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Abstract. This paper investigates a path-following control for autonomous underwater
vehicles that is underactuated and subject to system uncertainties and input constraints in
the vertical plane. Initially, the-line-of sight guidance is adopted to generate the desired pitch
angle and the updated law for the path variable to guide the vehicle toward the desired path.
Subsequently, a transformation is applied to turn the input constraints into a constraint on
new states. The state constraint problem, unknown parameters, and disturbances are then
addressed with the proposal of an innovative integral barrier Lyapunov function and adaptive
law. Through the Lyapunov theory, all errors are shown to be uniformly ultimately bounded.
Eventually, a simulation via Matlab is implemented to illustrate the feasibility and efficiency
of the designed controller.
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1. INTRODUCTION

As a leading tool in the ocean exploitation trend, autonomous underwater vehicles
(AUVs) are researched extensively to serve applications such as pipeline inspection, seafloor
mapping, and new resource exploration [1, 2, 3]. The common characteristic of this type
of vehicle is under-actuated, which means the actuators equipped on the vehicles are fewer
than the degrees of freedom to be controlled. Along with unpredictable disturbances of the
ocean environment, this characteristic makes developing robust and efficient controllers re-
ally challenging for researchers. To execute these undersea tasks, AUVs are often required
to follow a pre-assigned trajectory. Moreover, depending on whether there is a coupling
between kinematic and dynamic or not in the control objective, it will be classified into
path-following or trajectory-tracking problems [4, 5].

The path-following control problem for AUVs has been widely researched, and many
advanced approaches and algorithms have been developed over the past decades [6, 7, 8, 9].
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For example, to create a path-following controller with high robustness against uncertainties
for AUV, Lyapunov, backstepping, and hybrid parameter adaptive techniques were adopted
[6]. In [7], the authors utilized the Lagrange multipliers to solve the path-following control
problem for underwater vehicles. Yu et al. [8] incorporated a fuzzy strategy into sliding mode
control to achieve a hybrid controller that guides a bio-inspired robotic dolphin in vertical
motion. In [9], singular perturbation theory was adopted to stabilize AUV to a pre-assigned
path in the longitudinal plane. However, the line of sight (LOS) algorithm is the most popular
for marine vehicles because of its simplicity and intuitiveness. Specifically, LOS guidance
mimics an experienced helmsman to effectively regulate the vehicle to converge to a desired
path. For that reason, many studies have applied and developed different modifications of
LOS for the path-following problem, including, but not limited to, integral LOS [10, 11],
adaptive LOS [12, 13, 14], and composite LOS [15, 16].

It should be pointed out that after using the LOS guidance to derive the desired kine-
matic values, the dynamic layer needs to guarantee that the corresponding state of the
vehicle adheres to these desired values. However, the above-mentioned articles often build
model-based dynamic controllers, causing two critical problems. The primary problem is
that the model-based controller requires the model parameters, which are difficult to de-
termine precisely [6, 17]. Hence, to maintain the control performance, augmenting with an
observer [15, 18, 19] or making use of the strong learning characteristics of the fuzzy logic
system (FLS) and neural network (NN) [11, 12, 14] is required. The secondary problem
relates to the physical limitations of the actual model, which can affect the performance and
stability of the controller when applied in practice [11, 20]. The physical limitations include
actuator saturation and state constraint. Actuator saturation is inherent in many mechan-
ical systems, which results in performance degradation or instability when the command
signals exceed the actual ones. In [21], a novel saturation function on the interval (0, 1] was
developed to address the unknown asymmetrical input constraint. In [20, 22], the actuator
dynamic model was taken into account during the controller design process to improve the
practical viability of the suggested control scheme. However, they used a first-order differen-
tial equation to describe the actuator dynamics, which imposes the changing rate of output
signals through a time constant and ignores the actuator rate constraint. Regarding the
state constraint, since the providing control inputs are bounded, the velocities of AUVs are
passively bounded [4, 14]. To overcome this problem, Peng et al. [4] adopted a projection
neural network and reference governor to ensure that the vehicle’s velocities remain in the
given constraint. In [14], a modified barrier Lyapunov function was proposed to achieve state
constraint satisfaction.

From the above observations, this paper attempts to build an adaptive path-following
controller for autonomous underwater vehicles subject to system uncertainties, actuator sat-
urations, and state constraints. The following is a list of the paper’s primary contributions.

(i) Instead of using a first-order differential equation to approximate the actuator dynamic
[20, 22], this paper uses a transformation to transform the actuator saturation problem
into a state constraint one. After that, a novel integral barrier Lyapunov function
(IBLF) is proposed to ensure that there is never a violation of any constraint.

(ii) Different from previous studies, we use the radial basis function (RBF) NN and IBLF to
construct a model-free control law that relaxes the model information requirements and
thus overcomes the disadvantages of the model-based approach. Moreover, an adaptive



ADAPTIVE NEURAL PATH-FOLLOWING CONTROLLER 269

Figure 1: Geometric of LOS guidance

law is integrated into the control law to compensate for the approximation errors and
lumped disturbance. The stability of the proposed controller is demonstrated through
theoretical analysis and simulation results.

The subsequent sections comprise the remainder of this paper. Section 2 introduces the AUV
mathematical model and control objective. Section 3 details the proposed controller design
procedure. Section 4 discusses the simulation results of the proposed controller. Finally,
Section 5 concludes the paper.

2. MATHEMATICAL MODEL AND PROBLEM FORMULATION

2.1. Mathematical model

This section introduces the AUV model investigated in the study [18, 23], which has the
simplified kinematic and dynamic models in the vertical plane as follows

ẋ = u cos θ + w sin θ
ż = −u sin θ + w cos θ

θ̇ = q,

(1)


u̇ = fu + guTp + du
ẇ = fw + dw
q̇ = fq + gqxG + dq,

(2)

where [x, y, θ]⊤ is the position and pitch angle of AUV in the earth-fixed frame {E}, [u,w, q]⊤
respectively represent the surge, heave velocities, and pitch rate in the body-fixed frame {B}
(see Figure 1). The continuous functions fi, gi, i = u,w, q are given in Eq.(3a) to Eq.(3e),
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Figure 2: The counterweight mechanism

di is lumped by linearization errors and external disturbances.

fu =
(Zẇ −m)wq + (Zq̇ +mxG) q

2 +Xuuu |u| − (W −B) sin θ

m−Xu̇
, (3a)

fw =
(m−Xu̇ + Zuqf )uq + Zwww |w|+ Zqqq |q|

m− Zẇ

+
mzGq

2 + (Zuwl + Zuwf )uw + (W −B) cos θ

m− Zẇ
, (3b)

fq =
(Xu̇ − Zẇ +Muwl +Muwf )uw +Mwww |w|

Iyy −Mq̇

+
−mzGwq +Mqqq |q|+ (Muqf − Zq̇)uq − zGW sin θ

Iyy −Mq̇
, (3c)

gu =
1

m−Xu̇
, (3d)

gq = −muq +W cos θ

Iyy −Mq̇
, (3e)

where X(.), Z(.), M(.) are the hydrodynamic parameters of the AUV, m and W are the
total mass and weight of the vehicle, while B and Iyy are the buoyancy and the inertial
moment, respectively. Besides, the control inputs acting on AUV include Tp being the
thrust force from the thruster and xG being the x-coordinate of the center of gravity (CG)
on {B}. Different from the conventional AUV, the AUV considered in this paper uses a
counterweight mechanism to control the pitch channel via shifting the counterweight along
the x− axis, as shown in Figure 2.

The counterweight mechanism consists of four guild rails that allow adjusting the position
of the counterweight [18] while the mass of the counterweight mc will be distributed so that
its center of gravity in {B} is rc = [xc, 0, 0]

⊤. Denote mh = m −mc is the vehicle’s weight
without the counterweight, and rh = [rhx, rhy, rhz]

⊤ is the corresponding coordinate of its
center of gravity in {B}. Then, the relationship between the coordinates of the vehicle’s CG
and the counterweight can be described by the following formula

rG = [xG, yG, zG]
⊤ =

mhrh +mcrc
mh +mc

=

[
mhrhx +mcxc

m
,
mhrhy
m

,
mhrhz
m

]⊤
. (4)
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It can be observed from equation (4) that changing the counterweight position xc will only
affect xG, which is also the control input for the pitch angle. Nevertheless, the displacement
and the moving speed of the counterweight are physically limited. From the relationship of
xG and xc in (4), we can rewrite the pitch channel in (2) as follows

q̇ = fc + gcxc + dq, (5)

where fc = fq + gqmhrhx/m, gc = gqmc/m. Representation (5) allows us to directly analyze
and address the problem of constraints on control input xc, which is also known as the
magnitude and rate constraints (MRC) mentioned in [24, 25]. Moreover, the constraint on
control input also renders the constraint of the related states [14]. In this paper, we use the
following conditions to formulate this problem.

−klM < xc < kuM
−klR < ẋc < kuR

−klθ < θ < kuθ

−klq < q < kuq,

(6)

where positive constants kli, kui (i = M,R, θ, q) stand for the lower and upper limitations of
the corresponding state.

2.2. Problem formulation

In many practical underwater applications, AUVs are required to move along a prede-
termined path to fulfill the tasks, such as pipeline exploration and seabed surveys. Assume
that the desired path in the vertical plane is parameterized by pd (ϖ) = [xd (ϖ) , zd (ϖ)]⊤,
where ϖ ∈ R is the path variable, as shown in Figure 1. Then, the control problem that
regulates the vehicle to converge to the desired path can be converted into designing the
control law so that the along-track error xe and the cross-track error ze settle down in the
vicinity of zero. According to [4, 23], these error variables can be determined through the
following formula {

xe = (x− xd (ϖ)) cos γd − (z − zd (ϖ)) sin γd

ze = (x− xd (ϖ)) sin γd + (z − zd (ϖ)) cos γd,
(7)

where γd = arctan (−z′d (ϖ)/x′d (ϖ)), x′d (ϖ) and z′d (ϖ) are partial derivatives of xd (ϖ)
and zd (ϖ) with respect to ϖ. For clearing, the control objective can be expressed as below.

Control objective: Design the control law for xc satisfying the constraints (6) and the
updated law for ϖ so that the path-following errors (7) settle to a neighborhood of zero
regardless of system uncertainties, i.e., functions fi and gi are unknown, and external dis-
turbances.

To accomplish the control objective, the below assumptions are required.

Assumption 1. The lumped disturbances di (i = u,w, q) are unknown but bounded. Hence,
there exist positive constants d̄i such that |di| ⩽ d̄i.

Assumption 2. The surge velocity u satisfies 0 < u ⩽ U0.

Assumption 3. [26] The function gc satisfies ḡc < gc < 0, where ḡc is a known function.

Assumption 4. The desired trajectory and its first and second derivatives are bounded.
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Remark 1. In this study, we assume that the thrust force Tp acting on the vehicle is con-
stant [18, 27]. This is because the propeller velocity is fixed to compensate for the roll offset.
Besides, since both control inputs and the energy of ocean disturbances are limited, Assump-
tions 1 - 2 are reasonable. Assumption 3 indicates that the sign of the control gain gc and
the upper bound of |gc| are known, while the actual value is not required for the controller
design.

2.3. Related lemmas

Lemma 1. Consider the integral barrier Lyapunov function (IBLF) for a state-constrained
−kl < s < ku as

I (e, ω) =

e∫
0

βσ(kl + ku)
2

4 (kl + σ + ω) (ku − σ − ω)
dσ, (8)

where kl, ku > 0, e = s−ω with ω is the desired value of s and satisfies −kl < ω < ku, β (s)
is a continuous function satisfying 1 ⩽ β ⩽ β̄ with β̄ as an unknown positive constant yet
bounded. Then, the following properties hold.

(i) The derivative of I (e, ω) with respect to time is İ (e, ω) = e (βλsṡ− ρ (e, ω) ω̇),

where λs =
(kl+ku)

2

4(kl+s)(ku−s) and ρ (e, ω) =
1∫
0

β(ξe+ω)(kl+ku)
2

4(kl+ξe+ω)(ku−ξe−ω)dξ.

(ii) The ρ (e, ω) is well-defined when e approaches zero.

(iii) The IBLF satisfies 1
2e

2 ⩽ I (e, ω) ⩽ β̄λse
2.

Proof.

(i) According to [26, 28], we have

İ (e, ω) =
βe(kl + ku)

2

4 (kl + e+ ω) (ku − e− ω)
ė+

∂I (e, ω)

∂ω
ω̇

= βeλsė+
∂I (e, ω)

∂ω
ω̇

(9)

and

∂I (e, ω)

∂ω
=

β (σ + ω)σ(kl + ku)
2

4 (kl + σ + ω) (ku − σ − ω)

∣∣∣∣∣
e

0

− e

1∫
0

β (ξe+ ω) (kl + ku)
2

4 (kl + ξe+ ω) (ku − ξe− ω)
dξ

= βeλs − eρ (e, ω) .
(10)

Combining (9) - (10) and note that ė = ṡ− ω̇, we get the conclusion.

(ii) It can be observed that ρ (0, ω) = β(ω)(kl+ku)
2

4(kl+ω)(ku−ω) , which shows that ρ (e, ω) is well-
defined as −kl < ω < ku.
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(iii) Using the variable change σ = ξe, we obtain

I (e, ω) = e2
1∫

0

β (ξe+ ω) ξ(kl + ku)
2

4 (kl + ξe+ ω) (ku − ξe− ω)
dξ.

Based on the definition of β and Cauchy-Schwarz inequality, we have
β (ξe+ ω) ⩾ 1

(kl + ku)
2

4 (kl + ξe+ ω) (ku − ξe− ω)
⩾

(kl + ku)
2

(kl + ξe+ ω + ku − ξe− ω)2
= 1.

Hence

I (e, ω) ⩾ e2
1∫

0

ξdξ =
e2

2
. (11)

Let p (σ, ω) = σ(kl+ku)
2

4(kl+σ+ω)(ku−σ−ω) . We have

∂p (σ, ω)

∂σ
=

(kl + ku)
2 [σ2 + (kl + ω) (ku − ω)

]
4(kl + σ + ω)2(ku − σ − ω)2

,

which shows that ∂p (σ, ω)/∂σ > 0 on −kl < σ + ω < ku. Hence, p (σ, ω) is a
monotonically increasing function with σ. Using the mean value theorem and note
that p (0, ω) = 0, β ⩽ β̄, we obtain

I (e, ω) =

e∫
0

βp (σ, ω) dσ ⩽ eβ̄p (e, ω) = β̄λse
2. (12)

Combining (11)-(12), we get the conclusion. ■

Remark 2. Compared to [29], the IBLF (8) is more general with the appearance of β, which
is the key to building our proposed control laws when gc is unknown. Besides, in the case of
β = 1, we can easily obtain [29]

İ (e, ω) = e (λsṡ+ κsω̇) , (13)

where κs =
kl+ku
4e ln (kl+ω)(ku−e−ω)

(ku−ω)(kl+e+ω) .

Lemma 2. [30] Given an unknown continuous function f (ζ) on compact set Ω ∈ Rn and a
positive constant ε̄. The RBF neural network can approximate f (ζ) by

f (ζ) = W⊤S (ζ) + ε, (14)

where W is the ideal weight vector, S (ζ) is the vector containing activation functions, and
ε is the error of function approximation such that |ε| ⩽ ε̄.

Lemma 3. [31] Given any ς > 0 and x ∈ R , the following inequalities hold

0 ⩽ |x| − x tanh

(
x

ς

)
⩽ ης, (15)

where η = 0.2785.
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3. PROPOSED CONTROLLER

This section will elaborate on a controller design procedure to achieve the control ob-
jective through the two sequential steps. Step 1, the LOS guidance law will be applied to
generate the updated law for ϖ and a desired pitch angle θcd. The former will ensure that the
normal line of point pd (ϖ) on the path always passes through the origin of {B}, while the
latter will steer the ship toward the desired path. In step 2, the constraint control method
based on BLF is cleverly utilized to design a control law to make the vehicle’s pitch angle
adhere to the desired one while guaranteeing the constraints are never violated.

3.1. LOS-based guidance law

Differentiating the path-following errors (7) with respect to time and combining with (1)
yields

ẋe = (ẋ− ẋd (ϖ)) cos γd − (ż − żd (ϖ)) sin γd − γ̇dze

= (u cos θ + w sin θ) cos γd − (−u sin θ + w cos θ) sin γd − Udϖ̇ − γ̇dze

= U cos (θ − γd − α)− Udϖ̇ − γ̇dze,

(16)

że = (ẋ− ẋd (ϖ)) sin γd + (ż − żd (ϖ)) cos γd + γ̇dxe

= (u cos θ + w sin θ) sin γd + (−u sin θ + w cos θ) cos γd + γ̇dxe

= −U sin (θ − γd − α) + γ̇dxe,

(17)

where U =
√
u2 + w2, Ud =

√
x′d

2 (ϖ) + z′d
2 (ϖ), α = arctan (w, u). From (16) - (17), we

proposed the LOS-based guidance law as follows

ϖ̇ =
k1xe + U cos (θ − γd − α)

Ud
, (18a)

θcd = γd + α+ χ, (18b)

where k1 > 0, χ = atan (ze/∆) with ∆ > 0. Let θ̃ = θ − θcd and define the first Lyapunov
function as V1 =

(
x2e + z2e

)/
2. Taking the time derivative of V1 along with (16) - (18b), we

obtain

V̇1 = xe (U cos (θ − γd − α)− Udϖ̇ − γ̇dze) + ze (−U sin (θ − γd − α) + γ̇dxe)

= xe (U cos (θ − γd − α)− Udϖ̇)− Uze sin (θ − γd − α)

= −k1x
2
e − Uze sin

(
θ̃ + χ

)
= −k1x

2
e − Uze sinχ+ Uzeθ̃

(
sinχ

1− cos θ̃

θ̃
− cosχ

sin θ̃

θ̃

)
= −k1x

2
e − k2z

2
e + zeθ̃Uφ

(
θ̃, χ
)
,

(19)

where k2 =
U√
z2e+∆

> 0, φ
(
θ̃, χ
)
= sinχ1−cos θ̃

θ̃
− cosχ sin θ̃

θ̃
.

Remark 3. The term φ
(
θ̃, χ
)

is bounded, i.e.,
∣∣∣φ(θ̃, χ)∣∣∣ ⩽ 1, and thus can be used to

design the control law in the next step.
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3.2. BLF-based pitch controller

From (19), it is evident that if θ̃ converges to zero, the path-following errors settle to a
neighborhood of zero. Hence, the goal of this section is to build a robust control law xc to
stabilize θ̃ while complying with the physical limitations (6). To this end, we first introduce
new variables to transform the MRC problem into a state-constrained problem.

xc (t) = xc (0) +
t∫
0

ϑdt

ϑ (t) = ẋc (0) +
t∫
0

τdt

⇒

{
ẋc = ϑ

ϑ̇ = τ,
(20)

where xc (0) and ẋc (0) are the initial values of xc and ẋc, respectively. Then, ϑ and τ can be
considered as the counterweight’s speed and new free control input. Next, dynamic surface
control (DSC) is employed to attenuate the complexity of the virtual control derivative
operation in the traditional backstepping technique. Specifically, the virtual control variable
ωc will be passed through the following saturation filter [29]

Tsω̇ + ω = Hs (ω
c) , ω (0) = Hs (ω

c (0)) , (21)

Hs (ω
c) =


−kls + µf if ωc < −kls + µf

kus − µf if ωc > −kls + µf

ωc otherwise,
(22)

with kls, kus are the lower and upper limitations of the corresponding state, Ts, µf are ad-
justable positive constants. By doing so, the filtered virtual control variable ω are guaranteed
to be continuous and remain within the given constraints (6).

Since the pitch angle is a constrained state, we let θcd pass through the filter (21) to

achieve θd and utilize the IBLF for it as V2 =
eθ∫
0

σ(klθ+kuθ)
2

4(klθ+σ+θd)(kuθ−σ−θd)
dσ with eθ = θ − θd.

Using Remark 2, the derivative of V2 is given as

V̇2 = eθ

(
λθq + κθθ̇d

)
. (23)

Select the virtual control law as

qcd = −k3eθ −
κθ
λθ

θ̇d −
1

λθ
zeUφ

(
θ̃, χ
)
, (24)

where k3 is a positive design parameter. Let eq = q − qd, εq = qd − qcd, and substitute (24)
into (23), we obtain

V̇2 = eθ

(
λθ (eq + εq + qcd) + κθθ̇d

)
= −k3λθe

2
θ + λθeθ (eq + εq)− zeeθUφ

(
θ̃, χ
)
.

(25)

In the subsequent step, we need to design a virtual control law for xc. However, the
functions fc and gc are supposed to be unknown, which leads to the model-based approaches
in [18] being unavailable in this case. To address this problem, we denote β = ḡc/gc and
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define the Lyapunov function as V3 = V2 +
eq∫
0

βσ(klq+kuq)
2

4(klq+σ+qd)(kuq−σ−qd)
dσ. Recalling Lemma 1

and Assumption 3, we have

V̇3 = V̇2 + eq (βλq q̇ − ρ (eq, qd) q̇d)

= −k3λθe
2
θ + λθeθεq − zeeθUφ

(
θ̃, χ
)

+ eq
(
λθeθ + λq

(
βfc + ḡcxc + βdq − λ−1

q ρ (eq, qd) q̇d
))

.

(26)

Let h (ζ) = βfc − λ−1
q ρ (eq, qd) q̇d and applying Lemma 2, we can approximate this

function by h (ζ) = W TS (ζ)+εNN . Inspired by [32], the following update law is constructed
to estimate the ideal weight vector

˙̂
W = Γ

(
eqS (ζ)− µW |eq| Ŵ

)
, (27)

where Ŵ is the estimated value of W and Γ > 0, µW > 0. If we choose the activation
function as the Gaussian function, then there exists a positive constant bS independent of
the number of nodes and the inputs such that ∥S (ζ)∥ ⩽ bS [33]. Moreover, according to
[32], Ŵ is guaranteed to be bounded when ∥S (ζ)∥ is bounded. Thus, there exist a positive
constant bW such that ∥W̃∥ = ∥W − Ŵ∥ ⩽ bW . Denote δ = bW bS + ε̄NN + β̄d̄q, we can
rewrite the equation (26) as

V̇3 = −k3λθe
2
θ + λθeθεq − zeeθUφ

(
θ̃, χ
)

+ eq

(
λθeθ + λq

(
Ŵ TS (ζ) + ḡcxc + W̃ TS (ζ) + εNN + βdq

))
⩽ −k3λθe

2
θ + λθeθεq − zeeθUφ

(
θ̃, χ
)

+ eq

(
λθeθ + λq

(
Ŵ TS (ζ) + ḡcxc

))
+ λq |eq| δ.

(28)

Besides, using Lemma 3, we have

−λqeq δ̂ tanh

(
λqeq δ̂

ς

)
⩽ −

∣∣∣λqeq δ̂
∣∣∣+ ης ⩽ −λq |eq| δ̂ + ης, (29)

where δ̂ is the estimated value of δ. Select the virtual control law as

xccd =
−k4eq − Ŵ TS (ζ)− λ−1

q λθeθ − δ̂ tanh
(
λqeq δ̂

ς

)
ḡc

, (30)

where k4 > 0. Let exc = xc − xcd, εxc = xcd − xccd, δ̃ = δ − δ̂, and substitute (29) - (30) into
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(28), we obtain

V̇3 ⩽ −k3λθe
2
θ + λθeθεq − zeeθUφ

(
θ̃, χ
)

+ eq

(
λθeθ + λq

(
Ŵ TS (ζ) + ḡc (exc + εxc + xccd)

))
+ λq |eq| δ

⩽ −k3λθe
2
θ + λθeθεq − zeeθUφ

(
θ̃, χ
)

− k4λqe
2
q − λqeq δ̂ tanh

(
λqeq δ̂

ς

)
+ λq ḡceq (exc + εxc) + λq |eq| δ

⩽ −k3λθe
2
θ − k4λqe

2
q + λθeθεq − zeeθUφ

(
θ̃, χ
)

+ λq |eq| δ̃ + λq ḡceq (exc + εxc) + ης.

(31)

Consider the Lyapunov function candidate V4 = V3+
1
2γ δ̃+

exc∫
0

σ(klM+kuM )2

4(klM+σ+xcd)(kuM−σ−xcd)
dσ

where γ is a positive design parameter. Differentiating V4 with respect to time, we obtain

V̇4 = V̇3 − γ−1δ̃
˙̂
δ + exc (λxcϑ+ κxcẋcd)

⩽ −k3λθe
2
θ − k4λqe

2
q + λθeθεq + λq ḡceqεxc − zeeθUφ

(
θ̃, χ
)

+ δ̃
(
λq |eq| − γ−1 ˙̂δ

)
+ exc (λq ḡceq + λxcϑ+ κxcẋcd) + ης.

(32)

Select the virtual control law and adaptive law as

ϑc
d = −k5exc − λ−1

xc λq ḡceq − λ−1
xc κxcẋcd, (33a)

˙̂
δ = γ

(
λq |eq| − µδ δ̂

)
, (33b)

where k5, µδ > 0. Let eϑ = ϑ− ϑd, εϑ = ϑd − ϑc
d, and substitute (33a) and (33b) into (32),

we obtain
V̇4 ⩽ −k3λθe

2
θ − k4λqe

2
q − k5λxce

2
xc + λθeθεq + λq ḡceqεxc

−zeeθUφ
(
θ̃, χ
)
+ µδ δ̃δ̂ + λxcexc (eϑ + εϑ) + ης.

(34)

Define the Lyapunov function as V5 = V4+
eϑ∫
0

σ(klR+kuR)2

4(klR+σ+ϑd)(kuR−σ−ϑd)
dσ, whose time deriva-

tive is

V̇5 = V̇4 + eϑ

(
λϑτ + κϑϑ̇d

)
⩽ −k3λθe

2
θ − k4λqe

2
q − k5λxce

2
xc + λθeθεq + λq ḡceqεxc + λxcexcεϑ

− zeeθUφ
(
θ̃, χ
)
+ µδ δ̃δ̂ + eϑ

(
λxcexc + λϑτ + κϑϑ̇d

)
+ ης.

(35)

Select the control law as

τ = −k6eϑ − λ−1
ϑ λxcexc − λ−1

ϑ κϑϑ̇d, (36)

where k6 > 0. Then

V̇5 ⩽ −k3λθe
2
θ − k4λqe

2
q − k5λxce

2
xc − k6λϑe

2
ϑ

+ λθeθεq + λq ḡceqεxc + λxcexcεϑ − zeeθUφ
(
θ̃, χ
)
+ µδ δ̃δ̂ + ης.

(37)
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3.3. Controller stability analysis

The stability of the closed-loop system is the focus of this section, and the following
theorem provides a succinct summary of the results.

Theorem 1. Consider a desired path pd (ϖ) = [xd (ϖ) , zd (ϖ)]T with the path variable ϖ
being updated by (18a). Then under Assumptions 1 - 4 and any bounded initial conditions
satisfying (6), the guidance law (18b), the control laws (24), (30), (33a), (36), and the
adaptive laws (27), (33b) guarantee that

(i) The path-following errors are ultimately uniformly bounded (UUB).

(ii) The constraints (6) are never violated.

Proof.

(i) Let a Lyapunov function candidate for the closed-loop system be V = V1 + V5 +
1
2

∑
i=θ,q,xc,ϑ

ε2i where εθ = θd− θcd. Differentiating V along (19), (21), (37) and note that

θ̃ = eθ + εθ, δ̃δ̂ = δ̃
(
δ − δ̃

)
⩽
(
δ2 − δ̃2

)/
2, we have

V̇ ⩽ −k1x
2
e − k2z

2
e − k3λθe

2
θ − k4λqe

2
q − k5λxce

2
xc − k6λϑe

2
ϑ − µδ

2
δ̃2 +

µδ

2
δ2 + ης

+
∑

i=θ,q,xc,ϑ

εi

(
− 1

Ti
εi +∆Hi − i̇cd

)
+ λθeθεq + λq ḡceqεxc + λxcexcεϑ + zeεθUφ

(
θ̃, χ
)
,

(38)
where ∆Hi = (Hi (i

c
d)− icd)/Ti. According to Young’s inequality, the following inequal-

ities holds

zeεθUφ
(
θ̃, χ
)
⩽

α1

4
z2e +

1

α1
U2ε2θ, (39a)

λθeθεq ⩽ λθ

(
α2

4
e2θ +

1

α2
ε2q

)
, (39b)

λq ḡceqεxc ⩽ λq

(
α3

4
e2q +

1

α3
ḡ2cε

2
xc

)
, (39c)

λxcexcεϑ ⩽ λxc

(
α4

4
e2xc +

1

α4
ε2ϑ

)
, (39d)

εi
(
∆Hi − i̇cd

)
⩽

α5

4
ε2i +

1

α5
(∆Hi)

2 +
α5

4

(
εii̇

c
d

)2
+

1

α5
. (39e)

Define a compact set Ξ =
{(

xe, ze, eθ, eq, exc, eϑ, δ̃, εθ, εq, εxc, εϑ

)
: V ⩽ B0

}
with B0

is a positive constant and ∆V =
∑

i=θ,q,xc,ϑ

(
(∆Hi)

2 + 1
)/

α5. Employing the induction

similar to [20, 34], we can infer that
∣∣i̇cd∣∣ (i = θ, q, xc, ϑ) has a maxima bi on Ξ and there
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exists b∆ such that b∆ ⩾ ∆V . Select the time constants such that

1

Tθ
≥ U2

α1
+

α5

4
+

α5

4
b2θ + ηθ

1

Tq
≥ λθ

α2
+

α5

4
+

α5

4
b2q + ηq

1

Txc
≥ λq ḡ

2
c

α3
+

α5

4
+

α5

4
b2xc + ηxc

1

Tϑ
≥ λxc

α4
+

α5

4
+

α5

4
b2ϑ + ηϑ,

(40)

where ηi (i = θ, q, xc, ϑ) are positive constants. Then, (38) can be further expressed as

V̇ ⩽ −k1x
2
e −

(
k2 −

α1

4

)
z2e − λθ

(
k3 −

α2

4

)
e2θ − λq

(
k4 −

α3

4

)
e2q

− λxc

(
k5 −

α4

4

)
e2xc − k6λϑe

2
ϑ −

∑
i=θ,q,xc,ϑ

ηiε
2
i

− µδ

2
δ̃2 +

µδ

2
δ2 + ης + b∆

⩽ −kV V + CV ,

(41)

where kV = min
{
2k1, 2 (k2 − α1/4) , (k3 − α2/4) , β̄

−1 (k4 − α3/4) , µδγ, (k5 − α4/4) , k6,
2ηθ, 2ηq, 2ηxc, 2ηϑ} , CV = µδδ

2
/
2+ης+b∆ . Besides, using Lemma 1, it can be inferred

that

V ⩾
1

2

x2e + z2e + e2θ + e2q + e2xc + γ−1δ̃2 + e2ϑ +
∑

i=θ,q,xc,ϑ

ε2i

 . (42)

By solving (41), we get

V (t) ⩽

(
V (0)− CV

kV

)
e−kV t +

CV

kV
, (43)

which implies that V (t) is bounded and eventually resides inside a compact set Ω :=
{V : V ⩽ CV /kV }. Combining this result with (42), we can conclude that the path-
following errors are UUB.

(ii) We will prove this property by contradiction. Suppose that there exists a moment
when the constraint state exceeds the boundary. Then, the corresponding IBLF will
be infinite. This is in contrast to the above property that V is bounded. Consequently,
it can be concluded that the constraints (6) are guaranteed. ■

Remark 4. From (43), we know that the larger kV is, the faster the convergence can be
achieved. However, simply trying to increase the control parameters will result in unexpected
large control signals, which may cause system instability. Based on our experience developing
control laws and personal experience, we propose the following guidelines for users during
the parameter tuning process. From Figure 2, (18a) and (18b), it is intuitive to set a large
k1 to make xe fast converge to 0, while ∆ could be chosen based on the speed of the vehicle to
avoid oscillation of the desired pitch angle. The control gains ki (i = 3, 4, 5, 6) should not be
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too large and have increasing value with each step. This will help ensure that the subsequent
state can adhere to the virtual control variable calculated in the previous step. Regarding
the adaptive parameters, users should adjust the magnitude of these parameters based on the
trade-off between convergence rate and stability during the transition period.

4. SIMULATION RESULTS AND DISCUSSIONS

To verify the efficacy and feasibility of the designed controller, numerical simulation
results via Matlab/Simulink and related discussion are carried out in this section. The
model parameters are taken from [14]. In the simulation scenario, the vehicle is required
to follow a desired parameterized path pd (ϖ) = [1.5ϖ, 20 + 1.5 sin (0.1ϖ)]⊤ with ϖ (0) = 0
under the external disturbances du = 0.01 sin (πt/20), dw = 0.01 sin (πt/20), dq = 0.03 +

0.01 sin (πt/20). The initial conditions are assigned as [x (0) , z (0) , θ (0)]⊤ = [u (0) , w (0) , q (0)]⊤

= [0, 0, 0]⊤, xG (0) = ẋG (0) = 0. The physical constraints are set to klM = 0, kuM = 20,
klR = kuR = 10, klθ = 15π/36, kuθ = 4π/9, klq = kuq = π/12. The control gains are selected
as k1 = 20, ∆ = 3, k3 = 0.3, k4 = 0.8, k5 = 1, k6 = 5. To overcome the complex uncertain-
ties, including unknown dynamic parameters and disturbances, we use the RBF NN with
eight nodes, centers evenly spaced in [−5, 5], and widths of 1. The adaptive parameters are
selected as Ŵ (0) = 0, Γ = 10, µW = 0.1, δ̂ (0) = 0, γ = 1, µδ = 0.01.

To highlight the benefits of the suggested method, we make a comparison with the back-
stepping controller suggested in [18]. In particular, the control and adaptive laws are modified
as follows

qd = −k3eθ + θ̇d − zeUφ (eθ, χ) , (44a)

xcd =
−k4eq − Ŵ TS (ζ)− eθ − δ̂ tanh

(
eq δ̂
ς

)
ḡc

, (44b)

˙̂
δ = γ

(
|eq| − µδ δ̂

)
. (44c)

The simulation results are depicted in Figures 3 to 6. Figure 3a shows the path-following
results of the proposed controller and the backstepping controller. Therein, the constrained
backstepping (CBC) and unconstrained backstepping (UBC) stand for the performance of the
backstepping controller with and without the input constraints, respectively. It can be ob-
served that the backstepping controller can work consistently without the input constraints;
otherwise, the response fluctuates, causing a significant reduction in performance. The path-
following errors are presented in Figure 3b, demonstrating that the proposed controller can
force the errors to converge to a small neighborhood of zero with a smooth transient per-
formance regardless of unknown model information and external disturbances. Moreover, to
make the insight comparisons, Table 1 presents the integrated absolute error (IAE), the in-
tegrated time absolute error (ITAE), and the integral of square error (ISA), which relate the
transient performance, the steady-state performance, and the control energy, respectively.
As can be seen in Table 1, CBC has the worst performance in all criteria because its response
fluctuates, and UBC has an IAE slightly smaller than the proposed controller since it has
no constraint on control input. Otherwise, the proposed method has the smallest ITAE
and ISA, which means it has the best steady-state performance and lowest control energy
consumption. Figures 4 and 5 point out that except for pitch angle, all other constraints are
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violated by the UBC, while the proposed method guarantees that all constrained states re-
main within the given boundary. This property enables the designed controller to efficiently
comply with the physical characteristics of the actual model, thus increasing practical ap-
plication. Figure 6 depicts the evolution of RBF NN weights, showing that NN weights
converge after about 50s, which is close to the time when the error ze converges to 0. It is
noticed that guaranteeing the constraints on system states can solve safety-related problems
in many applications [35]. Therefore, extending the proposed algorithm into a general one
is interesting.

Table 1: Performance comparisons among three controllers

Controller IAE
∫ t
0 |ze| dτ ITAE

∫ t
0 τ |ze| dτ ISA

∫ t
0 x

2
cdτ × 104

UBC 241.7 2589 3.623

CBC 293.1 5312 3.726

Proposed 256.9 2477 2.742

(a) (b)

Figure 3: Comparison of path-following performance of different controllers

5. CONCLUSION

This study addresses the path-following control for under-actuated AUVs subject to sys-
tem uncertainties, external disturbances, and physical constraints. By developing a novel
IBLF and using a dexterous transformation, the proposed method could augment with RBF
NN to simultaneously solve state constraint problems, input saturations, and unknown model
coefficients. The adaptive technique is also incorporated into the design procedure to han-
dle disturbances and enhance the controller’s robustness. Theoretical proof and simulation
results are strong evidence that verifies the superiority of the suggested approach compared
to the previous ones.
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Figure 4: State response of different controllers

Figure 5: Control inputs of different controllers

Figure 6: The evolution of RBF NN weights



ADAPTIVE NEURAL PATH-FOLLOWING CONTROLLER 283

ACKNOWLEDGMENT

This research is funded by Vietnam National Foundation for Science and Technology
Development (NAFOSTED), Vietnam, under grant number MDT 107.01-2021.22.

Pham Nguyen Nhut Thanh was funded by the Master, PhD Scholarship Programme of
Vingroup Innovation Foundation (VINIF), code VINIF.2023.TS.110.

We acknowledge Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for
supporting this study.

REFERENCES

[1] Y. Shi, C. Shen, H. Fang, and H. Li, “Advanced control in marine mechatronic systems:
A survey,” IEEE/ASME Transactions on Mechatronics, vol. 22, no. 3, pp. 1121–1131,
Jun. 2017. [Online]. Available: http://dx.doi.org/10.1109/TMECH.2017.2660528
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