
Journal of Computer Science and Cybernetics, V.40, N.2 (2024), 165–185

DOI no. 10.15625/1813-9663/19694

CLUE: A CLUSTERING-BASED TEST REDUCTION APPROACH
FOR SOFTWARE PRODUCT LINES

HIEU DINH VO∗, THU-TRANG NGUYEN

Faculty of Information Technology, VNU University of Engineering and Technology,
Ha Noi,Viet Nam

Abstract. Nowadays, organizations have increasingly turned to software product lines (SPLs)/

configurable systems to meet diverse user needs and market demands. SPLs offer configurability and

scalability but pose a formidable challenge in testing. Assuring the quality of variants across numerous

configurations demands innovative testing strategies that balance effectiveness and efficiency. To

improve testing productivity, test reduction techniques have been widely employed in non-configurable

code. However, test reduction for SPL systems remains mostly unexplored.

This paper introduces Clue, a novel test reduction approach to enhance testing productivity in

SPLs. Our idea is that to effectively and efficiently reveal failures, tests should be distinctive and

cover diverse behaviors of the system. Meanwhile, similar tests covering the same/similar behaviors

of an SPL system do not need to be redundantly executed multiple times. Clue clusters the system’s

tests into distinctive groups containing similar tests. Within each cluster, tests are prioritized based

on the number of feature interactions, a common root cause of defects in SPLs. Clue continually

selects and executes the top-prioritized test in each cluster until a bug is revealed or the allocated

effort budget is exhausted. To evaluate Clue, we conducted several experiments on a dataset of six

widely-used SPL systems. The results show that Clue enables developers to detect defects earlier,

requiring up to 88% less effort than existing approaches. Additionally, using only 50% of the original

test suites, Clue can identify most of the bugs in the buggy SPL systems while maintaining fault

localization performance.

Keywords. Test reduction; Software product line; clustering; Feature interaction; Fault localiza-

tion.

1. INTRODUCTION

In the dynamic landscape of software engineering, organizations are increasingly turning to soft-

ware product lines (SPL) as a strategic approach to meet diverse user needs and market demands [9].

An SPL system is a family of related software products or variants sharing common core assets

while allowing for extensive configurability. This approach introduces flexibility, scalability, and

cost-efficiency, making it an attractive choice for delivering tailored solutions to various domains and

customer segments. However, the configurability and diversity inherent in SPLs introduce a profound

challenge for SPL testing [1, 9, 20, 33, 36]. In addition, to guarantee the quality of all the variants of

*Corresponding author.
E-mail addresses: hieuvd@vnu.edu.vn (H.D. Vo); trang.nguyen@vnu.edu.vn (T.T. Nguyen).

© 2024 Vietnam Academy of Science & Technology

mailto:hieuvd@vnu.edu.vn
mailto:trang.nguyen@vnu.edu.vn


166 HIEU DINH VO et al.

the system, the potential test cases of each SPL system grow exponentially. This poses a challenge

for innovative quality assurance strategies to balance thorough testing and resource efficiency.

In practice, several test reduction techniques have been proposed to improve testing productivity

in non-configurable code by systematically reducing the number of test cases while retaining the

same level of code coverage and fault coverage [3, 12, 14, 17, 18, 26, 51, 52]. For SPL systems where

testing is usually costly, test reduction could play an even more critical role in facilitating efficient

resource allocation, enabling faster testing cycles in agile and continuous integration environments,

and ultimately helping organizations meet the evolving demands of their customers.

The existing studies [6, 7, 27, 32, 36, 41] primarily concentrated on reducing the number of

configurations/products to test rather than directly reducing the test sets. The t-wise (i.e., k-way)
sampling algorithm [32] covers all combinations of t configuration options, while pair-wise checks all

pairs of configuration options. A study by Medeiros et al. [32] showed that realistic constraints among

options, global analysis, header files, and build-system information influence the performance of most

sampling algorithms substantially, and several algorithms are no longer feasible in practice. The

most-enabled-disabled algorithm [1] checks two samples independently of the number of configuration

options. When there are no constraints among configuration options, it enables all options, and

then it disables all configuration options. One-(enabled/disabled) algorithm [1] enables/disables one

configuration option at a time. However, while reducing the number of configurations or products

to test can improve test productivity, it does not always address the challenge of high-cost testing

caused by large test sets in sampled products [2, 20, 32].

In this paper, we introduce Clue, a novel test reduction approach to improve test productivity

in SPL systems. Our idea is that to efficiently and effectively test the system’s behaviors, tests should

be distinctive and cover diverse behaviors. Similar tests covering the same/similar behaviors of an

SPL system could be unnecessary to be executed repeatedly.

Particularly, for an SPL system, Clue clusters the set of tests into distinctive groups containing

similar tests. In each cluster, the tests are prioritized according to the number of feature interac-
tions [9] in the related products. The reason is that most of the bugs in SPL systems are caused by

undesirable interactions of the system features [1, 7, 37]. Thus, executing the tests in the product

covered more interactions could increase the likelihood of revealing the bugs earlier. After that, Clue
continuously selects and executes the top-prioritized test in each cluster that has not been executed

until a bug is revealed (a test is failed) or the effort budget is reached.

We conducted several experiments to evaluate the SPL test reduction performance of Clue on a

large public dataset containing six SPL systems widely used for research on testing and debugging in

SPL systems [35]. Our results show that by using Clue, developers could find the bugs earlier with

up to 88% less effort than the existing approaches. Additionally, for the same budgets, Clue can

help to detect many more bugs than the other approaches. Indeed, by using only 10% of test cases in

the original test suite, Clue can detect about 50% of the bugs in a buggy SPL system on average.

Furthermore, Clue not only improves the testing productivity by reducing the redundant tests that

need to be executed but also maintains the debugging effort by preserving the fault localization

performance, which ultimately improves the quality assurance process’s productivity for SPLs.

In brief, this paper makes the following contributions:

1. Clue: A novel test reduction approach for improving test productivity in SPL systems.

2. An extensive experimental evaluation showing the performance of Clue over the state-of-the-

art methods for SPL test reduction.

The rest of this paper is organized as follows. Section 2 reviews the related studies. Section 3



CLUE: A CLUSTERING-BASED TEST REDUCTION APPROACH 167

provides the basic concepts and our method to represent tests for reduction. Section 4 describes our

SPL test reduction approach. Section 5 introduces the evaluation methodology for SPL test reduction

approaches while Section 6 shows the experimental results. Finally, Section 7 concludes the paper.

2. RELATED WORKS

Test suite reduction for non-configurable systems. Multiple approaches have been

proposed for improving the productivity of software testing and saving testing efforts [3, 12, 14, 17,

18, 26, 51, 52]. They can be divided into three main directions: test minimization, selection, and

prioritization. In particular, test minimization [17, 26] reduces the cost of testing by permanently

eliminating redundant test cases. Test selection [12, 25, 45, 47] focuses on reducing the size of the

original test suite by selecting a subset of test cases to test a modified version. Meanwhile, test

prioritization [3, 21, 49] aims to order the test cases for earlier satisfying some specific criteria.

For instance, Horgan et al. [26] applied linear programming to the test case minimization problem

in implementing a data-flow-based testing tool, ATAC. In another research, Chen et al. [17] defined

essential test cases as the opposite of redundant test cases and then applied the GE and GRE heuristics

to minimize their test suites.

For selecting tests, that should be rerun after a modification, test selection approaches [25, 45, 47]

often collect and analyze dependencies statically or dynamically. Dependencies can be collected at

various granularity levels, and previous research has mostly focused on dynamic techniques. Rother-

mel and Harrold [47] proposed one of the first dynamic test selection techniques for C programs based

on basic block-level analysis. Harrold et al. [25] later proposed to handle object-oriented features and

adapt basic-block-level test selection for Java programs. Static test selection techniques [45] have

been proposed in the past, but their effectiveness and efficiency were largely unexplored.

The test prioritization problem was initially defined by the Elbaum and Rothermel team [46]. In

its early stages, they focused on white-box testing of test prioritization [21, 46], which prioritizes test

cases based on program coverage and utilizes a greedy algorithm for ordering the execution. Wang et

al. [49] introduce a cluster-based adaptive test case prioritization approach, which can add the new

adaptive adjustment content in pre-prioritization. With the development of a deep learning model,

TCP-Net [3] is proposed for using source code-related features, test case metadata, test case coverage

information, and test case failure history to learn a high dimensional correlation between source files

and test cases to prioritize tests.

These approaches are specialized for non-configurable systems, unaware of the similarities and

differences of products in a family. In addition, they do not consider the feature interactions, which

are inherent characteristics of the SPL systems. Thus, these approaches cannot be directly applied

to reduce test suites of an SPL system. Different from these studies, Clue focuses on specific

characteristics of the SPL systems to address the redundant testing problem in this context.

Test suite reduction for configurable systems. To improve the testing productivity

of the configurable systems, several approaches to configuration selection [20, 24] and configuration

prioritization [7, 8, 36] have been proposed. For example, Al-Hajjiaji et al. [7, 8] select the next

configurations for testing based on the similarity of the configurations with the previously selected

ones. Nguyen et al. [36] prioritize configurations based on their number of potential bugs, which are

measured by analyzing the feature interactions of the system. Moreover, to reduce the low-quality

tests that are coincidental correctness and negatively impact FL results, Nguyen et al. introduced

solutions for detecting and removing them at both the product level [38] and test-case level [39].



168 HIEU DINH VO et al.

Quality assurance for configurable systems. Configurable systems create a mechanism

to flexibly tailor products to customers’ needs. Unfortunately, the large number of features, as well

as their mutual interactions, make their quality notoriously challenging to assure. To guarantee the

quality of configurable systems, there are various studies about variability-aware analysis for type

checking [28, 29], testing [48, 50], and control/data flow analysis [15, 29]. Moreover, exhaustively

testing SPL systems to detect faults is also extremely challenging. Therefore, various approaches [16,

20, 24] were also proposed to effectively test these systems.

3. TEST REPRESENTATION

A software product line (SPL) system is a family of products that share a common code base,

and each product is distinguished from the others in terms of its selected features [9]. To test an

SPL system S, a set of products P = {p1, p2, ..., pn} is often systematically sampled/selected ; each
product pi ∈ P has its own test suite Ti. Overall, to test S, we need to execute a huge set of tests

T = {t11, ..., tnk}, in which tij ∈ Ti is a test case of product pi.
In practice, multiple tests in T could be similar to some extent. For example, two tests ti1 and tj1

of two products pi and pj could be similar if they all target to validate the shared functionalities in

these products. Executing these similar tests repeatedly does not provide more information about the

correctness of the system but could consume a large amount of effort and resources. Thus, minimizing

the test suite by selecting representative tests to reduce the efforts of redundantly executing similar

test cases while retaining the fault detection rate is necessary.

In the existing studies for non-configurable code [21, 46, 49], the similarities of the tests are often

measured based on their execution profiles, which specify whether a program element is executed (or

not) when the tests run. For example, a program has three statements s1, s2, and s3. If the execution
profile of this program with test t is v = ⟨a1 = 1, a2 = 0, a3 = 1⟩, this means that statements s1
and s3 are executed and statement s2 is not executed when test t runs. These approaches hypothesize
that similar tests often execute similar sets of statements and, thus, have similar execution profiles.

However, these approaches require that each test must be executed at least once to record its execution

profile. Thus, testing resources are not managed efficiently at first test execution because of (possible)

similar tests in the test suites. In addition, if there is a modification leading to a change in the control

flow of the program and affecting the execution profiles of the tests, using previous execution profiles

to select unique tests could be incorrect.

Besides, the test scripts, which are sequences of code statements/instructions, could also be

leveraged to identify similar test cases. The tests whose similar scripts are similar. However, in the

context of SPL systems, not only the scripts of the tests but also the invoked methods need to be

considered. This is because different products of an SPL system are constructed from different sets

of features. Thus, they could have some similar and some different methods. The same test t could
be applied to validate different products of the system, but this test could verify similar or different

behaviors in these products.

For example, Figure 1a shows the script of a test case used for validating the method undoUpdate

of the class Account in the system BankAccount. Method undoUpdate consists of the source code

of all the products of this system since it is implemented by the Base feature (Figure 1b), which

is compulsorily enabled in all the products. For testing the functionalities of undoUpdate in each

product of the system, the test t shown in Figure 1a is employed to test all sampled products of

this system. BankAccount system has 8 features with one compulsory feature and the others being

optional. By using the 4-wise sampling technique, there are a total of 34 sampled products.



CLUE: A CLUSTERING-BASED TEST REDUCTION APPROACH 169

1 public void test() throws Throwable {
2 Account account0 = new Account();
3 boolean boolean0 = account0.undoUpdate((-1));
4 assertTrue(boolean0);
5 }

(a) A test case for method undoUpdate of class Account

1 boolean undoUpdate(int x) {
2 int newBalance = balance - x;
3 if (newBalance < OVERDRAFT_LIMIT)
4 return false;
5 balance = newBalance;
6 return true;
7 }

(b) Method undoUpdate implemented in the
feature Base

1 private boolean undoUpdate_wrappee_Base(int x) {
2 int newBalance = balance - x;
3 if (newBalance < OVERDRAFT_LIMIT)
4 return false;
5 balance = newBalance;
6 return true;
7 }
8

9 boolean undoUpdate(int x) {
10 int newWithdraw = withdraw;
11 if (x < 0) {
12 newWithdraw -= x;
13 if (newWithdraw < DAILY_LIMIT)
14 return false;
15 }
16 if (!undoUpdate_wrappee_Base(x))
17 return false;
18 withdraw = newWithdraw;
19 return true;
20 }

(c) Method undoUpdate implemented in feature
DailyLimit

Figure 1: A test case and two variants of method undoUpdate in the BankAccount system.

Intuitively, it is unnecessary to repeatedly execute this test 34 times in all 34 sampled products

of the system. However, if this test is executed by only one product and skipped in the others, it

could fail to validate the other variant of the method undoUpdate shown in Figure 1c. Specifically,

the feature DailyLimit, which is an optional feature of BankAccount, implements another variant

of the method undoUpdate to add some features. For the products disabling DailyLimit, the

method undoUpdate of Base in Figure 1b is included in the products’ source code. Meanwhile, for

the products enabling DailyLimit, its method undoUpdate in Figure 1c is included in the products’

source code. Therefore, to measure the similarity of the test cases of an SPL system, both test
scripts and the related methods are important.

To precisely measure the similarity between test cases, we represent them by their scripts and

related methods. For more details, the test script specifies the testing scenarios, inputs, and expected

outputs; meanwhile, the behaviors the test aims to validate are implemented in the related methods.

For a test t, its test script and related methods are represented in a test entry.

Definition 1. (Test entry) For a test t ∈ Ti of the product pi, the corresponding test entry is a

pair e = ⟨ts,M⟩, where ts is the test script of t and M = {m1, ...,mk} are the implementations of

the test related methods in the product pi. Particularly, a method mj ∈M could be invoked by the

test t or by another method mk ∈M .

Definition 2. (Test reduction for SPL system) Given an SPL system S with the set of test
entries E = {e11, ..., enk}, where eij is a test entry of product pi, the test reduction problem
is to output a set of entries E ′ ⊂ E which retains a specified criteria C, such as coverage, fault
detection rate, etc. Specifically, φ(S, E ′, C) = φ(S, E , C), where φ is a function measuring
the specific criteria C in the system S with the set of test entries E ′ (or E ′).



170 HIEU DINH VO et al.

Clustering & 
prioritizing Selecting Executing

Test entries Test entry

Figure 2: Approach overview.

4. CLUE: AN SPL TEST REDUCTION APPROACH

To efficiently and effectively test an SPL system, Clue aims to select test entries that
are distinctive and cover diverse behaviors of the system. In other words, Clue focuses
on selecting a subset of test cases that are different from each other in terms of both their
test scripts and the related methods’ implementations. Meanwhile, the test entries that are
similar to the selected one are eliminated to reduce the waste of testing efforts.

Figure 2 shows the approach overview of Clue. Particularly, for a set of test entries E
of an SPL system S, Clue clusters test entries into distinctive groups containing similar
tests. In each cluster, the test entries are prioritized according to the number of feature
interactions [9] in the related products. The reason is that most of the bugs in SPL systems
are caused by undesirable interactions of the system features [1, 7, 37]. Thus, executing
the tests in the product covered more interactions could increase the likelihood of revealing
the bugs earlier. After that, Clue continuously selects and executes the top-prioritized test
in each cluster that has not been executed until a bug is revealed (a test is failed) or the
effort budget is reached. The detailed algorithm of test selection of Clue is demonstrated
in Algorithm 1.

4.1. Test clustering

To determine distinctive groups of similar tests in the given set of test entries E , we
employ a clustering algorithm to group similar tests together into a distinct group (line 3,
Algorithm 1). In fact, the number of groups the test entries E should be divided into is
unknown in advance. Thus, the bottom-up clustering algorithms [5, 23], which start with
individual data points and progressively group them into larger clusters if they are “close”
enough, could be more suitable for our needs.

In this work, to capture the meaning of a test entry e ∈ E , Clue employs Word2Vec [34],
which is a widely-used embedding technique in SE [19], to encode the content of e. Next,
the Hierarchical Agglomerative Clustering algorithm [5], which is one of the most popular
bottom-up clustering algorithms, is adopted to cluster test entries in E . At the start, this
algorithm considers each test entry as an individual cluster. In each iteration, the algorithm
identifies and merges the two closet clusters into a single cluster. The distances of the clusters
are measured by the distance metric, such as Euclidean distance, and they are updated after
each iteration.



CLUE: A CLUSTERING-BASED TEST REDUCTION APPROACH 171

Algorithm 1: Test selection algorithm of Clue

1 Function SelectTests(T , effortBudget = −1)
2 selected tests← ∅
3 C ← clustering(T )
4 for C ∈ C do
5 PrioritizeTests(C)
6 end
7 searchStop← False
8 while ¬searchStop do
9 for C ∈ C do

10 t ← SelectAnUntestedTest(C)
11 r ← ExecuteTest(t)
12 selected tests.add(t)
13 if r == “failed” and effortBudget == −1 then
14 searchStop← True
15 break

16 end
17 if effortBudget ̸= −1 and cost(selected tests) ≥ effortBudget then
18 searchStop← True
19 break

20 end

21 end

22 end
23 selected tests← RemoveCoincidentalCorrectness(selected tests)
24 return selected tests

4.2. Test prioritizing

After clustering tests, each cluster contains similar test entries, which are tests of one or
several products of the system. To increase the possibility of detecting bugs, we prioritize
tests in each cluster by the number of feature interactions [22, 36, 37] in the corresponding
products (lines 4 − 6, Algorithm 1). The reason is that most of the bugs in SPL systems
are caused by the interactions of the features [1, 37]. Thus, the products containing more
feature interactions should be prioritized to test earlier.

Without loss of generality, let C be a cluster containing two similar test entries eij and
emk. Particularly, the test tj of the product pi is similar to the test tk of the product pm,
and the implementation of the related methods in these two products is also similar. Testing
product pi against tj is prioritized over testing pm against tk, i.e., eij has higher priority in
the cluster C than emk, if pi contains more feature interactions than pm.

In a product of an SPL system, an interaction between two features exists if the presence
of one feature affects the behaviors of the other. Features could interact with the others in
multiple ways, such as a feature could influence/modify the other’s behaviors, or the output
of one feature is the input for the others, etc. Different kinds of feature interaction have
been discussed in the literature [9, 10, 36, 37]. For instance, Nguyen et al. [36] identify the
interaction of two features via their shared entities. If the two features share an entity, such
as a global variable, then the appearance of a feature could change the value of the shared
entity and then affect the manner of the other feature. In another research, VarCop [37]



172 HIEU DINH VO et al.

detects feature interaction by analyzing how features impact the other via control/data
dependencies.

In general, the interactions of the features in a product could be identified by analyzing
the control/data dependencies of the program entities among the features [36, 37]. However,
it is prohibitively expensive to conduct inter-procedure control/data dependence analysis. In
this work, we aim to build an efficient test selection approach. Thus, the feature interactions
in a product are estimated by the combinations of features in the products. The more
feature combinations the product covers, the more feature interactions could be in that
product [7, 32].

4.3. Test selecting

After clustering and prioritizing test entries in each cluster, Clue iteratively selects a
test in each cluster and executes the test in the corresponding product of the system (lines
7 − 22, Algorithm 1). Depending on the setting of the users, Clue could stop searching if
a bug in the system is detected (i.e., the first failed test) or the effort budget is reached.
The effort budget could be the test suite size, testing time, etc. Note that, in Algorithm 1,
effortBudget is −1, which means the budget is not set, and the algorithm is in the early
stop setting, i.e., stops searching right after a selected test fails. This is also the default
setting of the algorithm.

Furthermore, to support the debugging process after a bug is detected, we remove the
coincidental correct tests (line 23, Algorithm 1), which could negatively affect fault localiza-
tion (FL) performance. Specifically, coincidental correct tests, are tests executing the fault
but cannot reveal the failures [31, 38, 39]. These tests provide misleading indications about
the execution of faults and negatively affect the performance of the FL technique, such as
spectrum-based fault-localization (SBFL) techniques [43], measures the suspiciousness scores
of the statements by the number of failed/passed tests executed by the statements.

A passed test is considered coincidental correctness if its execution profile is similar
to a failed test’s execution profile. Specifically, let tp and tf be passed and failed tests,
respectively. Let Ep and Ef be the execution profiles of the two tests. The passed test tp
is considered to be coincidentally passed if it executes a similar set of statements executed
by tf , i.e., Ep is similar to Ef . The reason is that the fault has been executed by the failed
test tf or the faulty statement(s) is in Ef . If Ep is similar to Ef , Ep could contain faulty
statements. In other words, tp could also execute the faults as tf does. In this work, we
do not use the test information of tp for the FL process if sim(Ep, Ef ) ≥ θ. Clue employs
Jaccard [40] to measure the similarity of two sets and empirically sets the threshold θ = 0.8.

5. EXPERIMENTAL METHODOLOGY

5.1. Research questions

For evaluation, we seek to answer the following research questions.

• RQ1: Performance Comparison. How effective is our test reduction approach
compared with the baseline approaches?

• RQ2: Fault localization analysis. How does our approach affect the fault localiza-
tion (FL) results of the different SBFL metrics?



CLUE: A CLUSTERING-BASED TEST REDUCTION APPROACH 173

Table 1: Dataset overview [35].

System #Features #Products #Tests #Buggy versions

GPL 27 99 8,514 372

ZipMe 13 25 6,262 304

Email 9 27 2,215 126

BankAccount 8 34 621 383

ExamDB 8 8 1,041 263

Elevator 6 18 2,553 122

• RQ3: Clustering algorithm analysis. How do different clustering algorithms con-
tribute to Clue’s performance?

• RQ4: Parameter analysis. How do different parameters, including clustering dis-
tance thresholds and numbers of clusters, contribute to Clue’s performance?

5.2. Dataset

We conducted experiments on a public dataset of buggy SPL systems [35]. Currently,
this is the only public dataset containing the versions of SPL systems that are affected by
variability bugs and have been found through testing. To construct a large benchmark of
variability bugs, Ngo et al. [35] proposed the bug generation process includes three main
steps: Product Sampling and Test Generating, Bug Seeding, and Variability Bug Verifying.
First, for an SPL system, a set of products is systematically sampled by sampling techniques
such as t-wise or one-enabled/one-disabled algorithm [32]. To inject a fault into the system,
a random modification is applied to the system’s original source code by using a mutation
operator, e.g., Arithmetic Operator Replacement or Logical Operator Replacement. In the
last step, each generated bug is verified to ensure that the fault is a variability bug and
caught by the tests.

Table 1 shows the detailed information of the dataset that we used in the experiments
of this research. In total, there are six systems containing from 6 to 27 features. Among
these systems, there are 1,570 buggy versions, of which 338 contain one bug each, and
1,232 contain multiple bugs each. For each buggy version of the SPL system, the system is
sampled by 4-wise combinatorial testing, and each sampled product is tested against a test
suite. The total number of tests used to validate each buggy version ranged from 621 tests
in the BankAccount system to 8,514 tests in the GPL system.

5.3. Experimental procedure and evaluation metrics

5.3.1. Experimental procedure

Baselines: We compared the performance of Clue with the sate-of-the-art SPL test reduc-
tion approach, Similarity-based prioritization [7]. Also, to evaluate the complexities of the
problem, we compare our approach with Random-based prioritization.

• Random-based prioritization: Test entries are selected in a random order.

• Similarity-based prioritization [7]: All the tests of the product with the maximum
number of features are selected to execute first. Next, the tests of the product with
the lowest feature similarity with the previously chosen products are validated.



174 HIEU DINH VO et al.

Procedures: We evaluate the performance of the approaches in two settings:

• Early-stop setting: All the approaches gradually select and execute the tests of the
system until a bug is detected. In other words, when a test is failed, all the approaches
stop searching for the next tests.

• Effort-budget setting: All the approaches select and execute the same number of tests
according to the given effort budget, i.e., test suite size. In this work, we evaluate
the performance of the approaches when they select the different k percentage of tests
compared to the original test suites, k = {5%, 10%, 20%, 50%, 80%}.

5.3.2. Evaluation metrics

To evaluate the SPL test reduction approaches, we measure the number of tests (#Tests)
and Fault Detected Rate (FDR). Particularly, #Tests specifies how many tests are selected
by a test reduction approach to reveal the bug in the system. The smaller the number of
tests, the better the approach. Fault Detected Rate (FDR) measures the percentage of bugs
detected by the selected test suite. Given an SPL system containing n bugs, a test reduction
approach A selects a test suite T ∈ T , and there are k bugs detected by the failed tests in
T . The FDR of this approach is FDR = k

n . The higher the FDR, the more effective the
approach.

To evaluate how practical the SPL test reduction approaches are in supporting the de-
bugging process, we compare the fault localization (FL) performance of spectrum-based FL
(SBFL) techniques using the test information of the test suite selected by each approach.
Specifically, SBFL techniques measure the suspiciousness score of each statement in the
program and then return a list of statements ordered by their suspiciousness scores. The
statement which is the most suspicious will be at the top of the list. Following the existing
FL studies for SPL [11, 35, 37], the FL performance is measured in Rank. Rank indicates
the position of the buggy statements in the resulting lists of the FL techniques. The lower
the Rank of buggy statements, the more effective the approach. If multiple statements have
the same score, buggy statements are ranked last. Moreover, for the cases of multiple bugs,
we measured Ranks of the first buggy statement (best Rank) in the lists.

6. EXPERIMENTAL RESULTS

6.1. Performance comparison

6.1.1. Early-stop setting

Table 2 shows the performance of the SPL test reduction approaches in the early-stop
setting. As seen, Clue needs to execute the smallest number of tests to obtain a similar
FDR compared to the other baselines. For example, in each buggy version of BankAccount,
Clue only needs to execute 117 tests to find the failed test. In comparison, these figures for
Random-based and Similarity-based approaches are 142 and 315 tests, respectively. Notably,
for each buggy version of ZipMe, Clue can detect a bug by executing only 4% of tests of
the original test suite, which is much less than the Random-based approach with 84% and
the Similarity-based approach with 88%. These results demonstrate that by using Clue,
developers could earlier find bugs with much less effort than the other approaches.



CLUE: A CLUSTERING-BASED TEST REDUCTION APPROACH 175

Table 2: Test reduction performance comparison in the early-stop setting.

Original Random-based Similarity-based Clue

System #Tests FDR #Tests FDR #Tests FDR #Tests FDR

BankAccount 621 0.85 142 0.59 315 0.59 117 0.58

Email 2,215 0.75 450 0.60 1,039 0.60 81 0.59

Elevator 2,553 0.70 266 0.57 298 0.52 100 0.56

ExamDB 1,041 0.54 527 0.54 415 0.54 175 0.54

GPL 8,514 0.81 1,360 0.61 4,265 0.61 453 0.62

ZipMe 6,262 0.63 1,450 0.49 1,953 0.49 226 0.49

Table 3: FDR of the SPL test reduction approaches with different effort budgets.

System
Test Size

100% 80% 50% 20% 10% 5%

BankAccount
Random-based 0.85 0.78 0.58 0.30 0.14 0.10

Similarity-based 0.85 0.84 0.41 0.09 0.06 0.04

Clue 0.85 0.79 0.66 0.40 0.23 0.20

Email
Random-based 0.75 0.72 0.61 0.31 0.17 0.07

Similarity-based 0.75 0.63 0.50 0.05 0.05 0.05

Clue 0.75 0.75 0.75 0.69 0.67 0.64

Elevator
Random-based 0.70 0.69 0.67 0.53 0.36 0.21

Similarity-based 0.70 0.59 0.59 0.42 0.37 0.37

Clue 0.70 0.70 0.67 0.64 0.59 0.43

ExamDB
Random-based 0.54 0.44 0.28 0.11 0.04 0.03

Similarity-based 0.54 0.54 0.29 0.17 0.17 0.17

Clue 0.54 0.54 0.52 0.34 0.19 0.13

GPL
Random-based 0.81 0.79 0.70 0.45 0.25 0.12

Similarity-based 0.81 0.66 0.44 0.11 0.06 0.02

Clue 0.81 0.78 0.70 0.72 0.54 0.50

ZipMe
Random-based 0.63 0.58 0.47 0.26 0.11 0.07

Similarity-based 0.63 0.54 0.35 0.33 0.01 0.01

Clue 0.63 0.63 0.63 0.60 0.57 0.39

The Similarity-based prioritization approach aims to select products by maximizing the
diversity of feature combinations. Then, it tests each selected product at a time. For a
selected product pi, this approach continuously executes each test in the product’s test suite
Ti. Consequently, all the similar tests in Ti and the following selected products are still
redundantly executed until the bug is found. Although this approach is aware of feature
interactions for prioritizing testing a product, its performance could be even worse than the
Random-based approach.

Meanwhile, Clue can find bugs earlier with fewer tests being attempted since it selects
tests of the whole system regarding their diversity and distinction. Specifically, by appropri-
ately representing tests and clustering them, Clue can group similar tests together. Similar



176 HIEU DINH VO et al.

tests in a cluster could be the tests of one or several products of the system. This helps
Clue avoid repeatedly executing similar test cases as Similarity-based prioritization does.
Moreover, Clue considers the feature interactions in selecting tests in each cluster instead of
randomly selecting them. This increases the possibility of encountering the bugs by Clue.
Therefore, Clue could detect bugs far earlier by a much smaller number of tests compared
to the other baselines.

Note that the FDR of all the approaches in this setting is similar since they all stop
searching when a failed test is found. In other words, the selected test suites of each approach
contain only one failed test for each buggy SPL system. As a result, their fault detection
rates are quite similar.

6.1.2. Effort-budget setting

Table 3 shows the FDR of the approaches when selecting test suites with different effort
budgets. Overall, for the same budgets, Clue can help detect more bugs than the other
approaches. On average, by using only 10% of the test cases in the original test suite, Clue
can detect about 50% of the bugs in a buggy SPL system. Meanwhile, with the same number
of tests, the Random-based prioritization approach can detect about 20% of the bugs, and
the Similarity-based prioritization approach can detect only 12% of the bugs. To detect
a similar number of bugs, Random-based and Similarity-based approaches need to execute
about 50% of the tests in the original test suites.

Moreover, by using Clue, developers could save 20% of testing efforts while preserving
nearly the same FDR of the original test suites of the SPL systems. This means that, by
using the test suites selected by Clue, only 80% of test cases need to be executed to detect
all bugs that are covered by the original test suites in each buggy system. Especially, for 4
out of 6 systems, including Email, Elevator, ExamDB, and ZipMe, Clue can save up to 50%
of testing efforts. Indeed, Clue attempts to select divergent test entries in each selection
iteration. This increases coverage of selected tests of Clue and therefore increases its FDR.

The FL performance of SBFL using the test information after executing the test suites
selected by the SPL test reduction approaches is shown in Table 4. As seen, SBFL obtains the
best performance with the tests selected by Clue, compared to the baselines. For instance,
by selecting only 50% of test cases in Email systems, Clue can help SBFL to localize the
buggy statements at Rank 9th, which is equivalent to FL results using the whole test suite.
Meanwhile, for selecting the same 50% of the test cases, the SBFL results using the selected
tests of Random-based and Similarity-based prioritization approaches are 26th and 63rd,
respectively. These figures illustrate that these two approaches could save test efforts by
reducing tests, but after that, developers need to spend much more effort on debugging.
Meanwhile, Clue not only helps to save testing efforts by reducing redundant tests but also
maintains the debugging effort by preserving the FL results.

6.2. Fault localization analysis

Table 5 shows the performance of the 5 most popular SBFL metrics [42] using the test
suites selected by the SPL test reduction approaches with an effort budget of 80% of the
original test suites. In general, for all 5 SBFL metrics, the FL performance using the se-
lected tests of Clue is quite stable compared to those results using the original test suites.



CLUE: A CLUSTERING-BASED TEST REDUCTION APPROACH 177

Table 4: FL performance (by Rank) of SBFL using the test suites selected by the SPL test
reduction approaches.

System
Test Size

100% 80% 50% 20% 10% 5%

BankAccount
Random-based 5 6 16 41 57 58

Similarity-based 5 5 32 67 70 58

Clue 5 5 13 29 43 45

Email
Random-based 9 11 26 123 180 208

Similarity-based 9 19 63 231 227 188

Clue 9 9 9 19 24 31

Elevator
Random-based 14 15 16 73 176 271

Similarity-based 14 40 39 79 108 120

Clue 14 12 14 28 71 128

ExamDB
Random-based 3 44 110 172 185 180

Similarity-based 3 3 98 111 121 120

Clue 3 3 8 97 122 133

GPL
Random-based 7 8 49 304 555 709

Similarity-based 7 113 408 824 881 859

Clue 7 10 49 43 167 194

ZipMe
Random-based 122 130 267 639 891 958

Similarity-based 122 224 458 469 1123 1092

Clue 122 124 124 136 157 352

Specifically, for 3 out of 6 systems, including BankAccount, Email, and ExamDB, the FL per-
formance in all 5 metrics using the test suites selected by Clue and the original test suites
are equivalent.

Interestingly, the FL results of the buggy versions of Elevator are even improved

when using the selected test suites of Clue. For instance, using the whole original
test suite, Tarantula and Barinel rank the buggy statements of this SPL system at Rank
14th. Meanwhile, by using the testing information of the selected test cases, Clue helps
to improve these results by 14%, the Ranks returned by Tarantula and Barinel are 12th.
This is reasonable because the FL techniques [4, 11, 37] often evaluate the suspiciousness
of the code statements based on the number of passed and failed tests that the statements
executed. By Clue, tests are iteratively selected in different clusters. This leads to the
selected tests being distinctive. If the selected tests are distinctive, their execution profiles
are diverse and unique. In other words, the suspiciousness scores of the statements are better
distinguished since the numbers of tests each statement executed are different. Therefore,
the FL performance [44] can be improved. Meanwhile, if the selected tests are similar, their
execution profiles could be identical. It is difficult for FL techniques to find the bugs since the
numbers of passed and failed tests executed by the code statements are similar. Moreover,
Clue also detects and removes coincidental correct tests before conducting FL. As a result,
the misleading indications of faults could be eliminated, and lead to the improvement of FL
performance.



178 HIEU DINH VO et al.

Table 5: FL performance (by Rank) of different SBFL metrics with the test suites selected
by the approaches.

System Tarantula Op2 Ochiai Barinel Dstar

BankAccount

Random-based 6 5 6 6 6

Similarity-based 5 4 4 5 4

Clue 5 4 4 5 4

Original test suite 5 4 4 5 4

Email

Random-based 11 8 10 11 10

Similarity-based 19 9 18 19 18

Clue 9 7 8 9 8

Original test suite 9 7 8 9 8

Elevator

Random-based 15 11 9 15 9

Similarity-based 40 23 40 40 40

Clue 12 10 8 12 8

Original test suite 14 10 8 14 8

ExamDB

Random-based 44 20 44 44 44

Similarity-based 3 3 3 3 3

Clue 3 3 3 3 3

Original test suite 3 3 3 3 3

GPL

Random-based 8 6 6 8 5

Similarity-based 113 37 112 113 112

Clue 10 8 8 10 8

Original test suite 7 5 5 7 5

ZipMe

Random-based 130 108 129 130 129

Similarity-based 224 122 223 224 223

Clue 124 108 122 124 122

Original test suite 122 106 120 122 120

Meanwhile, the performance of different SBFL metrics is unstable with the selected test
suites of the Random-based and Similarity-based approaches. Particularly, Op2 obtains
better results than the other SBFL metrics. For Email, with the selected tests of Similarity-
based approach, Op2 localizes the buggy statements at the Rank of 9th, while the other
metrics rank them at 18th − 19th. In addition, by using the selected tests of the Random-
based approach in ExamDB, buggy statements are ranked 20th by Op2, while ranked 44th by
the others. Meanwhile, the FL results with the original test suites and the selected tests of
Clue are stable among all the experimental SBFL metrics.

Moreover, the FL performance using the tests selected by Random-based and Similarity-
based approaches is much worse than Clue and the original test suites in all 5 SBFL metrics.
For example, by using the original test suites or the tests selected by Clue, Ochiai pinpoints
the buggy statements of Email at the Rank of 8th. However, using the selected tests of
Random-based and Similarity-based approaches, the results of Ochiai for these buggy state-
ments are 10th and 18th, respectively. This demonstrates the poor performance of these two
approaches in supporting the debugging process after a fault is detected.



CLUE: A CLUSTERING-BASED TEST REDUCTION APPROACH 179
#T

es
ts

R
an

k

0

100

200

300

400

0

5

10

15

DBSCAN Kmeans GM AC

#Tests FL Result 

(a) System Email

#T
es

ts

R
an

k

0

50

100

150

200

0

2

4

6

DBSCAN Kmeans GM AC

#Tests FL Result

(b) System BankAccount

Figure 3: Impact of different clustering algorithms on Clue’s performance.

6.3. Clustering algorithm analysis

In this experiment, we evaluate how Clue works with different clustering algorithms.
There are four main types of clustering algorithms, including density-based, distribution-
based, centroid-based, and hierarchical-based. For each type of clustering algorithm, we
select a representative technique and alternatively employ it in Clue for clustering tests
in the buggy versions of Email and BankAccount systems. The experimental results are
measured in the early-stop setting. Specifically, the clustering techniques are Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) [13], Gaussian Mixture (GM) [23],
K-means [30], and Agglomerative clustering (AC) [5], respectively.

As seen in Figure 3, different clustering techniques have different affects on Clue’s per-
formance. With DBSCAN, Clue attempts the least number of tests, while with GM, Clue
attempts the highest number of tests to detect a bug in buggy systems. In contrast, with
DBSCAN, the FL results are the worst, while the FL results are the best with the selected
test suites of Clue with GM. It is reasonable because Clue with GM produces the largest
test suites, which helps the FL technique have more information to localize the faults and
obtain better performance.

In addition, the test suites selected by Clue with AC are slightly larger than the results of
Clue with DBSCAN, yet much better than the results of Clue with K-means and GM. For
example, by AC algorithm, 81 tests are selected for the Email system, while these features
of Clue with K-means and GM are 325 and 332 tests, respectively. For the BankAccount

system, with AC, 117 tests are selected, while with GM, 167 tests are selected by Clue.
Moreover, the FL result using the tests selected by Clue with AC is up to 13% better than
that of Clue with DBSCAN. Therefore, in order to balance between the test suite size and
FL performance, AC is highly recommended for clustering test entries in Clue.

6.4. Parameter analysis

6.4.1. Impact of different distance thresholds

Agglomerative clustering is a bottom-up approach that starts by considering each test
entry as a single cluster and then progressively groups them into larger clusters if they



180 HIEU DINH VO et al.

Distance threshold

#T
es

ts

R
an

k

0

100

200

300

0

5

10

15

20 40 60 80 100

#Tests FL Result

(a) System Email

Distance threshold

#T
es

ts

R
an

k

0

50

100

150

200

0

2

4

6

8

20 40 60 80 100

#Tests FL Result

(b) System BankAccount

Figure 4: Impact of different distance thresholds on Clue’s performance.

are closer than a distance threshold d. The distances among the clusters are measured by
Euclidean metric. In this experiment, we gradually varied d from 1 to 100 and applied
clustering tests in the buggy versions of two systems, Email, and BankAccount.

Figure 4 shows that the larger the distance thresholds, the more tests need to be executed
to find the first failed test. For example in the Email system, if the distance threshold d = 5,
the selected test suite contains 68 tests. Meanwhile, if the distance threshold d = 100, the
number of selected tests significantly increases to 298 tests. These figures in the BankAccount
system are 96 tests when d = 5 and 153 tests when d = 100. This is because when the distance
threshold is large, the similarity of tests is loosely measured to group them into a cluster.
As a result, with a large distance threshold, the tests in each cluster are less similar, and
the number of created clusters is smaller than when the distance threshold is small. In other
words, with large distance thresholds, the clustering performance could be less precise in
grouping similar tests together. This could lead Clue to iterate over the clusters multiple
times for selecting tests and result in a large selected test suite.

Moreover, with a large number of executed tests, the FL technique has more information
to find the buggy statements and better rank them. For the Email system, the FL result
when Clue ith d = 100 is 12th, while this figure when Clue with d = 5 is 15th. In our
experiments, the FL technique obtains the best performance when d = 50. For instance, in
the Email system, the number of selected tests is 128 tests, and the average Rank of the
buggy statements with these tests is 11th. Meanwhile, the number of selected tests for the
BankAccount system is 149 tests and the buggy statements are ranked at 6th.

6.4.2. Impact of different cluster numbers

K-means aims to partition test entries into pre-defined k clusters. This experiment
investigates how different numbers of clusters affect the performance of Clue. As seen in
Figure 5, the smaller the number of clusters, the larger the number of tests that need to be
executed to find the first failed test. In addition, the larger the number of executed tests,
the better FL performance. For example, if there are 10 clusters, k = 10, the number of
selected tests is 354 tests for the Email system and 140 tests for the BankAccount system. In
addition, with these selected tests, the Ranks of buggy statements in Email and BankAccount



CLUE: A CLUSTERING-BASED TEST REDUCTION APPROACH 181

#Clusters

#T
es

ts

R
an

k

0

100

200

300

400

5

7

9

11

13

15

10 50 100 200 500

#Tests FL Result

(a) System Email

#Clusters

#T
es

ts

R
an

k

0

50

100

150

0.0

2.0

4.0

6.0

8.0

10 50 100 200 500

#Tests FL Result

(b) System BankAccount

Figure 5: Impact of different cluster numbers on Clue’s performance.

are about 9th and 5th. Meanwhile, if there are 500 clusters, k = 500, these figures are 190
tests and bug Ranks at 12th for Email, and 19 tests and bug Ranks at 8th for BankAccount,
respectively. This trending of results complies with the results about the impact of distance
thresholds analyzed in Subsection 6.4.1.

6.5. Threats to validity

The main threats to the validity of our work consist of internal, external, and construct
validity threats.

Threats to internal validity mainly lie in the correctness of the implementation of our
approach. To reduce this threat, we carefully reviewed our code.

Threats to external validity are primarily associated with the benchmark used in our
experiments. Although the dataset uses the systems widely used in the existing work, this
dataset only contains artificial bugs of Java SPL systems, so we cannot extrapolate our
findings to the real-world faults and SPL systems in different programming languages. To
mitigate this threat, we chose the dataset containing a large number of buggy products with
a diversity of artificial faults, and each product is tested by a large number of test cases.
Also, the dataset contains both single-bug and multiple-bug buggy systems. Moreover, we
also plan to collect and conduct experiments on more real-world variability bugs in larger
SPL systems to evaluate our techniques.

Threats to construct validity mainly lie in the rationality of the assessment metrics. To
reduce this threat, we chose the metrics that are widely used in the related studies [7, 36, 37].

7. CONCLUSIONS

In this paper, we introduce Clue, a novel test reduction approach to improve the pro-
ductivity of SPL testing. Based on the idea that similar tests often cover similar behaviors,
Clue clusters tests into distinctive groups, prioritizing them based on the prevalence of fea-
ture interactions, a common cause of defects within SPLs. The approach effectively ensures
the execution of tests that are most likely to reveal defects. The experimental evaluation of
Clue on a dataset comprising six widely used SPL systems shows that Clue outperformed



182 HIEU DINH VO et al.

the state-of-the-art approaches for SPL test reduction. With Clue, developers can detect de-
fects earlier, requiring significantly less effort than existing approaches. Moreover, Clue not
only trims redundant tests but also maintains fault localization performance, contributing
to enhanced quality assurance productivity for SPL systems.

REFERENCES

[1] I. Abal, C. Brabrand, and A. Wasowski, “42 variability bugs in the linux kernel: A qualita-
tive analysis,” in Proceedings of The 29th ACM/IEEE International Conference on Automated
Software Engineering, 2014, pp. 421–432.

[2] I. Abal, J. Melo, Ş. Stănciulescu, C. Brabrand, M. Ribeiro, and A. Wasowski, “Variability
bugs in highly configurable systems: A qualitative analysis,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 26, no. 3, pp. 1–34, 2018.

[3] M. Abdelkarim and R. ElAdawi, “Tcp-net: Test case prioritization using end-to-end deep
neural networks,” in 2022 IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW). Los Alamitos, CA, USA: IEEE Computer Society, apr 2022,
pp. 122–129. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/ICSTW55395.
2022.00034

[4] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “Spectrum-based multiple fault localization,” in
2009 IEEE/ACM International Conference on Automated Software Engineering. IEEE, 2009,
pp. 88–99.

[5] M. R. Ackermann, J. Blömer, D. Kuntze, and C. Sohler, “Analysis of agglomerative clustering,”
Algorithmica, vol. 69, pp. 184–215, 2014.

[6] M. Al-Hajjaji, S. Krieter, T. Thüm, M. Lochau, and G. Saake, “Incling: efficient product-line
testing using incremental pairwise sampling,” ACM SIGPLAN Notices, vol. 52, no. 3, pp. 144–
155, 2016.

[7] M. Al-Hajjaji, T. Thüm, M. Lochau, J. Meinicke, and G. Saake, “Effective product-line testing
using similarity-based product prioritization,” Software & Systems Modeling, vol. 18, pp. 499–
521, 2019.

[8] M. Al-Hajjaji, T. Thüm, J. Meinicke, M. Lochau, and G. Saake, “Similarity-based prioritization
in software product-line testing,” in Proceedings of the 18th International Software Product Line
Conference-Volume 1, 2014, pp. 197–206.

[9] S. Apel, D. Batory, C. Kästner, and G. Saake, Feature-Oriented Software Product Lines: Con-
cepts and Implementation. Springer Publishing Company, Incorporated, 2013.

[10] S. Apel, A. Von Rhein, T. ThüM, and C. KäStner, “Feature-interaction detection based on
feature-based specifications,” Computer Networks, vol. 57, no. 12, pp. 2399–2409, 2013.

[11] A. Arrieta, S. Segura, U. Markiegi, G. Sagardui, and L. Etxeberria, “Spectrum-based fault
localization in software product lines,” Information and Software Technology, vol. 100, pp. 18–
31, 2018.

[12] M. Azizi and H. Do, “Retest: A cost effective test case selection technique for modern software
development,” in 2018 IEEE 29th International Symposium on Software Reliability Engineering
(ISSRE), 2018, pp. 144–154.

https://doi.ieeecomputersociety.org/10.1109/ICSTW55395.2022.00034
https://doi.ieeecomputersociety.org/10.1109/ICSTW55395.2022.00034


CLUE: A CLUSTERING-BASED TEST REDUCTION APPROACH 183

[13] H. Bäcklund, A. Hedblom, and N. Neijman, “A density-based spatial clustering of application
with noise,” Data Mining TNM033, vol. 33, pp. 11–30, 2011.

[14] C. Birchler, S. Khatiri, P. Derakhshanfar, S. Panichella, and A. Panichella, “Single and multi-
objective test cases prioritization for self-driving cars in virtual environments,” ACM Transac-
tions on Software Engineering and Methodology, vol. 32, no. 2, pp. 1–30, 2023.

[15] E. Bodden, T. Tolêdo, M. Ribeiro, C. Brabrand, P. Borba, and M. Mezini, “Spllift: Statically
analyzing software product lines in minutes instead of years,” ACM SIGPLAN Notices, vol. 48,
no. 6, pp. 355–364, 2013.

[16] I. Cabral, M. B. Cohen, and G. Rothermel, “Improving the testing and testability of software
product lines,” in International Conference on Software Product Lines. Springer, 2010, pp.
241–255.

[17] T. Y. Chen and M. F. Lau, “Dividing strategies for the optimization of a test suite,” Information
Processing Letters, vol. 60, no. 3, pp. 135–141, 1996.

[18] C. Coviello, S. Romano, G. Scanniello, A. Marchetto, A. Corazza, and G. Antoniol, “Adequate
vs. inadequate test suite reduction approaches,” Information and Software Technology, vol. 119,
p. 106224, 2020.

[19] Z. Ding, H. Li, W. Shang, and T.-H. P. Chen, “Can pre-trained code embeddings improve model
performance? revisiting the use of code embeddings in software engineering tasks,” Empirical
Software Engineering, vol. 27, no. 3, pp. 1–38, 2022.

[20] I. do Carmo Machado, J. D. McGregor, Y. C. Cavalcanti, and E. S. De Almeida, “On strategies
for testing software product lines: A systematic literature review,” Information and Software
Technology, vol. 56, no. 10, pp. 1183–1199, 2014.

[21] S. Elbaum, G. Rothermel, S. Kanduri, and A. G. Malishevsky, “Selecting a cost-effective test
case prioritization technique,” Software Quality Journal, vol. 12, pp. 185–210, 2004.

[22] B. J. Garvin and M. B. Cohen, “Feature interaction faults revisited: An exploratory study,” in
2011 IEEE 22nd International Symposium on Software Reliability Engineering. IEEE, 2011,
pp. 90–99.

[23] J. Goldberger and S. Roweis, “Hierarchical clustering of a mixture model,” Advances in Neural
Information Processing Systems, vol. 17, 2004.

[24] M. Greiler, A. van Deursen, and M.-A. Storey, “Test confessions: A study of testing practices
for plug-in systems,” in 2012 34th International Conference on Software Engineering (ICSE).
IEEE, 2012, pp. 244–254.

[25] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha, S. A. Spoon, and
A. Gujarathi, “Regression test selection for java software,” ACM Sigplan Notices, vol. 36, no. 11,
pp. 312–326, 2001.

[26] J. R. Horgan and S. London, “A data flow coverage testing tool for c,” in Proceedings of the
Second Symposium on Assessment of Quality Software Development Tools. IEEE Computer
Society, 1992, pp. 2–3.

[27] M. F. Johansen, Ø. Haugen, and F. Fleurey, “An algorithm for generating t-wise covering ar-
rays from large feature models,” in Proceedings of the 16th International Software Product Line
Conference-Volume 1, 2012, pp. 46–55.



184 HIEU DINH VO et al.

[28] C. Kästner, S. Apel, T. Thüm, and G. Saake, “Type checking annotation-based product lines,”
ACM Transactions on Software Engineering and Methodology, vol. 21, no. 3, pp. 1–39, 2012.

[29] J. Liebig, A. Von Rhein, C. Kästner, S. Apel, J. Dörre, and C. Lengauer, “Scalable analysis
of variable software,” in Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, 2013, pp. 81–91.

[30] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering algorithm,” Pattern
recognition, vol. 36, no. 2, pp. 451–461, 2003.

[31] W. Masri and R. A. Assi, “Prevalence of coincidental correctness and mitigation of its impact
on fault localization,” ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 23, no. 1, pp. 1–28, 2014.

[32] F. Medeiros, C. Kästner, M. Ribeiro, R. Gheyi, and S. Apel, “A comparison of 10 sampling
algorithms for configurable systems,” in 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE). IEEE, 2016, pp. 643–654.

[33] J. Meinicke, C.-P. Wong, C. Kästner, T. Thüm, and G. Saake, “On essential configuration
complexity: measuring interactions in highly-configurable systems,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering, 2016, pp. 483–494.

[34] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations
in vector space,” in 1st International Conference on Learning Representations, ICLR 2013,
Scottsdale, Arizona, USA, May 2-4, 2013, Y. Bengio and Y. LeCun, Eds., 2013.

[35] K.-T. Ngo, T.-T. Nguyen, S. Nguyen, and H. D. Vo, “Variability fault localization: a bench-
mark,” in Proceedings of the 25th ACM International Systems and Software Product Line
Conference-Volume A, 2021, pp. 120–125.

[36] S. Nguyen, H. Nguyen, N. Tran, H. Tran, and T. Nguyen, “Feature-interaction aware configu-
ration prioritization for configurable code,” in 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2019, pp. 489–501.

[37] T.-T. Nguyen, K.-T. Ngo, S. Nguyen, and H. D. Vo, “A variability fault localization approach
for software product lines,” IEEE Transactions on Software Engineering, vol. 48, no. 10, pp.
4100–4118, 2021.

[38] ——, “Detecting false-passing products and mitigating their impact on variability fault local-
ization in software product lines,” Information and Software Technology, vol. 153, p. 107080,
2023.

[39] T.-T. Nguyen and H. D. Vo, “Detecting coincidental correctness and mitigating its impacts on
localizing variability faults,” in 2022 14th International Conference on Knowledge and Systems
Engineering (KSE). IEEE, 2022, pp. 1–6.

[40] S. Niwattanakul, J. Singthongchai, E. Naenudorn, and S. Wanapu, “Using of jaccard coefficient
for keywords similarity,” in Proceedings of The International Multiconference of Engineers and
Computer Scientists, vol. 1, no. 6, 2013, pp. 380–384.

[41] S. Oster, F. Markert, and P. Ritter, “Automated incremental pairwise testing of software product
lines,” in International Conference on Software Product Lines. Springer, 2010, pp. 196–210.



CLUE: A CLUSTERING-BASED TEST REDUCTION APPROACH 185

[42] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst, D. Pang, and B. Keller,
“Evaluating & improving fault localization techniques,” University of Washington Department
of Computer Science and Engineering, Seattle, WA, USA, Tech. Rep. UW-CSE-16-08-03, p. 27,
2016.

[43] ——, “Evaluating and improving fault localization,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE). IEEE, 2017, pp. 609–620.

[44] A. Perez, R. Abreu, and A. Van Deursen, “A theoretical and empirical analysis of program
spectra diagnosability,” IEEE Transactions on Software Engineering, vol. 47, no. 2, pp. 412–
431, 2019.

[45] X. Ren, F. Shah, F. Tip, B. G. Ryder, O. Chesley, and J. Dolby, “Chianti: A prototype change
impact analysis tool for java,” Rutgers University, Tech. Rep., 2003.

[46] G. Rothermel, R. Untch, C. Chu, and M. Harrold, “Test case prioritization: an empirical study,”
in Proceedings IEEE International Conference on Software Maintenance - 1999 (ICSM’99). ’Soft-
ware Maintenance for Business Change’ (Cat. No.99CB36360), 1999, pp. 179–188.

[47] G. Rothermel and M. J. Harrold, “A safe, efficient regression test selection technique,” ACM
Transactions on Software Engineering and Methodology (TOSEM), vol. 6, no. 2, pp. 173–210,
1997.

[48] L. R. Soares, J. Meinicke, S. Nadi, C. Kästner, and E. S. de Almeida, “Exploring feature in-
teractions without specifications: A controlled experiment,” ACM SIGPLAN Notices, vol. 53,
no. 9, pp. 40–52, 2018.

[49] X. Wang and S. Zhang, “Cluster-based adaptive test case prioritization,” Information and Soft-
ware Technology, p. 107339, 2023.

[50] C.-P. Wong, J. Meinicke, L. Lazarek, and C. Kästner, “Faster variational execution with trans-
parent bytecode transformation,” Proceedings of the ACM on Programming Languages, vol. 2,
no. OOPSLA, pp. 1–30, 2018.

[51] S. Yoo and M. Harman, “Regression testing minimization, selection and prioritization: A survey,”
Software Testing, Verification and Reliability, vol. 22, no. 2, pp. 67–120, 2012.

[52] H. Zhong, L. Zhang, and H. Mei, “An experimental study of four typical test suite reduction
techniques,” Information and Software Technology, vol. 50, no. 6, pp. 534–546, 2008.

Received on December 19, 2023
Accepted on April 17, 2024


	Introduction
	Related Works
	Test Representation
	Clue: An SPL Test Reduction Approach
	Test clustering
	Test prioritizing
	Test selecting

	Experimental Methodology
	Research questions
	Dataset
	Experimental procedure and evaluation metrics
	Experimental procedure
	Evaluation metrics


	Experimental Results
	Performance comparison
	Early-stop setting
	Effort-budget setting

	Fault localization analysis
	Clustering algorithm analysis
	Parameter analysis
	Impact of different distance thresholds
	Impact of different cluster numbers

	Threats to validity

	Conclusions

