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Abstract. From DCmotors (DCM) we know, it is possible to independently control the two currents

of the flux and torque generating. Because the two DCM circuits are completely isolated, we obtain

simple adjustment algorithms that require little computing time on the microprocessor. For this

reason, DCM has been at the forefront of the application of digital controls in drive control systems

in the early years, especially in high-performance systems. On the contrary, the three-phase AC motor

(ACM) has a complex structure due to the winding system and three-phase power supply, and has

caused significant difficulties in the mathematical description of the above decoupling characteristics.

The purpose of the field-oriented control (FOC) is therefore to create a tool that allows the decoupling

control of the flux and torque-producing current components from the three-phase AC currents flowing

in the coil. The FOC drive system is a system based on the principle of decoupling the above power

components thanks to the stator current feedback control (the innermost circuit of the drive system).

The FOC-type control method belongs to the class of vector control methods for electrical machines.

On the occasion of the 50th anniversary of FOC, this paper aims to provide an overview of the

development status of FOC in industrial practice. The content presented deals mainly with 3-phase

induction motors.
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1. INTRODUCTION

“Electric drives” is not just a scientific and technological field with a long history. Since its

invention 200 years ago, the electric motor has always played an important role in promoting the

development of human society through “electrification” and “automation”. Today, 200 years later,

in the era of “digitalization” of all social activities, in the era of the 4th industrial revolution, the role

of “electric drives” has not diminished, but is even more important: they have become “intelligent
actuators” of production lines, of robot chains, of autonomous vehicles, etc., which can be accessed

and controlled from anywhere on earth.

Throughout the development of three-phase AC drives, the term FOC, representative of the

modeling and control method, cannot be separated. The idea called FOC first appeared in [1]. It

was not until [2] that the FOC concept was confirmed as an official method, which has just turned

50 years old. Although FOC was “honoured and confirmed” by its master, professor Leonhard [3],

this paper boldly sets out to “illuminate” the 50 years that FOC has been around.

Figure 1: Structure of a drive system in the practice [8]

Controlled three-phase drive systems (Figure 1), consisting of frequency converters or servo drives and

three-phase motors, are currently the most economical choice for drive systems with power ratings

above 100 W that can be used in automatic production [8]. The advantage of these systems is the

possibility of direct power supply via the mains without the need for a transformer. The basis of this

technology is the introduction of powerful, switchable semiconductor valves (IGBT, MOSFET) and

microcontrollers with high computing power.

Low-voltage drives (small permanently excited DC motors, stepper motors) have a predominant

share of low power. DC motors with thyristor power supply have been replaced by regulated three-

phase drives, as three-phase drives require less maintenance and are cheaper.

1.1. Three-phase quantities as vector and choice of the coordinate system

After the introductory words, the question to be clarified includes two topic groups “FOC and

FOC structure (Figure 1)” for controlling a 3-phase AC motor. To understand FOC, we actually just

need to understand and remember the knowledge in the following 4 steps.

1.1.1. Step 1: Three-phase quantities as complex vectors

All 3-phase AC quantities of the motor are converted into a complex vector representation. The

3-phase stator current is now considered in more detail as an example. The three sinusoidal phase
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currents isu, isv, and isw of a star-point insulated three-phase machine fulfill the following relationship

isu(t) + isv(t) + isw(t) = 0. (1)

Figure 2: Transformation of the phase currents into the current vector

The complex vector results from formula (2). The transformation of other quantities such as the

voltages us, ur, and flux Ψs, Ψr is carried out similarly.

is =
2

3

[
isu(t) + isv(t)e

jγ + isw(t)e
j2γ
]
with γ = 2π/3. (2)

Complex vectors like formula (2) can be represented in different Cartesian coordinate systems. How-

ever, only those systems that can demonstrate advantages in terms of modeling and controller design

should be considered.

1.1.2. Step 2: Choice of rotor flux oriented dq-coordinate system

However, only those systems that can demonstrate advantages in terms of modeling and controller

design should be considered. The choice of the coordinate system means defining the real axis to

a concrete vector. In this case, it is the rotor flux vector (Figure 3). The term FOC now becomes

RFOC.

Figure 3 indicates that successful rotor flux orientation requires precise knowledge of the rotor

flux Ψr and flux orientation angle θs (Figure 4). If the rotor flux linkage is to be kept constant using

control, an actual value recording is necessary in any case.

� Since a direct measurement (the so-called direct FOC ) of the rotor flux linkage requires the

installation of measuring sensors in the motor and, in addition, no useful measured values are

available at very low speeds.

� An indirect actual value recording (the so-called indirect FOC ) of the rotor flux linkage

with the aid of a flux model (FM) is usually provided in connection with digital controls. This

approach is predominantly used in practice. Instead of a flux model, a Luenberger observer or

a Kalman filter can also be used advantageously.

The stator current is in the stator coordinate system and the mechanical angular velocity ω of the

motor are measured.
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Figure 3: Stator current vector of IM in stator-fixed and field coordinates

Figure 4: Interface between control, inverter, and motor (1, 2: Park transformation; 3: Clarke
transformation)

1.1.3. Step 3: Advantages of chosen RFOC dq-coordinate system

If the real axis d of the coordinate system (Figure 3) corresponds to the direction of the rotor

flux Ψr, a physically easily understandable representation of the relationships between torque, flux,

and current components is obtained. These relationships look like the formula (3)

yrd(s) =
Lm

1 + sTr
isd, mM =

3

2

Lm

Lr
zpψrdisq. (3)



50 YEARS FIELD ORIENTED CONTROL 5

Figure 5: The concept of direct FOC (left) and indirect FOC (rights) to obtain the flux angle θs

Formula (3) shows the flux-forming effect of isd and the moment-forming effect of isq. These decoupled
effects between isd and isq lead to the following important conclusion in step 4. After 50 years of

“research - development - production”, you can now clearly see the trend that indirect FOC dominates

(Figure 6) in industrial practical implementations.

Figure 6: The concept of indirect FOC dominates in practice

1.1.4. Step 4: Conclusion

If the innermost control loop (current vector control) guarantees the control performance “quickly

- exactly - decoupled”, then it is possible to design the outer control loops (flux, speed) as in the

drive system with externally excited DC motors.

We can assume that the 3-phase AC motor is powered by a current source inverter (CSI) that

ensures the supply of two current components isd and isq according to the system requirements.
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1.2. Introduction outlook

In reality, the induction motor is an object with a complex mathematical model. There are

dynamic interactions between the dq-axis components of the stator current. Canonically, we must

consider the motor as a two-dimensional control object. Therefore, this object can be well controlled

only with a two-dimensional control matrix. In the structure of this control matrix (Figure 6: block

RI), besides the components lying on the diagonal (main branch), there are also components lying

off the diagonal (branch with decoupling effect), which ensure the elimination of interaction effects.

At this point, we can say that although today, after 50 years, we have many methods at our

disposal to design RI controllers, we still have to adhere to the requirements of “quickly - exactly -

decoupled” (see [3, 5–7]).

2. MACHINE MODELS

According to [9], the IM is described by the following system

uf
s = Rsi

f
s +

dψf
s

dt
+ jωs ψ

f
s

0 = Rr i
f
r +

dψf
r

dt
+ jωr ψ

f
r

ψf
s = Ls i

f
s + Lm ifr

ψf
r = Lm ifs + Lr i

f
r .

(4)

The system (4) can also be written in component notation as follows

disd
dt

= −
(

1

σ Ts
+

1− σ

σ Tr

)
isd + ωs isq +

1− σ

σ Tr
ψ
/
rd +

1− σ

σ
ωψ/

rq +
1

σ Ls
usd

disq
dt

= −ωs isd −
(

1

σ Ts
+

1− σ

σ Tr

)
isq −

1− σ

σ
ωψ

/
rd +

1− σ

σ Tr
ψ/
rq +

1

σ Ls
usq

dψ
/
rd

dt
=

1

Tr
isd −

1

Tr
ψ
/
rd + (ωs − ω) ψ/

rq

dψ
/
rq

dt
=

1

Tr
isq − (ωs − ω) ψ

/
rd −

1

Tr
ψ/
rq.

(5)

Figure 7 shows an easy-to-understand IM model in the dq coordinate system.

2.1. State-space models of IM ([9])

For better access to control concepts, the state model of the control objects is used. The system

(5) is rewritten for this purpose.

2.1.1. Continuous state space models

dxf

dt
= Af xf +Bf uf

s +Nxf ωs,

xf T =
[
isd, isq, ψ

/
rd, ψ

/
rq

]
, uf T

s = [usd, usq] ,

(6)
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Figure 7: Model of the IM in field synchronous dq coordinate system

with the state vector xf , the input vector uf
s

Af =


−
(

1
σTs

+ 1−σ
σTr

)
0 1−σ

σTr

1−σ
σ ω

0 −
(

1
σTs

+ 1−σ
σTr

)
−1−σ

σ ω 1−σ
σTr

1
Tr

0 − 1
Tr

−ω
0 1

Tr
ω − 1

Tr

 ,

Bf =


1

σLs
0

0 1
σLs

0 0
0 0

 , N =


0 1 0 0
−1 0 0 0

0 0 0 1
0 0 −1 0

 .
(7)

The system (6) is bilinear. Here, the components usd, and usq of the stator voltage and the angular

velocity ωs of the stator circuit are input quantities. Figure 8 illustrates the derived state model with

their bilinearity.

Figure 8: State space model of the IM in dq coordinates
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2.1.2. Discrete state space models

From the early days of the FOC idea, we knew that the future of FOC would definitely involve

microcontrollers. Thirty years ago (see [3, 6, 7]) we saw the evidence and now it is confirmed. For

this, we need appropriate starting points. These are the discrete state models.

According to [9], the model has the following form

xf (k + 1) = Φf xf (k) +Hf uf
s (k) . (8)

Equation (8) can be rewritten into (9) using submatrices to clearly show the role of each submodel.

From (8) we obtain the following two submodels like (9), illustrated in Figure 9a.{
ifs (k + 1) = Φf

11 i
f
s (k) + Φf

12 ψ
f/
r (k) +Hf

1 u
f
s (k)

ψf/
r (k + 1) = Φf

21 i
f
s (k) + Φf

22 ψ
f/
r (k) .

(9)

The technical, physical characteristics of the motor, shown in Figure 9a, state:

� The motor model includes two submodels as in formula (9) and Figure 9a.

� The upper submodel, the first equation in formula (9) or Figure 9b, represents the stator

current model is required for the controller design.

� The lower submodel, the second equation in formula (9) or Figure 9c, represents the rotor

flux model ψr required for the design of flux calculation (for example, Luenberger observer or

Kalman filter).

2.2. Nonlinear properties of the IM models ([9])

Due to their complex mechanical structure with a magnetic circuit containing many winding slots

and air gaps, 3-phase AC machines exhibit many different non-linear characteristics. However, there

are only two nonlinear properties that play an important role in control system design:

� The nonlinear structure of the process models: This nonlinearity is caused by products

between state variables like current components isd, isq, and input variable ωs.

� The nonlinear parameters: Some parameters like the mutual inductance Lm depend on the

rotor flux which is a state variable.

This article only introduces two possible methods in practice: Control using exact linearization and

control based on flat characteristics of the object. These are two methods that help overcome nonlinear

structural characteristics, allowing the design of nonlinear controllers to improve control quality in

complex operating modes.

2.2.1. Idea of the exact linearization using state coordinate transformation

The basic idea of the exact linearization ([10,11]) can be shortly summarized as follows: If the

nonlinear MIMO system in the form (10)
dx

dt
= f (x) +H (x)u

y = g (x) ,
(10)
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Figure 9: Discrete state space model of the IM in dq coordinates

belongs to the class of processes with a vector of relative difference orders, the condition for exact

linearization ([9]), then the system (10) can be transformed using the coordinate transformation (11)

z =

z1...
zn

 = m (x) =



m1
1 (x)
...

m1
r1 (x)
...

mm
1 (x)
...

mm
rm (x)


=



g1 (x)
...

Lr1−1
f g1 (x)

...

gm (x)
...

Lrm−1
f gm (x)


(11)

into the following linear MIMO system 
dz

dt
= Az+Bw

y = Cz.
(12)

The original input u is then controlled by the coordinate transformation law

u = a (x) + L−1 (x)w. (13)
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The vector a(x) and the matrix L−1(x) in (13) look as follows

L (x) =

 Lh1L
r1−1
f g1 (x) · · · LhmL

r1−1
f g1 (x)

...
. . .

...

Lh1L
rm−1
f gm (x) · · · LhmL

rm−1
f gm (x)

 , a (x) = −L−1 (x)

 Lr1
f g1 (x)

...

Lrm
f gm (x)

 .

(14)
Formula (14) also requires the ability, concerning the coordinate transformation or the exact lin-

earization, to invert the matrix L(x). In equations (11) and (14), the term

Lfg (x) =
∂g (x)

∂x
f (x) , (15)

notifies the Lie derivation of the function g(x) along the trajectory f(x). Following equation (12) the
process is now linear in the new state space z so that only a linear controller must be designed (Figure

10). Besides the exact linearization, the input-output decoupling (decoupling between both axes

dq) relations are totally guaranteed. The so-called concept of direct decoupling is dynamically

effective for the complete state space.

Figure 10: Concept of exact linearized process model ([9])

2.2.2. Flatness and the idea of the flatness-based control design

The concept of flat systems was introduced in [10, 11]. Specific application instructions for IM

drive systems can be found in [9]. The application of the idea of flat systems can be re-iterated

shortly as follows.

Given is the following nonlinear system

dx

dt
= f (x,u) , (16)

with dimx = n, dimu = m < n and rank (∂f/∂u ) = m. The system (16) is differentially flat,

or shortly flat, if the two following conditions are fulfilled:

� Condition 1: There exists an output vector y and finite integers l and r such that

y =

 y1...
ym

 = F

(
x,u,

du

dt
, ...,

dlu

dtl

)
. (17)
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� Condition 2: Both input vector u and state vector x can be expressed in function of y and its

successive derivatives in finite number

x = P

(
y,
dy

dt
, ...,

dry

dtr

)
, u = Q

(
y,
dy

dt
, ...,

d(r+1)y

dt(r+1)

)
, (18)

with dP/dt = f (P, Q) . The output vector y is called a flat output. The 2nd equation in (18) is

also called the “inverse” process model of the system (16) with the output (17). According to (17)
and (18) it can be concluded that to every output trajectory t 7→ y (t) being enough differentiable,

there corresponds a state and input trajectory

t 7→ (x (t) , u (t)) =

(
P

(
y,
dy

dt
, ...,

dry

dtr

)
, Q

(
y,
dy

dt
, ...,

d(r+1)y

dt(r+1)

))
, (19)

that identically satisfies the system equations. Conversely, to every state and input trajectory t 7→
(x (t) , u (t)) being enough differentiable and satisfying the system equations, a trajectory

t 7→ y (t) = F

(
x,u,

du

dt
, ...,

dlu

dtl

)
, (20)

should correspond. In the case that both conditions (17), (18) are fulfilled, and the system (16) and
its output vector (17) are flat, we can figure out a general control structure as in Figure 11 which is

engineer-friendly and easier to understand as the original nonlinear system.

Figure 11: The general flatness-based control structure ([9])

The operation of the concept in Figure 11 can be summarized as follows:

� If the process satisfies the conditions of flatness, the inverse model of the process may be used

as a feed-forward component uf of a tracking control concept.

� The forward component uf is effective only when the input signal y∗ is so often differentiable

like the output signal y of the process. Therefore, the use of a trajectory set for y∗ is absolutely

necessary.

� Thus, the output signal y in the case of the perturbed system to the input signal y∗ along

the trajectory exactly follows and the steady-state error is eliminated in the new position of

rest, a third component ub is still needed as feedback. In the case of electrical machines, PI

controllers will be sufficient.
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3. FAST TORQUE IMPRESSION USING DYNAMIC CURRENT
FEEDBACK CONTROL

Equation (3) and Figure 6 clearly state that an indirect FOC-based current control loop with

the performance “fast - exact - decoupled” is absolutely necessary to turn the “inverter - motor”

combination into an actuator. The linear controllers are varied and have been presented several

times (see [6, 7, 9, 15–17]).

3.1. Linear controller design

Figure 12 shows the process model with the compensation of the disturbance variable ψr and the

dead time effect of the inverter.

Figure 12: The general compensated process model is ([9])

Despite the variety of variants, the controller design basically uses the block structure presented in

Figure 13. The design in the state space is presented in Figure 14.

Figure 13: Block structure of the current vector controller for IM ([9])

The latest and probably best variant RI in terms of starting behavior and accuracy was presented

in [17]. The design uses the following process model (21)) in Figure 9b (the 1st equation of (9))

is (k + 1) = Φ11 is (k) + Φ12 ψ
/
r (k) +H1 us (k) . (21)
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The result is the following equation

RI (z) = A (z)L
(
z−1
) [

I− z−1L
(
z−1
)]−1

=


(z − Φ11)L1

(
z−1
)

1− z−1L1 (z−1)

−Φ12L2

(
z−1
)

1− z−1L2 (z−1)
Φ12L1

(
z−1
)

1− z−1L1 (z−1)

(z − Φ11)L2

(
z−1
)

1− z−1L2 (z−1)

 .
(22)

In equation (22), the matrix A plays the role of a system matrix

A (z) = zI−Φ with detA =

(
z − 1 +

T

σ

(
1

Ts
+

1− σ

Tr

))2

+ (ωsT )
2 > 0. (23)

Only the matrix of polynomials L must be found

L
(
z−1
)
=

[
L1

(
z−1
)

0
0 L2

(
z−1
) ] . (24)

The terms L1(z
−1) and L2(z

−1) are polynomials of n1-th and n2-th degrees, then the current

components isd and isq will follow their set points after exactly n1+1 and n2+1 sampling periods.

A very interesting variant is the current control in the state space in Figure 14. More details

about the design can be found in [9]. The specific design steps for both structures can be found in [9].

Figure 14: Block structure of the current vector controller in state space ([9])

However, some specific features should be mentioned here.

� The structure in Figure 13 is characterized by its robustness. This is a big advantage for

systems during automatic self-identification and self-commissioning.

� On the contrary, the structure in Figure 14 requires more precise data, but is characterized by

high accuracy. The torque ripple is very small. For high-quality drives, the additional effort

compensates for the additional costs of data procurement.

3.2. Nonlinear controller design

3.2.1. Control using exact linearization

Now it seems possible to replace the two-dimensional current controller (Figure 6) with a coordi-

nate transformation and two separate current controllers for both axes dq (Figure 15).
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The direct decoupling concept in Figure 15 is dynamically effective for the entire state space. The

two current controllers RIsd and RIsq do not need to have PI characteristics and can be designed

with modern algorithms such as dead-beat control. A dynamic and almost delay-free imprinting of

the motor torque can be ensured without interrupting a linearization condition.

Figure 15: The new control structure of the inner loop with direct decoupling designed by using the
method of exact linearization ([9])

Figure 16: Substitute linear process model of the IM as starting point for controller design ([9])

In a more exact analysis the following essential knowledge can be learned:

� Besides the exact linearization achieved in the complete new state space z, the input-output
decoupling relations are totally guaranteed.

� The three transfer functions respectively contain only one element of integration.

3.2.2. Flatness-based control

Firstly, the controller design begins with proving that the motor meets the flatness conditions

(17), (18) and the output vector y =
[
ω, ψ

/
rd

]
is also flat. Then, the steps follow [9]:



50 YEARS FIELD ORIENTED CONTROL 15

� Design of set point trajectory y∗ =
[
ω∗, ψ

/∗
rd

]
.

� Design of feed-forward component uf
s of the stator voltage vector us.

ufsd = σ Ls

[
di∗sd
dt

+

(
1

σ Ts
+

1− σ

σ Tr

)
i∗sd − ω∗

s i
∗
sq −

1− σ

σ Tr
ψ
/∗
rd

]
ufsq = σ Ls

[
di∗sq
dt

+ ω∗
s i

∗
sd +

(
1

σ Ts
+

1− σ

σ Tr

)
i∗sq +

1− σ

σ
ω∗ψ

/∗
rd

]
with ω∗

s = ω∗ + i∗sq

/(
Trψ

/∗
rd

)
.

(25)

� Design of feedback component ub
s of the stator voltage vector us (Figures 17 and 18).

Figure 17: The block structure of the flatness-based IM control (concrete design steps can be seen
in ([9])

.

For implementation, the block structure in Figure 17 is redrawn more concretely as in Figure 18. The

flatness-based variant is characterized by high dynamics compared to other variants.

Figure 18: The detailed flatness-based cascaded control structure for IM drives ([9])
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4. FOC-CONTROLLED THREE-PHASE AC DRIVE IN THE ROLE OF AN
ACTUATOR

4.1. Two-mass system model

After torque mM is generated with high dynamic drive quality (Figure 1) using the FOC-

controlled innermost current control loop, the following question is how mM can be provided to

the work machine or the load side or load process. In many cases, it is sufficient to assume that the

load side is connected to the motor side using an ideally rigid shaft (Figure 19a).

The starting point is the equation of motion of the system of equations describing the squirrel

cage rotor induction motor

mM = mL + J
dω

dt
. (26)

Equation (26) describes the rotational motion created by the motor for the working machine (load

mL) through the torque mM with the ideal assumption: The motor shaft (inclusive rotor with

inertial mass J1) is ideally rigidly coupled with the working machine shaft (load with inertia J2).
Therefore, we can calculate the conversion of J2 towards the motor shaft with J = J1 + J2. The

term single-mass systems can be used to refer to this system.

However, in practice, that ideal situation rarely occurs. The coupling can be described as shown

in Figure 19b below.

Figure 19: Coupling of the motor with the working machine in practice: a) rigid coupling; b) elastic
coupling
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Figure 19b illustrates the minimal typical structure of a transmission branch, briefly as follows. In

the following instructions, we temporarily ignore the two nonlinear characteristics of gear backlash

and friction. The following basic physical relationships will be used:

� Acceleration torque of the inertial mass J: mB = Jφ̈,

� Transmitted torque due to the elastic component c: mC = c△φ,

� Transmitted torque due to the damping component d: mD = d△φ̇,

with

φ̈ Angular acceleration

φ̇ Angular velocity (rotational velocity)

φ Angle of rotation

c Rotary spring stiffness
Parameters of the connecting shaft

d Mechanical damping

It is known that the block structure of the two-mass system (Figure 19b) can be derived using

the parameters defined above. Using the above relationships, we can easily write the equation of
motion at the locations of the transmission branch as follows:

� On the side of the inertia mass J1 of the drive motor rotor

φ̈1 =
1

J1
mM − 1

J1
(mC +mD). (27)

� Connecting shaft between J1 and J2

△φ = φ1 − φ2,

△φ̇ = φ̇1 − φ̇2.
(28)

� On the side of the working machine (the load) J2

φ̈2 =
1

J2
(mC +mD)−

1

J2
mL. (29)

� The torque components transmitted through the connecting shaft are calculated:

mC +mD = c△φ+ d(φ̇1 − φ̇2). (30)

The feedback torque component according to (30) is substituted into the two equations of motion

(27), (29). We obtain the following system of state equations (31)
φ̈1 = − d

J1
φ̇1 − c

J1
△φ+ d

J1
φ̇2 +

1
J1
mM

△φ̇ = φ̇1 − φ̇2

φ̈2 = d
J2
φ̇1 +

c
J2
△φ− d

J2
φ̇2 − 1

J2
mL.

(31)

Using equations (27)-(31), we can construct a structural diagram of a two-mass system with linear

soft coupling, as shown in Figure 20.
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Figure 20: Block diagram structure of the two-mass system

4.2. State feedback control of two-mass systems

The system of equations (31) is rewritten as follows φ̈1

△φ̇
φ̈2


︸ ︷︷ ︸

ẋ

=

− d
J1

− c
J1

− d
J1

1 0 −1
d
J2

c
J2

− d
J2


︸ ︷︷ ︸

A

 φ̇1

△φ
φ̇2


︸ ︷︷ ︸

x

+

 1
J1
0
0


︸ ︷︷ ︸

b

mM︸︷︷︸
u

+

 0
0

− 1
J2


︸ ︷︷ ︸

v

mL︸︷︷︸
z

ẋ(t) = Ax(t) + bu(t) + vz(t) (32)

In which u(t) is the control variable and z(t) is the disturbance variable. With model (32), we can

design a structure to control the speed of the working machine (Figure 21).

Figure 21: Block diagram structure of the two-mass system

4.2.1. State control in the nominal speed range

The main feature of the nominal speed range is that the motor is always magnetized to the

nominal value. In other words, the rotor flux ψrd is always stably controlled to the nominal value

and it can be seen as a constant parameter. Then, the torque mM is directly proportional to the

current isq and mM is considered as the input control variable of the two-mass mechanical system.

The stator current vector control loop is replaced by the PT1 stage as shown in Figure 22.

Figure 22 illustrates the advantage of considering the constantly controlled rotor flux as a param-

eter so that the system order is reduced from 4 to 3.
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Figure 22: The load-side speed control structure on the state space in the nominal speed range

4.2.2. State control in the speed range with field weakening

Assumed, the drive system is operated at a speed outside the nominal range (area with field

weakening). In this range, the rotor flux ψrd is no longer considered constant, but is controlled

so that it changes with the dynamics of the speed of the motor shaft ω1 = φ̇1. When replacing

mM = kωimisq, the equation of motion on the J1 inertia block side of the drive motor (27) is

rewritten as follows

φ̈1 =
1

J1
kωimisq −

1

J1
(mC +mD), kω =

3

2

ZpL
2
m

Lr
. (33)

In (33), im = ψrd/Lm is the magnetization current with the magnetization process described by the

following relationship

i̇m = − 1

Tr
im +

1

Tr
isd. (34)

Combining (32) with (33) and (34), we have the full state model of the electro-mechanical system as

follows 
i̇m
φ̈1

△φ̇
φ̈2


︸ ︷︷ ︸

ẋ

=


1
Tr

0 0 0

0 − d
J1

− c
J1

d
J1

0 1 0 −1

0 d
J2

c
J2

−−d
J2


︸ ︷︷ ︸

Ȧ


im
φ̇1

△φ
φ̇2


︸ ︷︷ ︸

x

+


1
Tr

0

0 Kωim
J1

0 0
0 0


︸ ︷︷ ︸

B(x)

[
isd
isq

]
︸ ︷︷ ︸

u

+


0
0
0

− 1
J2


︸ ︷︷ ︸

v

mL︸︷︷︸
z

[
im
φ̇2

]
︸ ︷︷ ︸

y

=

[
1 0 0 0
0 0 0 1

]
︸ ︷︷ ︸

C


im
φ̇1

△φ
φ̇2


︸ ︷︷ ︸

x
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ẋ(t) = Ax(t) +B(x)u(t) + vz(t)

y(t) = Cx(t).
(35)

Figure 23: The load-side speed control structure on the state space with field weakening

The model (35) of the electro-mechanical system has the following main characteristics:

� The drive system has a current control circuit that meets the requirements of “fast – precise –

decoupled”. It can therefore be approximated by a dead time term or a first-order delay PT1,

as shown in Figures 21 and 22.

� The model contains a termB(x)u(t), reflecting bilinear nonlinear characteristics (the product

between the state variable im and the input variable isq).

� The nonlinear model (35) is the starting point for designing nonlinear controllers for the ro-

tational speed of electro-mechanical systems (inverters, motors, working machines), especially

important when the motor needs to be operated at a speed range above the nominal speed

(range with field weakening).

� Model (35) is also the starting point for designing the necessary observer for the two-mass

system.

5. CONCLUSION

On the occasion of the FOC - Field Oriented Controlled - turning 50 years old 1973 - 2023, it has

gone through 50 years of “Research - Development - Application” to become the most popular method
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in the industry. In the era of the 4th Industrial Revolution, when the entire society is passionately

talking about AI or IoT, the article helps review the level of development of FOC. Paper content

includes:

� Summary of the idea of vector-based control and the FOC method.

� Modeling of a three-phase squirrel-cage induction motor.

� Fast torque impression using dynamic current feedback control.

� FOC controlled 3-phase AC drive in the role of an actuator moving the load.

With content in the form of “State of the Art”, the article hopes to provide readers with a general

view of the group of problems that need to be solved when drive problems appear in practice.
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