads to higher fetal DNA fraction). Technically, the fetal DNA fraction can
be estimated by computational methods [14] such as SeqFF [4] that can efficiently work for
both male and female samples.

NIPT algorithms: A number of NIPT algorithms have been proposed to detect nu-
merical chromosome aberrations such as NIFTY [3], CNVkit [13], Wisecondor [12], and its
improvement WisecondorX [11]. If the fetus of a test sample has an additional copy of
chromosome h, the read percentage of chromosome h in the test sample will increase in
comparison with that in normal samples. Detecting the change in a fetal genome is a chal-
lenging problem because fetal DNA only makes up a small part of the NIPT data. The
NIPT algorithms typically employ statistical methods and the read coverage information to
detect numerical chromosome aberrations in the fetal genome. The general idea of NIPT
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Figure 1: The NIPT procedure to detect numerical chromosome aberrations from the ma-
ternal blood. The procedure includes both wet lab and bioinformatics steps.

algorithms is to compare the read coverage in the test sample with those in the normal
samples to determine numerical chromosome aberrations in the test sample.

Numerical chromosome aberrations are determined from aberrations on small regions
(called bins) in chromosomes. A genome is normally divided into equal-size bins with lengths
of thousands to millions of base pairs such that each bin contains a sufficient number of reads.
The read coverage percentages of bins in normal samples are analyzed to construct a reference
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panel and used as the basis to compare with that in the test sample. If the read coverage
of bin b in the test sample considerably deviates from that in the reference panel, bin b
is considered as abnormal. The NIPT algorithms use different statistical tests to assign a
z-score for each bin. The overall z-score of a chromosome is estimated from the z-scores of its
bins. A chromosome is predicted abnormal if its overall z-score exceeds a predefined z-score
threshold.

Comparing the read coverages of bins in a test sample with that in normal samples re-
quires that the test sample and reference samples are sequenced under the same conditions.
This requirement might not be completely fulfilled in practice. To overcome the strictly
technical requirement, within-sample copy number aberration detection algorithms Wisec-
ondor [12] and its improvement WisecondorX [11] have been proposed. For each bin b in
chromosome h, the within-sample algorithm determines a set of reference bins in other chro-
mosomes that have similar read coverages to b in normal samples. This strategy guarantees
that bin b and its reference bins in the test sample are sequenced under the same condition.
The read coverage of b in the test sample will be compared with that of its reference bins to
assign a z-score for bin b. Stouffer’s z-score sliding window approach or circular binary seg-
mentation algorithm [9] can be used to determine aberrations on chromosomes from z-scores
of bins.

2.3. Positive sample simulation

The trisomy on chromosomes occurs when the fetal genome has an additional copy of
a chromosome. Note that we are unable to separate the cfDNA of the maternal genome
from that of the fetal genome. Although computational methods have been proposed to
simulate short reads, they are not designed for NIPT data with such complex characteristics
as cfDNA artifacts, differences in fragment size, and quality of short-reads from maternal
and fetal genomes.

Recently, we proposed a computational method to create positive samples from negative
samples without simulating new short reads [8]. Let Q be a normal NIPT sample in which
each autosomal chromosome has two copies. Sample Q has trisomy on chromosome h if
the fetal genome contains three copies of chromosome h. Given the NIPT data of sample
Q, adding new short reads to create an additional copy of a chromosome h in the fetal
genome will increase the read percentage of chromosome h in comparison with those of other
chromosomes. Equivalently, we do not change the read percentage of chromosome h, but
decrease the read percentage of other chromosomes by deleting their short reads.

Let f be the fraction of fetal DNA in maternal blood, i.e., f% of short reads come
from the fetal genome, and (100 − f)% of short reads are from the maternal genome. The
read percentage Ch of chromosome h will be increased to Ch = Ch(1 + 0.5 × f) when
inserting an additional copy of chromosome h in the fetal genome. This is equivalent to
keep Ch unchanged and decrease the read coverage Ci of other chromosomes i(i ̸= h) to
C ,
i =

Ci
(1+0.5×f) .

3. RESULTS

We assessed the sensitivity and specificity of three algorithms CNVKit, WisecondorX,
and its improvement VINIPT [8]. First, we reported the performance of the algorithms with
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the z-score cutoff threshold of 3.3 as used in [8]. We measured the sensitivity of the NIPT
algorithms on 4600 positive samples and their specificity on 1250 negative samples. We also
investigated the performance of the algorithms with higher z-score cutoff thresholds of 5.0
and 7.0. We note that some other well-known algorithms such as NIFTY are commercialized
and thus not publicly available for testing.

3.1. Sensitivity evaluation

First, we examined the sensitivity of CNVKit, WisecondorX, and VINIPT algorithms on
4600 positive samples, i.e., 200 positive samples for each chromosome. Table 2 shows the
prediction results on all chromosomes using the z-score cutoff threshold of 3.3 for the three
NIPT algorithms.

Table 2: The sensitivity of WisecondorX, VINIPT, and CNVKit algorithms with the z-score
cut-off threshold of 3.3. The results are summarized from 4600 positive samples with trisomy
aberrations.

WisecondorX VINIPT CNVKit
Chromosome

#False negative Sensitivity #False negative Sensitivity #False negative Sensitivity

Chr1 0 100% 0 100% 2 99%

Chr2 0 100% 0 100% 0 100%

Chr3 0 100% 0 100% 0 100%

Chr4 0 100% 0 100% 0 100%

Chr5 0 100% 0 100% 0 100%

Chr6 0 100% 0 100% 0 100%

Chr7 0 100% 0 100% 0 100%

Chr8 0 100% 0 100% 0 100%

Chr9 0 100% 0 100% 28 86.2%

Chr10 0 100% 0 100% 0 100%

Chr11 0 100% 0 100% 0 100%

Chr12 0 100% 0 100% 0 100%

Chr13 0 100% 0 100% 0 100%

Chr14 0 100% 0 100% 0 100%

Chr15 0 100% 0 100% 8 96%

Chr16 0 100% 0 100% 6 97%

Chr17 0 100% 0 100% 0 100%

Chr18 0 100% 0 100% 0 100%

Chr19 0 100% 0 100% 9 95.5%

Chr20 0 100% 0 100% 0 100%

Chr21 0 100% 0 100% 48 76%

Chr22 1 99.5% 0 100% 10 95%

ChrX 0 100% 0 100% 1 99.5%

All 23 chromosomes 1 99.95% 0 100% 112 97.56%

The WisecondorX was able to detect almost all positive samples except one sample with
aberration on chromosome 22, i.e., its sensitivity is equivalent to 99.95%. The VINIPT could
detect all positive samples, i.e., the sensitivity of 100%. The CNVKit falsely predicted 112
positive samples as negative, e.g., 28 cases on chromosome 9 or 48 cases on chromosome 21.
The overall sensitivity of CNVKit in detecting positive trisomy samples was 97.56%.

Figure 2 shows the z-score distributions of WisecondorX, VINIPT, and CNVKit algo-
rithms on positive samples. Almost all positive samples have high z-scores, except 112 false
negative samples predicted by CNVKit that have low z-scores (displayed as outliers). The
average z-score predicted by the CNVkit algorithm is lower than that by the WisecondorX
and VINIPT algorithms.
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Figure 2: The distributions of z-scores from VINIPT, WisecondorX, and CNVKit methods
on positive samples with trisomy aberrations.

3.2. Specificity evaluation

We evaluated the specificity of WisecondorX, VINIPT, and CNVKit algorithms on 1250
negative samples. Table 3 summarizes the specificity of the algorithms for 23 chromosomes.
The WisecondorX falsely assigned 187 out of 1250 negative samples to positive samples, i.e.,
its specificity equals 85.1%. The VINIPT could determine almost all negative samples (it
wrongly predicted 8 false positive samples) and has a specificity of 99.4%. The CNVKit
incorrectly predicted 323 negative samples as positive samples, i.e., its specificity of only
74.2%. We observed that a large number of false positive samples was on chromosome 19
(26 from WisecondorX; 3 from VINIPT; and 194 from CNVKit). The chromosome 19 is a
difficult chromosome for all NIPT algorithms due to its rich GC content and high content of
hypermutable CpG sites that make chromosome 19 highly diverse [1].

The distributions of z-scores derived from VINIPT, WisecondorX, and CNVkit methods
on negative samples are illustrated in Figure 3. We see that outlier samples (false positive
samples) have z-scores greater than the predefined z-score threshold of 3.3.

3.3. Z-score threshold evaluation

Changing the z-score cut-off threshold will change the sensitivity and specificity of NIPT
algorithms. Increasing the z-score threshold helps reduce the false positive rate (i.e., in-
creasing the specificity), but raises the false negative rate (i.e., reducing the sensitivity). In
contrast, decreasing the z-score threshold might increase the sensitivity, but reduce the speci-
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Table 3: The specificity of WisecondorX, VINIPT, and CNVKit algorithms with the z-score
cut-off threshold of 3.3. The results are summarized from 1250 negative samples.

WisecondorX VINIPT CNVKit
Chromosome

#False positive Specificity #False positive Specificity #False positive Specificity

Chr1 4 99,7% 0 100% 2 99,8%

Chr2 4 99,7% 0 100% 1 99,9%

Chr3 5 99,6% 0 100% 9 99,3%

Chr4 5 99,6% 0 100% 20 98,4%

Chr5 8 99,4% 0 100% 11 99,1%

Chr6 11 99,1% 0 100% 8 99,4%

Chr7 10 99,2% 1 99,9% 7 99,4%

Chr8 13 99% 0 100% 6 99,5%

Chr9 2 99,8% 0 100% 26 97,9%

Chr10 8 99,4% 1 99,9% 1 99,9%

Chr11 4 99,7% 0 100% 0 100%

Chr12 4 99,7% 0 100% 1 99,9%

Chr13 4 99,7% 0 100% 22 98,2%

Chr14 4 99,7% 0 100% 1 99,9%

Chr15 13 99% 0 100% 1 99,9%

Chr16 6 99,5% 1 99,9% 19 98,5%

Chr17 7 99,4% 0 100% 0 100%

Chr18 7 99,4% 0 100% 10 99,2%

Chr19 26 97,9% 3 99,8% 194 84,5%

Chr20 6 99,5% 0 100% 2 100%

Chr21 6 99,5% 0 100% 0 100%

Chr22 4 99,7% 2 99,8% 1 100%

ChrX 18 98,6% 0 100% 27 97,8%

All 23 chromosomes 187 85.1% 8 99,4% 323 74.2%

Figure 3: The distributions of z-scores from VINIPT, WisecondorX, and CNVkit methods
on negative samples.
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ficity. We examined the performance of WisecondorX, VINIPT, and CNVkit with higher
z-score cutoff thresholds of 5.0, and 7.0. Table 4 shows the overall sensitivity and speci-
ficity of the NIPT algorithms with the z-score thresholds of 3.3, 5.0 and 7.0. The sensitivity
and specificity of the NIPT algorithms for every chromosome for z-scores of 5.0 and 7.0 are
summarized in Table S1-S4 in the Appendix.

WisecondorX has a sensitivity of 99.95% for both z-score thresholds of 3.3 and 5.0; and
a lower sensitivity of 99.9% with a z-score threshold of 7.0. Its specificity gets much higher
from 85.1% to 99.2% when increasing the z-score threshold from 3.3 to 7.0. The sensitivity
and specificity of VINIPT slightly changed when alternating the z-score thresholds from 3.3
to 7.0, i.e., the sensitivity decreased from 100% to 99.5% while the specificity increased from
99.4% to 99.8%.

The specificity of CNVKit was significantly better (from 74.2% to 94.9%) when using
the z-score threshold of 5.0 instead of 3.3, while its sensitivity reduced from 97.56% to a
lower level of 93.54%. The CNVKit with a z-score threshold of 7.0 had an overall sensitivity
of 86.36%; and considerably low sensitivity on some chromosomes such as only 7.5% on
chromosome 21. It is challenging for CNVKit to have a high specificity on chromosome 9
possibly due to its highly structurally polymorphic and many intra and inter-chromosomal
duplications [2].

Table 4: The sensitivity and specificity of WisecondorX, VINIPT, and CNVkit algorithms
with different z-score cut-off thresholds.

WisecondorX VINIPT CNVkit
z-score thresholds

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

3.3 99.95% 85.1% 100% 99.4% 97.56% 74.2%

5.0 99.95% 97.7% 99.91% 99.5% 93.54% 94.9%

7.0 99.9% 99.2% 99.5% 99.8% 86.36% 99.6%

4. DISCUSSION

The NIPT method has been widely used to screen numerical aberrations on chromosomes
due to its safe (non-invasive), cheapness, and ease of implement on practice. The performance
of NIPT algorithms has been evaluated for some chromosomes related to popular disorders,
i.e., Down syndrome, Patau syndrome, and Edwards syndrome. The specificity of NIPT
algorithms can be measured from a large number of negative samples, however, the sensitivity
is not easily established due to the lack of positive samples.

We applied a simulation method to create 4600 positive samples; and re-used 1250 nega-
tive samples to assess the performance of well-known NIPT algorithms CNVKit and Wisec-
ondorX (and its improvement VINIPT). Some other NIPT algorithms are implemented in
commercial software such as NIFTY and are not publicly available for testing. Experiments
showed that WisecondorX and VINIPT had a high level of sensitivity in detecting trisomy on
all chromosomes, and VINIPT performed better than WisecondorX in terms of specificity.
The CNVKit had lower sensitivity and specificity than those of WisecondorX and VINIPT.
Its specificity needs to be improved, especially for difficult chromosomes such as chromosome
19.

The z-score cutoff threshold affects the sensitivity and specificity of NIPT algorithms.
Experiments showed that VINIPT worked well with the z-score cutoff of 3.3 by reaching a
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sensitivity of 100% and specificity of 99.4%. VINIPT with the z-score threshold of 5.0 or
7.0 resulted in a number of false negative samples. On the other hand, the z-score threshold
of 5.0 was a good choice for both WisecondorX and CNVKit because it helped significantly
reduce the false positive rates of the two algorithms. We note that using a high z-score
threshold will reduce the sensitivity of all NIPT algorithms.

Although NIPT has been developed for decades, numerical chromosome aberrations de-
tected by the NIPT algorithms might be false positive. Therefore, aberrations predicted
by NIPT must be verified by other specialized prenatal tests such as karyotype. A posi-
tive prediction from NIPT should be carefully explained to pregnant women to avoid any
unnecessary termination.
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APPENDIX

Table S1: The sensitivity of WisecondorX, VINIPT, and CNVKit algorithms with the z-
score cut-off threshold of 5.0. The results are summarized from 4600 positive samples with
trisomy aberrations.

WisecondorX VINIPT CNVKit
Chromosome

#False negative Sensitivity #False negative Sensitivity #False negative Sensitivity

Chr1 0 100% 0 100% 6 97%

Chr2 0 100% 0 100% 1 99,5%

Chr3 0 100% 0 100% 0 100%

Chr4 0 100% 0 100% 0 100%

Chr5 0 100% 0 100% 0 100%

Chr6 0 100% 0 100% 0 100%

Chr7 0 100% 0 100% 0 100%

Chr8 0 100% 0 100% 0 100%

Chr9 0 100% 0 100% 74 63%

Chr10 0 100% 0 100% 0 100%

Chr11 0 100% 0 100% 0 100%

Chr12 0 100% 0 100% 2 99%

Chr13 0 100% 0 100% 0 100%

Chr14 0 100% 0 100% 0 100%

Chr15 0 100% 0 100% 23 88,5%

Chr16 0 100% 0 100% 16 92%

Chr17 0 100% 0 100% 0 100%

Chr18 0 100% 0 100% 0 100%

Chr19 0 100% 2 99% 11 94,5%

Chr20 0 100% 0 100% 1 99.5%

Chr21 0 100% 1 99.5% 115 42.5%

Chr22 1 99.5% 1 99.5% 44 78%

ChrX 0 100% 0 100% 4 98%

All 23 chromosomes 1 99.95% 4 99.91% 297 93.54%

Table S2: The specificity of WisecondorX, VINIPT, and CNVKit algorithms with the z-score
cut-off threshold of 5.0. The results are summarized from 1250 negative samples.

Chromosome
WisecondorX VINIPT CNVKit

#False positive Specificity #False positive Specificity #False positive Specificity

Chr1 0 100% 0 100% 0 100%

Chr2 1 99,9% 0 100% 0 100%

Chr3 1 99,9% 0 100% 0 100%

Chr4 0 100% 0 100% 1 99,9%

Chr5 2 99,8% 0 100% 2 99,8%

Chr6 1 99,9% 0 100% 0 100%

Chr7 1 99,9% 1 99,9% 1 99,9%

Chr8 1 99,9% 0 100% 1 99,9%

Chr9 1 99,9% 0 100% 0 100%

Chr10 1 99,9% 0 100% 0 100%

Chr11 0 100% 0 100% 0 100%

Chr12 0 100% 0 100% 0 100%

Chr13 1 99,9% 0 100% 1 99,9%

Chr14 0 100% 0 100% 0 100%

Chr15 1 99,9% 0 100% 0 100%

Chr16 5 99,6% 1 99,9% 0 100%

Chr17 0 100% 0 100% 0 100%

Chr18 0 100% 0 100% 1 99,9%

Chr19 8 99,4% 3 99,8% 54 95,7%

Chr20 0 100% 0 100% 0 100%

Chr21 1 99,9% 0 100% 0 100%

Chr22 1 99,9% 1 99,9% 0 100%

ChrX 3 99,8% 0 100% 3 99,8%

All 23 chromosomes 29 97,7% 6 99,5% 64 94,9%
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Table S3: The sensitivity of WisecondorX, VINIPT, and CNVKit algorithms with the z-
score cut-off threshold of 7.0. The results are summarized from 4600 positive samples with
trisomy aberrations.

Chromosome
WisecondorX VINIPT CNVKit

#False negative Sensitivity #False negative Sensitivity #False negative Sensitivity

Chr1 0 100% 0 100% 17 91,5%

Chr2 0 100% 0 100% 1 99,5%

Chr3 0 100% 0 100% 0 100%

Chr4 0 100% 0 100% 0 100%

Chr5 0 100% 0 100% 0 100%

Chr6 0 100% 0 100% 0 100%

Chr7 0 100% 0 100% 0 100%

Chr8 0 100% 0 100% 0 100%

Chr9 0 100% 0 100% 129 35,5%

Chr10 0 100% 0 100% 2 99%

Chr11 0 100% 0 100% 2 99%

Chr12 0 100% 0 100% 14 93%

Chr13 0 100% 0 100% 1 99,5%

Chr14 0 100% 0 100% 2 99%

Chr15 0 100% 0 100% 55 72,5%

Chr16 0 100% 0 100% 46 77%

Chr17 0 100% 0 100% 4 98%

Chr18 0 100% 0 100% 1 99,5%

Chr19 2 100% 20 90% 23 88,5%

Chr20 0 100% 0 100% 16 92%

Chr21 1 100% 1 99,5% 185 7.5%

Chr22 3 100% 4 98% 141 29.5%

ChrX 0 100% 0 100% 4 98%

All 23 chromosomes 6 99,9% 25 99,5% 627 86.36%

Table S4: The specificity of WisecondorX, VINIPT, and CNVKit algorithms with the z-score
cut-off threshold of 7.0. The results are summarized from 1250 negative samples.

Chromosome
WisecondorX VINIPT CNVKit

#False positive Specificity #False positive Specificity #False positive Specificity

Chr1 0 100% 0 100% 0 100%

Chr2 0 100% 0 100% 0 100%

Chr3 0 100% 0 100% 0 100%

Chr4 0 100% 0 100% 0 100%

Chr5 2 99,8% 0 100% 0 100%

Chr6 0 100% 0 100% 0 100%

Chr7 0 100% 0 100% 0 100%

Chr8 1 99,9% 0 100% 1 99,9%

Chr9 0 100% 0 100% 0 100%

Chr10 0 100% 0 100% 0 100%

Chr11 0 100% 0 100% 0 100%

Chr12 0 100% 0 100% 0 100%

Chr13 0 100% 0 100% 0 100%

Chr14 0 100% 0 100% 0 100%

Chr15 0 100% 0 100% 0 100%

Chr16 1 99,9% 1 99,9% 0 100%

Chr17 0 100% 0 100% 0 100%

Chr18 0 100% 0 100% 0 100%

Chr19 4 99,7% 2 99,8% 2 99,8%

Chr20 0 100% 0 100% 0 100%

Chr21 0 100% 0 100% 0 100%

Chr22 1 99,9% 0 100% 0 100%

ChrX 1 99,9% 0 100% 2 99,8%

All 23 chromosomes 10 99,2% 3 99,8% 5 99,6%
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